
fpsyg-10-02970 December 30, 2019 Time: 16:53 # 1

ORIGINAL RESEARCH
published: 10 January 2020

doi: 10.3389/fpsyg.2019.02970

Edited by:
Pietro Cipresso,

Italian Auxological Institute (IRCCS),
Italy

Reviewed by:
Raydonal Ospina,

Federal University of Pernambuco,
Brazil

Miguel Lozano,
University of Valencia, Spain

*Correspondence:
Graziella Orrù

graziella.orru@unipi.it;
graziella.orru@gmail.com

Specialty section:
This article was submitted to

Quantitative Psychology
and Measurement,

a section of the journal
Frontiers in Psychology

Received: 20 August 2019
Accepted: 16 December 2019

Published: 10 January 2020

Citation:
Orrù G, Monaro M,

Conversano C, Gemignani A and
Sartori G (2020) Machine Learning

in Psychometrics and Psychological
Research. Front. Psychol. 10:2970.

doi: 10.3389/fpsyg.2019.02970

Machine Learning in Psychometrics
and Psychological Research
Graziella Orrù1* , Merylin Monaro2, Ciro Conversano1, Angelo Gemignani1 and
Giuseppe Sartori2

1 Department of Surgical, Medical, Molecular and Critical Area Pathology, University of Pisa, Pisa, Italy, 2 Department
of General Psychology, University of Padua, Padua, Italy

Recent controversies about the level of replicability of behavioral research analyzed
using statistical inference have cast interest in developing more efficient techniques for
analyzing the results of psychological experiments. Here we claim that complementing
the analytical workflow of psychological experiments with Machine Learning-based
analysis will both maximize accuracy and minimize replicability issues. As compared
to statistical inference, ML analysis of experimental data is model agnostic and primarily
focused on prediction rather than inference. We also highlight some potential pitfalls
resulting from adoption of Machine Learning based experiment analysis. If not properly
used it can lead to over-optimistic accuracy estimates similarly observed using statistical
inference. Remedies to such pitfalls are also presented such and building model based
on cross validation and the use of ensemble models. ML models are typically regarded
as black boxes and we will discuss strategies aimed at rendering more transparent
the predictions.

Keywords: machine learning, cross-validation, replicability, machine learning in psychological experiments,
machine learning in psychometrics

INTRODUCTION

The use of Machine Learning (ML) in psychometrics has attracted media attention after the
Cambridge Analytica affair which dominated headlines around the world after the election of
President Trump. Originally, academics from the Psychometric Centre from the University of
Cambridge United Kingdom, collected a huge number of social media data (on over 50.000
participants) in order to predict personality of Facebook (FB) profile owners on the basis of their
FB behavior. This research yielded a highly influential publication (Kosinski et al., 2013) were
the authors showed how FB-based behaviors (i.e., likes) could be used to identify private traits
with high accuracy (Christianity vs. Islam AUC = 0.82; Democrats vs. Republican, AUC = 0.88).
Widespread attention arose because these data were opaquely leaked from the academic researchers
to Cambridge Analytica, the now-infamous firm that scraped Facebook psychometric test data to
construct millions of psychographic profiles, which it then used to hyper-target voters with custom-
made campaign ads in favor of the Candidate Donald Trump during the presidential race of 2016.
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In short, Cambridge Analytica targeted “persuadable,” voters
whose psychographic profiles (mostly a Big Five profiling)
suggested they were open to suggestion.

A less media-attracting example of the use of ML in
psychological science is the field of Psychometric Credit Score.
A Psychometric Credit Score is a predictive model based on
a microcredit applicant psychological and behavioral profile
which is a substitute of the FICO score used for banked
applicants, which, in turn is mainly based on bureau data and
credit cards historical records (e.g., Meier and Sprenger, 2012).
Fintech mobile apps powered by machine learning psychometric
evaluations are testing microcredit applicants (e.g., for estimating
the personal risk of the applicant) and are granted access to
the data of the applicant’s smartphone which are fed into a
machine learning model that extracts data relevant to the default
prediction (e.g., number of phone calls during working hours
is an indirect estimator of income, etc.). The psychological and
behavioral data are used to estimate, using ML models, the default
risk of the applicant and, for low risk applicants only, grant
the loan asked for.

The above reported examples refer to the recent applications
of ML and Deep Learning methods in psychological science
that are emerging mainly outside the academic arena. However,
the number of experiments reported in academic journals that
use ML as analytical tools to complement statistical analysis is
also increasing (Kosinski et al., 2013; Monaro et al., 2018; Pace
et al., 2019). Machine learning has been successfully applied,
for example, in the analysis of imaging data in order to classify
psychiatric disorders (Orrù et al., 2012; Vieira et al., 2017), in
genetics (Libbrecht and Noble, 2015; Navarin and Costa, 2017),
in clinical medicine (Obermeyer and Emanuel, 2016), in forensic
sciences (Pace et al., 2019) etc.

However, ML is not extensively used in the analysis of
psychological experiments as compared to other fields (e.g.,
genetics). This seems particularly strange if we consider that
mathematical modeling of cognitive/brain functioning had great
advancements from psychology and neural network based
cognitive modeling emerged as one of the main advancements
in cognitive psychology (e.g., Seidenberg, 2005).

Experiments in psychological science has been traditionally
analyzed with statistical inferential tools. However, recent
controversies about the level of replicability in behavioral
research of such analytical tools have cast interest in
developing more efficient techniques for analyzing the results of
psychological experiments (Pashler and Wagenmakers, 2012).
ML has developed techniques that may control at least some
forms of replicability, the replication of results with similar
accuracy to unseen fresh new data.

The Theoretical Role of Psychological
Science in the Emergence of Machine
Learning and Deep Learning
Hebb (1949) pioneered the mathematical modeling of a neural
network that is still at the base of model based on reinforcement
learning. He proposed what has come to be known as Hebb’s rule.
He states, “When an axon of cell A is near enough to excite a cell

B and repeatedly or persistently takes part in firing it, some growth
process or metabolic change takes place in one or both cells such
that A’s efficiency, as one of the cells firing B, is increased.”

Later, in 1958, Frank Rosenblatt, a Cornell psychologist
(see Rosenblatt, 1962) in charge of The Perceptron Project
designed what has been described as “the first precisely
specified, computationally oriented neural network” (Anderson
and Rosenfeld, 1988, p. 89).

Neural network modeling rebirth dated 1986 with the
publication of David Rumelhart and Jay McClelland’s
influential two−volume textbook, Parallel distributed processing:
Explorations in the microstructure of cognition, Volume 1:
Foundations, Volume 2: Psychological and biological models,
commonly referred to as the PDP Volumes. In 1987, Walter
Schneider noted that the Parallel Distributed Processing
(PDP) volumes were already the basis for many courses in
connectionism and observed that they were likely to become
classics (Schneider, 1987, p. 77). His prediction was borne out.
A leading figure in the group was Geoffrey Hinton, a Canadian
psychologist turned-data-scientist who contributed to the first
papers of the PDP group (McClelland et al., 1987), Hinton
is now regarded as a godfather of deep and is now chief
scientist at Google.

Machine Learning in Analyzing the
Results of Psychological Experiments
While psychology was in the front-end in theory building, is
late in adopting ML as a tool for analyzing experimental results.
In fact, psychological experiment results are largely analyzed
by orthodox p-based statistical inference and more recently by
effect size measures.

Here, we will not systematically review the recent
advancement in modeling cognitive processes using ML/Deep
Learning models (e.g., reinforcement learning) but rather focus
on the benefits deriving from the more extensive use of ML
methods in the analysis of results collected from psychological
experiments as a complement to more traditional statistical
inference techniques.

Here we claim that the use of ML could be a useful
complement to inferential statistics and will help in achieving at
least the following objectives:

– developing models which can generalize/replicate to fresh
new data;

– developing models focused on prediction also at single
subject level.

The Difference Between Statistics and
Machine Learning
In the now classic paper, Breiman (2001) highlighted the
difference between statistical modeling and ML. He stated that
the classical orthodox statistical approach assumes that data are
generated by a given stochastic data mode and the evaluation
is more focused on the degree of fitness that the data have
to the model. Statistical inference based on data modeling has
been the standard de facto procedure in the analysis of scientific
experiments since 1940.
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Inference creates a mathematical model of the data-generation
process to formalize understanding or test a hypothesis about
how the system behaves. Statistical methods have a long-standing
focus on inference, which is achieved through the creation and
fitting of a project-specific probability model. The model allows
us to compute a quantitative measure of confidence that a
discovered relationship describes a ‘true’ effect that is unlikely
to result from noise. Measures typically include p-values with
a recent shift to effect size in order to contrast the improper
use of p-based inferences that may lead to a lack of replicability
(Ioannidis et al., 2011).

By contrast, ML approach treats the data as unknowns and
is mainly focusing on predictive accuracy. Prediction aims at
forecasting unobserved outcomes or future behavior. Prediction
is also addressed in statistics but with models that are usually
constrained by strong assumptions (e.g., linear regression and
logistic regression). ML models are more focused on prediction
and “model agnostic.” It is a frequent observation that in
most dataset analyzed with ML models similar predictions
accuracies may be achieved using models that rely on very
different assumptions (e.g., Support Vector Machine, Naive
Bayes, Knn, Random Forest).

In ML models, prediction is achieved by using general-
purpose learning algorithms to find patterns in often numerous
and highly complex datasets.

ML methods are particularly helpful when one is dealing with
datasets in which the number of input variables exceeds the
number of subjects, as opposed to datasets where the number of
subjects is greater than that of input variables.

ML makes minimal assumptions about the data-generating
systems; they can be effective even when the data are gathered
without a carefully controlled experimental design and in
the presence of complicated non-linear interactions. However,
despite convincing prediction results, the lack of an explicit
model can make ML solutions difficult to directly relate to
existing biological knowledge.

The boundary between statistical inference and ML is fuzzy
and methods originally developed in statistics are included in
the ML toolbox. For example, logistics among classifiers, linear
regression among regression techniques, hierarchical clustering
among clustering techniques and Principal components analysis
among dimensionality reduction techniques are routinely
included in all ML packages. Some of these models (e.g., logistics)
usually compares favorably with more complex models (Zhang
et al., 2019) with respect to accuracy.

Statistics requires us to choose a model that incorporates
our knowledge of the system, and ML requires us to choose
a predictive algorithm by relying on its empirical capabilities.
Justification for an inference model typically rests on whether
we feel it adequately captures the essence of the system.
The choice of pattern-learning algorithms often depends on
measures of past performance in similar scenarios. Inference
and ML are complementary in pointing us to biologically
meaningful conclusions.

The agnostic empirical approach of ML is best understood
considering the Naive Bayes classifier. The Naive Bayes algorithm
is an intuitive method that uses the probabilities of each feature

(independent variable) predicts the class the individual case
belongs to. It is referred to as “naive” because all features
are regarded as independent, which is rarely the case in real
life. Naive Bayes simplifies the calculation of probabilities by
assuming that the probability of each attribute belonging to
a given class is independent of all other attributes. This is
a strong and frequently false assumption but results in a
fast and effective classification method. Despite the apparently
unrealistic assumptions it has been shown the mathematical
properties of the good performance of the classifier (Ng and
Jordan, 2001). It has been shown that no matter how strong
the dependencies among attributes are, Naive Bayes can still
be optimal if the dependencies distribute evenly in classes,
or if the dependencies cancel each other out (Zhang, 2004).
Basically, Naive Bayes is finding the probability of given feature
being associated with a label and assigning the label with the
highest probability. Despite the assumption of independence
the Naive Bayes classifier is usually performing well and is
used in practice for a number of practical reasons (e.g., no
need to handle inter-correlations, small computational time,
performs well for categorical input data, needs less data with
respect to other classifiers, e.g., logistics). The success of Naive
Bayes classifier is an example of the empirical approach that
is characterizing ML modeling. What counts is predictive
efficiency rather than how well-prediction based on correct
assumptions reliably approximate the data. We will see, in the
simulation reported below, that Naive Bayes results among the
best classifiers and among those that consistently generalizes
across different datasets.

Machine Learning Models
ML models are typically distinguished in supervised models
and unsupervised models. Supervised models are built from
examples which are labeled. By contrast unsupervised models are
developed using unlabeled examples and consists in grouping
examples on the basis of their similarities (e.g., clustering,
anomaly detectors, etc.) (Mohri et al., 2012).

Supervised models may be further distinguished in classifiers
and regressors. Classifiers deal with classification problems when
the output variable is a category (e.g., “disease” vs. “no disease”).
Regressors address regression problems when the output variable
is a real value (e.g., Reaction Time).

Some ML learning models deal only with classification
problems (e.g., Naive Bayes) while others may be used both for
classification and regression (e.g., Decision trees, Artificial neural
Networks, Random Forest) and their use depends on the problem
that is addressed.

Here, we will focus on supervised models used for
classification among which we could list:

(1) Decision Trees: decision tree builds classification or
regression models in the form of a tree structure. It
utilizes an if-then rule set which is mutually exclusive
and exhaustive for classification. The rules are learned
sequentially using the training data. Each time a rule is
learned, the tuples covered by the rules are removed. This
process is continued on the training set until meeting
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a termination condition. The tree is constructed in a
top-down recursive divide-and-conquer manner. Simple
decision trees have the advantage of transparency as the
final user understands the prediction rules. However,
complex decision tree models such as Random forest (e.g.,
Breiman, 2001) and Xgboost usually outperform the most
simple decision trees.

(2) Naive Bayes: Naive Bayes (John and Langley, 1995) is
a probabilistic classifier inspired by the Bayes theorem
under a simple assumption which the attributes are
conditionally independent. Even though the assumption is
not valid in most cases since the attributes are dependent,
surprisingly Naive Bayes performs impressively in a variety
of datasets.

(3) Artificial Neural Network (ANN): is a brain-inspired
model with a set input/output units where each connection
has a weight associated. ANNs were originally developed
by psychologists and neurobiologists to develop and test
computational analog of neurons. During the learning
phase, the network learns by adjusting the weights
(strength of the synapses of the virtual neuron) so as
to be able to predict the correct class label of the input
stimulus. ANN could be used both for classification
and regression.

(4) k-Nearest Neighbor: is a lazy learning algorithm which
stores all instances in a n-dimensional space. When an
unknown new data must be classified, it analyses the closest
k number of instances saved (nearest neighbors) and
returns the most common class as the prediction. In the
distance-weighted nearest neighbor algorithm, it weighs
the contribution of each of the k neighbor’s according to
their distance using the giving greater weight to the closest
neighbors (Aha et al., 1991). KNN could be used both for
classification and regression.

(5) Logistic Regression: (Le Cessie and van Houwelingen,
1992) is a powerful statistical way of modeling a categorical
outcome with one or more explanatory variables. It
measures the relationship between the categorical
dependent variable and one or more independent variables
by estimating probabilities using a logistic function, which
is the cumulative logistic distribution.

(6) Ensemble Methods: are learning algorithms that construct
a set of classifiers and then classify new data points by
taking a weighted vote of their individual predictions.
The original ensemble method is Bayesian averaging, but
more recent algorithms include error-correcting output
coding, bagging, and boosting. Ensemble models, by
combining different classifiers, usually perform better with
a reduction of prediction variability when compared with
their constituent classifiers. Ensemble methods usually
outperform single classifiers as can be seen in Kaggle
competition winners solutions. Ensemble methods usually
are optimal solutions of the so called bias/variance trade-
off. Usually Bias, the amount of systematic error in
prediction, is related to the complexity of the model
and highly complex models tend to have low bias but
also overfit (e.g., Random Forest). By contrast, simple

models, which make few assumptions, tend to underfit.
Variance refers to the variability in the predictions,
which is usually high in complex models and low
in simple models.

There are two procedures that in some cases may enhance
a classifier performance apart of ensembles models: feature
selection and feature engineering and parameter tuning. Feature
selection consists in selecting among the all features (independent
variables) the most informative ones while feature engineering
consists in deriving new features usually basing on domain
knowledge and preliminary data analysis. In other words,
feature engineering is about creating new input features from
existing ones with the intention to boost the performance
of ML models. In psychological test development, feature
selection and engineering may be used to derive a subset
of items (e.g., the original tests) that performs similarly to
the full test and eventually enhance efficiency via developing
combination of features.

Parameter tuning consists in selecting the optimal value for
parameters of the model that are intended to be used. For
example Knn, is a classification model with a single parameter
which is the number of neighbors that are used to decide the
category of which the new example belongs to. The winning
class that is assigned to the new unlabeled case will result
from computing the majority of neighbors. The dimension
of the neighborhood (2, 3. . .10, 11) is a parameter that may
be optimized and identified as the one that gives maximum
performance. In some cases, such as in deep learning models of
object detection, the number of parameters to be estimated is in
the order of 100.000.

The Interpretability/Accuracy Trade-Off
Best performing models are usually hard to interpret giving rise
to a clear interpretability/accuracy trade-off (Johansson et al.,
2011). For example, Fernández-Delgado et al. (2014) evaluated
the performances of 179 ML classifiers on 121 different datasets
arriving to the conclusion that the best performer is Random
Forest with support vector machine (SVM) notably second (no
significant difference between the two). Additional investigations
(Wainberg et al., 2016) re-analyzing the data claimed the Random
Forest superiority was not significantly better than SVM and
Neural Networks. However, for what counts here, Random
Forest, as well as Neural Network and SVM are all hard to
interpret. Simpler models, such as pruned decision rules (J48),
Naive Bayes, Knn are easier to interpret but rarely result in having
the best performance.

Some insight on the interpretability/accuracy trade-off may
also come from inspecting the strategies used by Kaggle masters.
Kaggle is a site where ML experts can compete in finding the
best predictive model on a public dataset. The Netflix Prize
was one of these competitions (prize $100.000). Best practices
collected from such ML competitions indicate that winners
systematically rely on the following strategies in deploying
winning models: (i) feature engineering (finding new features
usually combinations of the available ones), (ii) parameters
tuning (finding the optimal parameters of the model that
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maximize performance), and (iii) ensemble learning (build a
complex model which is a combination of more simple models).
Ensemble learning performs better than the constituent classifiers
but this reduces interpretability. An example is the difference in
the interpretability of a single decision rule when contrasted with
a random forest model on the same data. The single decision
rule is transparent (e.g., if X > 3.5 than class A else B) while
Random Forest (of decision rules) results in an uninterpretable
random mixture of a high number (e.g., 100) decision rules that
render opaque any understanding on the exact mechanism at the
base of prediction.

In short, interpretable models usually are not the best
performers and the best performers classifiers are usually not
interpretable. This means that using ML models for analysis
results of psychological experiments one could use hard-to-
interpret ensemble models to have an estimate of the maximum
accuracy possible while using easy-to-interpret decision rules for
more confidence based evaluations.

Replicability of Results and Cross
Validation
The recent focus on the lack of replicability in behavioral
experiments is known with the term of replicability crisis. One
source of potential problem leads back to the use of inferential
statistics and its misunderstanding of p-values and underpowered
experiments (Baker, 2016). Recent methodological discussions
are related to procedures that guarantee replicable results
(Browne, 2000). In summarizing their assessment of replicability
Szucs and Ioannidis (2017) concluded that:

“Assuming a realistic range of prior probabilities for null hypotheses,
false report probability is likely to exceed 50% for the whole
literature. In light of our findings, the recently reported low
replication success in psychology is realistic, and worse performance
may be expected for cognitive neuroscience.”

Replication of experimental results may be distinguished in
exact and broad replication (Cumming, 2008). Exact replication
refers to a replication using exactly the same procedure of the
original experiment and is targeted by cross validation. The
author (Cumming, 2008) proved, in a simulation study of 25
repetitions, that a result in the first experiment significant at
p < 0.05 in the replications may vary from p < 0.001 to p = 0.76
(with a 10% chance of p > 0.44) showing that p is a very unreliable
measure. To complicate the landscape, some researchers have
also highlighted how failed replication are not immune from the
same type of error that may be detected in the original studies
(Bressan, 2019) and false negatives in replication studies have
recently attracted attention (Bryan et al., 2019).

Similarly to analysis conducted with inferential statistics, ML
workflow encounters the problem replication (Gardner et al.,
2018; Gundersen and Kjensmo, 2018). In fact, it is easy to develop
complex ML models (e.g., Random Forest) that on small datasets
reach near perfect classification accuracies (McDermott et al.,
2019). However, this accuracy does not replicate to fresh data
which are not used to develop the model (holdout data). For this
reason a de facto standard for handling this overfitting problem,

that plagues not only ML models but also statistical models (e.g.,
logistics, linear regression) is cross validation.

Cross Validation (see Figure 1) is usually a very good
procedure to measure how well a result may be replicable at least
for what has been called exact replication (Cumming, 2008). Even
if ideally it does not address reproducibility of the main finding
when minor variations are introduced, exact replication refers to
replication where all the conditions of the original experiment are
maintained. As cross validation consists in evaluating models on
a hold-out set of experimental examples, this set do not differ
from the examples used for model development. While cross
validation does not prevent the model to overfit, it still estimates
the true performance.

In order to avoid overfitting, cross validation regards a
compulsory step in ML analysis but its use is very limited in
the analysis of psychological experiments. There are a number
of different cross validation procedure but one which guarantees
good result is the so called stratified 10-fold cross validation. In
order to develop models able to generalize new data (unseen data)
a good procedure envisages to: (1) remove the 20% of the data for
validation; (2) run 10-fold cross validation on the remaining 80%
with the aim to select optimal parameters; (3) train model with
all 80% of the data with optimal parameters; (4) test the model
on the 20% validation set. The result of step 4 will be the best
approximation to exact replication of the experiment.

A special case of n-fold cross validation is the LOOCV (Cawley
and Talbot, 2010) a method of choice in imaging studies with
clinical samples (Orrù et al., 2012). In LOOCV, the statistical
model is developed using only n-1 examples and tested on the
remaining one exemplar. The procedure is repeated rotating
systematically the left out case and the final out-of-sample
classification error estimate is derived from the average error
of the n-1 models.

When running a cross validation, special care is needed to
control information leakage which is one of the reasons why
cross validation goes wrong. For example, selecting a subset of
predictors before cross validation is a form of leaking knowledge
that reduces generalization.

Most psychometric investigations do not address the problem
of generalization outside the sample used to develop the model.
Clearly, avoiding cross validation yields inflates results, which
are over optimistic and may not replicate when the model is
applied to out-of-sample data. Similar results have been recently
reported by Bokhari and Hubert (2018). The authors reanalyzed
the results of the MacArthur Violence Risk Assessment Study
using ML tree models and cross validation. Also Pace et al.
(2019), in discussing the results of the B test (a test for
detecting malingered cognitive symptoms), similarly observed
that a decision rule developed on the whole dataset yielded a
classification accuracy of whole dataset 88% but using LOOCV
the expected accuracy drops to 66%.

Working Example: ML Analysis on Millon
Clinical Multiaxial Inventory (MCMIIII)
The example below (Table 1) regards the psychometric
identification of malingering (Sartori et al., 2016, 2017).

Frontiers in Psychology | www.frontiersin.org 5 January 2020 | Volume 10 | Article 2970

https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-10-02970 December 30, 2019 Time: 16:53 # 6

Orrù et al. Machine Learning in Psychometrics and Psychological Research

FIGURE 1 | 10-fold cross validation.

The dataset analyzed here consists in the raw scores on the
personality questionnaire MCMI-III that was used to predict
whether the test was collected in one of two settings. Both
groups are low credibility groups, the first are fake good
suspects (they have advantages from denying psychopathology)
while the second are fake bad suspects (they have advantages

TABLE 1 | ML analysis conducted on 186 participants tested with the MCM III.

Stratified Model overfitting

Cross holdout training minus

Training set validation test set stratified holdout

Classifier (n = 186) (n = 186) (n = 62) test accuracy

Naive Bayes 67% 65% 66% 1%

Logistic 75% 62% 58% 17%

SVM 74% 70% 67% 7%

Knn 79% 70% 64% 15%

OneR 70% 62% 67% 3%

CART 93% 62% 61% 32%

Random forest 100% 66% 64% 36%

Neural network 96% 66% 69% 27%

(Averaging) 81.6% 65.4% 65.3% 0.1%

(12.7) (3.33) (3.37)

Ensemble learner 80.6% 67.7% 69.4% 1.7%

Half of the participants belonged to the Fake-Good group and Half to the
Fake-Bad group. A stratified holdout test set (n = 62) was used to evaluate
the generalization/replicability of the predictions. Note how the 10-fold cross
validation conducted on the training data (n = 186) is a good approximation of
the performance on the holdout test set (n = 62). The ensemble model performed
slightly better than the performance of the constituents ML models.

from doctoring a get-out-of-jail psychopathology). One group
was administered the test for a psychological assessment
for reinstatement of driving license and child custody court
assessment (n = 93) while the fake bad group included cases
involved in a criminal trial who underwent a mental insanity
assessment (n = 93). Input were a total of 27 MCMI-III scores,
which were used to predict whether the test results were drawn
from a Fake good setting or Fake bad, setting. To check the level
of replicability, models were tested on 62 new cases extracted,
as a first step of the procedure, from the original sample of
186+ 62 cases1.

As seen above, if a model is developed on all the available data
then the final accuracy will be an over optimistic estimate that
is not confirmed when the model is tested on previously unseen
data (out-of-sample dataset).

From the inspection of the above reported table it appears that:

– Developing the model on all the available training data
leads to an accuracy which is not replicated on the test set
(average; 81.6 vs. 65.3%).

– The 10-fold cross validation leads to accuracy estimates
that correspond to that obtained on the test set. Exact
replication on the test set show that the 10 fold cross
validation does not lead to an overly optimistic estimate.
In short, models developed with cross validation replicate
well (see also Koul et al., 2018).

– There is no clear winner among the classifiers. Very simple
classifiers (in terms of parameters that require estimation)

1All the analysis reported here were done in WEKA (Hall et al., 2009), one of the
open sourced code-free ML tools available. Other no-code GUI-based software
packages are: ORANGE, KNIME and for deep learning Uber’s LUDWIG.
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give comparable results to more complex models (compare
Naive Bayes and Knn versus Random Forest and Multilayer
Neural Network).

– The ensemble of many classifiers performs well on new
data and therefore replicates well on fresh new data.

– Some very complex models with many parameters to
estimate show extreme overfitting (Random Forest and
Multiplayer Neural Network). For example, a Random
Forest model developed on the training set yielded a
perfect classification (100% accurate) while after a 10-
fold cross validation accuracy drops to 66 and 64% on
the stratified holdout test set. On the same data the
figures for a Multilayer Neural network were 96% on the
total of the sample while the result drops to 66% after
a 10-fold cross validation which approximates well the
69% measured on the holdout test set. Cross validation
is therefore approximating results in exact replication
with high accuracy.

– Some very simple models (Naive Bayes) do not suffer much
from overfitting when trained without cross validation.

– Also decision rules (usually developed in psychological
test building for identifying test cut-off) when fine-tuned
without cross validation may heavily overfit. Note that
decision rules (e.g., OneR) are the method of choice in
most neuropsychological and personality tests; they are
simple, readily interpretable but they also need cross
validation because they also suffer from overfitting and
low replicability.

As regards to exact replicability, it has been noted that results,
analyzed with statistical inferences techniques, when replicated
show a reduced effect size. In short, an original experiment
with an effect size of d = 0.8 when replicated shows an effect
size d = 0.4. Repeated K-fold cross validation may derive a
distribution of measures generalization/replication.

Characteristics of the Dataset
High performance neural networks are trained with extremely
large dataset. For example a deep neural network with 152
layers and trained on a Imagenet dataset (n = 1.2 mn images)
has reduced to 3% the error in classifying images (He et al.,
2016). It has been well-established that for a given problem,
with large enough data, very different algorithms perform
virtually the same.

However, in the analysis of psychological experiments typical
number of data points is in the 100 range. Do ML classifiers
trained on such small dataset maintain their performance?

In order to evaluate the capacity of ML models to replicate
classification accuracies on small datasets, we ran a simulation
using the dataset used for the simulations reported in Table 1.
A total of 298 participants assessed in a low credibility setting
(124 in the fake good group and 124 in the fake bad group) were
administered the MCMI-III as a part of a forensic assessment.
The whole dataset was split into four stratified subsets (folds).
Each ML model was trained on one of these folds (using 10-fold
cross validation) and tested on the remaining three. The results
are reported in Table 2.

TABLE 2 | Different machine learning models trained using 10-fold cross
validation.

Max% diff

CV on Fold Tested on Tested on Tested on (average = 8.3%)

(a) Naive Bayes

Fold 1 = 68% Fold 2 = 73% Fold 3 = 68% Fold 4 = 66% 5%

Fold 2 = 69% Fold 1 = 65% Fold 3 = 66% Fold 4 = 66% 4%

Fold 3 = 69% Fold 1 = 63% Fold 2 = 73% Fold 4 = 66% 6%

Fold 4 = 65% Fold 1 = 65% Fold 2 = 66% Fold 3 = 63% 2%

(b) SVM

Fold 1 = 63% Fold 2 = 70% Fold 3 = 71% Fold 4 = 69% 8%

Fold 2 = 69% Fold 1 = 66% Fold 3 = 66% Fold 4 = 61% 8%

Fold 3 = 69% Fold 1 = 70% Fold 2 = 69% Fold 4 = 61% 8%

Fold 4 = 65% Fold 1 = 74% Fold 2 = 67% Fold 3 = 72% 9%

Max% diff

CV on fold Tested on Tested on Tested on (average = 9.5%)

(c) Random forest

Fold 1 = 62% Fold 2 = 69% Fold 3 = 67% Fold 4 = 58% 7%

Fold 2 = 72% Fold 1 = 66% Fold 3 = 64% Fold 4 = 67% 8%

Fold 3 = 71% Fold 1 = 69% Fold 2 = 67% Fold 4 = 56% 15%

Fold 4 = 63% Fold 1 = 66% Fold 2 = 71% Fold 3 = 64% 8%

Max% diff

CV on fold Tested on Tested on Tested on (average = 7%)

(d) Ensemble

Fold 1 = 65% Fold 2 = 67% Fold 3 = 69% Fold 4 = 61% 5%

Fold 2 = 69% Fold 1 = 64% Fold 3 = 65% Fold 4 = 63% 6%

Fold 3 = 68% Fold 1 = 65% Fold 2 = 74% Fold 4 = 60% 8%

Fold 4 = 63% Fold 1 = 71% Fold 2 = 69% Fold 3 = 72% 9%

Results are reported on testing a ML model on each of the four stratified folds
(using 10-fold cross validation) and tested on each of the remaining 3. Results of
three classifiers are reported as well as the results of an ensemble model built using
all the classifiers included in Table 1. The maximum error is reported as well as the
average error%. CV, cross validation.

As shown in Table 2 all the classifiers trained on a small
dataset of 62 cases (32 per each of the two categories) perform
well on each of the other test folds. Simple classifiers (e.g., Naive
Bayes) perform slightly less erratically across holdout folds than
more complex one (e.g., Random Forest). A good strategy in
developing ML models that replicates well is to train simple
classifiers or ensemble of classifiers rather than models with
many parameters.

Balanced Versus Unbalanced Datasets
and Priors
In all the examples reported above the number of cases for each
class was equal. Unbalanced datasets are usually a problem for
classifiers and usually performance of classifiers is generally poor
on the minority class. For this reason a number of techniques
have been developed in order to deal with unbalanced datasets.

Another problem often neglected is that the final accuracy
is the result not only of the accuracy of the model but also
depends on the prior probability of the class under investigation.
For example, if the prior probability of the class is 10% and the
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accuracy of classifiers trained on a balanced dataset is 90% the
actual probability that a case is correctly classified in the minority
class is 50% (of the 18 classified 9/18 will be correct).

Comparing Statistical Inferences With
Machine Learning Results
ML uses evaluation metrics mainly addressing accuracy in
classification such as Accuracy, area under the curve (AUC), etc.
By contrast, statistical metrics are different and more linked to
inference (p-values) and more recently focusing on reporting
effect sizes (e.g., Cohen’s d etc.).

One problem that requires to be addressed when
complementing statistical analysis with ML results is in
the comparison between the metrics used in statistics
(e.g., r, d, etc.) and the typical metrics used in ML (classification
accuracy, F1, AUC).

Salgado (2018) addressed the problem of translating
performance indicators from ML metrics and statistical metrics.
It has been shown that the most used ML evaluation metrics can
be mapped into effect size; for example, it has been shown that
an AUC = 0.8 corresponds to a Cohen’s d = 1.19. It is possible to
transform the accuracy results obtained from ML models to more
psychologically oriented effect size measures (Salgado, 2018).
It is worth noting, that a Cohen’s d of 0.8 is usually regarded
as large but, when translated to classification accuracy among
two categories, corresponds to an accuracy in classification of
71% due to an overlap between the two distributions of 69%.
Using results from Table 1 an out-of-sample accuracy of 65.3%
resulting from the averaging of various classifiers corresponds to
a Cohen’s d = 0.556, usually regarded as a medium effect (Cohen,
1977). However, an accuracy of 65.3% in distinguishing fake good
versus faked bad responders of MCM III is far from being of any
practical utility when applying the test at single subject level (as
in clinical usage of the test).

Model-Hacking in Machine Learning
One procedure which is believed to be at the origin of lack
of replicability in reporting experimental results, analyzed with
statistical inference, is the so called p-hacking (Nuzzo, 2014).

In ML analyses, there is a similar source of lack of replicability,
which could be called model hacking. If many models are tested
in order to report only the best model, we are in a condition
similar to p- hacking. In the example reported in Table 1, using
cross validation and reporting only the best performer among the
classifiers, in this case SVM, would have produced an accuracy
estimation in excess of 4.5% (SVM cross validation results = 70%;
average of all cross validation results = 65.5%).

In order to avoid model hacking, one strategy is to
verify that classification accuracy is not changing much
among different classes of classifiers (see Monaro et al.,
2018) as follows: if similar results are obtained by ML
models relying on radically different assumptions, we may
be relatively confident that the results are not dependent
on such assumptions. Additionally, model stability may be
addressed by combining different classifiers into an ensemble
classifier that indeed reduces the variance in out-of-sample

predictions and therefore gives more reliable predictions. Using
ensembles instead of specific classifiers is a procedure that
avoids model-hacking.

CONCLUSION

Academic psychologists have pioneered the contemporary
ML/deep learning development (Hebb, 1949; Rumelhart et al.,
1986) and cognitive theorists used connectionist modeling
in the field of reading, semantics, attention (Seidenberg,
2005) and frequently anticipated the now much spoken about
technology advancements in such fields such as Natural Language
Processing (e.g., Word2vec and Lund and Burgess, 1996) and
object recognition.

By contrast, ML/deep learning models used for cognitive theo-
rizing have been rarely used in the analysis of psychological
experiments and in psychometric test development (Mazza
et al., 2019). Classification of brain images (both functional
and structural) is a notable exception (Orrù et al., 2012;
Vieira et al., 2017).

We have highlighted, in this paper, the reasons why ML
should systematically complement statistical inferential analysis
when reporting behavioral experiments. Advantages derived
from using ML modeling in an analysis experimental results
include the following:

– generalization/replication of results to unseen data is
realistically estimated rather than optimistically inflated;

– n-fold cross validation guarantees replicable results also
for small datasets (e.g., n = 40) which are typical in
psychological experiments;

– practical and clearly understandable metrics (e.g., out-
of-sample accuracy) are reported, rather than indirect
inferential measures;

– personalized predictions at single subject level (specific
single subjects estimations may be derived also when there
are numerous predictors) and subjects which are classified
erroneously may be individually analyzed;

– more realistic estimate about the utility of a
diagnostic procedure.

Known potential pitfalls of ML data analysis that may obstacle
a more extensive use of the ML methods are:

– model hacking. When only the single best performer model
is reported rather than a variety of models with differing
theoretical assumptions. Model hacking may lead to an
overestimation of replicable results. A remedy against
model hacking consists in reporting many ML models or
ensemble models;

– lack of interpretability. Usually maximum accuracy
in prediction is achieved with highly complex non-
interpretable models such as XGboost, Random Forest
and Neural Networks. This is probably the single most
important problem in clinical applications where the
clinician needs a set of workable rules to drive the
diagnosis. To tamper the problem it may be useful to
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report simple decision rules that may help in evaluating
the cost of non-interpretability (accuracy achieved with
simple interpretable models as compared to maximum
accuracy achieved by complex less interpretable models).
Interpretability is important in clinical setting where
clinicians need simple and reliable decision rules (see
Figure 3 in Mazza et al., 2019).
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