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Several methods of factor extraction have recently gained popularity as a procedure
for dealing with estimation problems associated with small sample sizes, which can be
found in the various behavioral science disciplines, such as comparative psychology and
behavior genetics. Two popular approaches for particularly small samples (below 50)
include unweighted least squares factor analysis (ULS-FA) and regularized exploratory
factor analysis (REFA). However, it is unclear how well each of the approaches performs
with small samples in the context of exploratory bifactor modeling. In the current study, a
comprehensive simulation study was conducted to evaluate the small sample behavior
of the two approaches in terms of bifactor structure recovery under different sample size,
factor loading, number of variables per factor, number of factors, and factor correlation
experimental conditions. The results show that REFA is recommended for use over ULS-
FA, particularly in the conditions involving low factor loadings, few group factors, or a
small number of variables per factor.

Keywords: exploratory bifactor analysis, small sample size, unweighted least squares, regularized exploratory
factor analysis, Monte Carlo simulation

INTRODUCTION

Researchers are often interested in revealing a multidimensional underlying structure of
psychological construct. Bifactor model analysis is one of the major approaches for specifying
several distinct but related dimensions that constitute the overall construct. The specification of a
bifactor model represents factorial structures that include the general factor and one or more group
factors; the first represents the broad common instrumental factor underlying all the items, and
the latter includes domain-specific factors that are responsible for variance among particular sets
of items. Previous studies have extensively demonstrated the benefits of using the bifactor model to
analyze behavioral data (see Chen et al., 2006; Pomplun, 2007; Reise, 2012).

Recently, exploratory bifactor modeling has gained popularity for its ability to uncover bifactor
structures, particularly in cases where researchers have insufficient a priori knowledge to specify
the underlying factor patterns, or in the early phase of factor analytic research (Murray et al.,
2016). Exploratory bifactor analysis using the Schmid-Leiman orthogonalization (Schmid and
Leiman, 1957) is perhaps the most well-known procedure for elucidating a bifactor structure (e.g.,
Reise et al., 2010). This method makes it possible to partition item variance into two sources
attributable to general and domain-specific factors and shed light on the systematic sources of
item variance. The Schmid-Leiman bifactor exploratory factor analysis has been used in a variety
of psychological researches, including in studies of intelligence (Dombrowski, 2014), personality
(Chernyshenko et al., 2001), psychiatric disorders (Brouwer et al., 2013), and scale reduction
(Ebesutani et al., 2012).
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Despite the practical benefit of exploratory bifactor analysis
in empirical applications, a small sample size issue remains
unresolved, even studies with limited samples are common in
social and behavioral research such as behavior genetics. Prior
work has routinely recommended using unweighted least squares
factor analysis (ULS-FA) as a viable method of factor extraction
under small samples (e.g., Preacher and MacCallum, 2002; de
Winter et al., 2009). Recent methodological advances have made
it possible to incorporate the idea of regularization into factor
analysis frameworks. Regularized exploratory factor analysis
(REFA) (Jung and Takane, 2008; Jung and Lee, 2011) has been
introduced as an alternative approach of conducting exploratory
factor analysis with small sample sizes. The applications for REFA
have been increasing rapidly in many fields such as behavior
science due to its usefulness in handling the limited sample
size problems, resulting in more stable parameter estimates (e.g.,
Wilson et al., 2018).

Although past studies have identified REFA as an effective
alternative approach for overcoming the small sample size
problem when exploring latent structures, the performance of
REFA in conducting exploratory bifactor modeling has not
yet been examined extensively. Therefore, the major purpose
of this study was to extend REFA to exploratory bifactor
modeling by incorporating the Schmid-Leiman procedure. We
also set out to comprehensively evaluate the performance
of REFA relative to ULS-EFA under a variety of simulation
conditions. By doing so, we aimed to better understand
the conditions in which REFA is preferable to ULS-FA (or
vice versa) for examining bifactor structures. We conclude
this paper by providing substantive recommendations for
researchers regarding the bifactor recovery capabilities of
the two approaches.

BACKGROUND

Exploratory Bifactor Models
The bifactor model originally introduced by Holzinger and
Swineford (1937) was proposed to partition correlated factor
structures into two components: the general factor, which takes
into account the correlations among all factors; and group factors,
which explicitly account for the unique influence of the specific
domains left unaccounted for by the general factor. The factor
structure of the classic bifactor model is as follows.

3 =



λ11 λ12 0
λ21 λ22 0
λ31 λ32 0
λ41 0 λ43
λ51 0 λ53
λ61 0 λ63


(1)

The first column of the matrix in equation (1) shows a
general factor and the remaining columns represent group
factors. As shown in this equation (1), the bifactor structure
results from the constraint that each item loads on a
general factor and only one group factor. The general factor

accounts for the common variance among all items, while
two group factors reflect additional common variance in the
separate sets of domain-related items (Reise, 2012). For the
ith item, [QSIImage](general factor loading) and one of the
k = 2,. . ., m values of[QSIImage](group factor loadings) are freely
estimated, while the remaining element is fixed to zero. The
bifactor modeling has become a popular psychometric tool for
multidimensional solutions due to its ability to incorporate both
general and group factors in a single model (see Chen et al., 2006;
Patrick et al., 2007; Pomplun, 2007).

Despite its advantages, the use of the bifactor model is often
limited in some situations, due to the following reasons: First,
when prior knowledge regarding the factor structure (derived
from previous studies or field investigation) is absent, the bifactor
model may yield misfit or biased parameter estimates because it is
a specific form of confirmatory factor analysis. Second, even with
sufficient information regarding the factor structure, unexpected
dependencies among items may exist, which need to be captured
by an additional dimensional structure (e.g., Furnham, 1990).
Likewise, a restriction that fixes non-ignorable factor loadings
for group factors to zero may yield biased results when applying
the bifactor model.

All the aforementioned potential limitations highlight the
importance of developing the bifactor model in an exploratory
manner. Previous studies have proposed an exploratory form
of the bi-factor model named exploratory bi-factor analysis
(e.g., Schmid and Leiman, 1957; Jennrich and Bentler, 2011;
Mansolf and Reise, 2016; Lorenzo-Seva and Ferrando, 2018).
Among many approaches, the orthogonalization method
proposed by Schmid and Leiman (1957) has become a
commonly used exploratory bifactor analytic procedure.
It allows researchers to estimate the exploratory form of
the bifactor model in which items are free to load on a
general factor and a set of group factors. The Schmid-
Leiman technique transforms the second-order exploratory
solution into an orthogonal solution containing a general
factor and multiple group factors, which are uncorrelated
with each other. Recently, researchers have relaxed this
orthogonality restriction and developed bifactor solutions
with oblique rotations, such as bi-quartimin and bi-geomin
with the gradient projection algorithm (GPA) (see Jennrich
and Bentler, 2011, 2012). Furthermore, Reise et al. (2011)
suggested applying the orthogonal target rotation method
for exploratory bifactor analysis by starting with a basic
oblique rotation, then assigning items to factors according
to that solution, creating a partially specified target matrix
from said solution, adding a general factor to the target
matrix (i.e., column of non-zero or unspecified elements),
and rotating to said matrix. More extensive reviews of the
history and development of exploratory bifactor analysis
can be found in Lorenzo-Seva and Ferrando (2018) and
Mansolf and Reise (2016). Exploratory bifactor analysis can
be implemented in many software programs, including the
R program (Bernaards and Jennrich, 2005; R Core Team,
2016), Mplus (Muthén and Muthén, 1998–2012), EQS
(Bentler and Wu, 2002), and the SAS and SPSS macros
(see Wolff and Preising, 2005).
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Regularized Exploratory Factor Analysis
When implementing the Schmid-Leiman procedure, researchers
need to make decisions regarding two key issues - the factor
extraction and the oblique factor rotation (see Reise et al., 2010).
Because the results of this procedure are likely to be affected by
the researchers’ choices of factor extraction and factor rotation
methods, a deeper understanding of these decisions is needed.
In Schmid-Leiman exploratory bifactor analysis, factor extraction
decisions are especially critical for two reasons. First, the
quality of group factor solutions in the Schmid-Leiman depends
on how well a factor extraction method can provide unique
variance estimates for the first-order factors. Second, there is
no generally accepted oblique rotation method that researchers
should follow (Browne, 2001); indeed, research has shown that
all oblique rotation methods tend to provide comparable results
(Fabrigar et al., 1999).

Though there are several factor extraction methods, ULS-
FA was often preferred in studies involving small samples (e.g.,
de Winter et al., 2009). REFA was proposed in an attempt to
mitigate the small sample size problem by incorporating the idea
of regularization into a common factor model. It is considered
as a valid alternative method for small samples because it only
requires the iterative estimation of one parameter to find stable
factor solutions. At this point, the body of research regarding
the technical underpinnings of ULS in exploratory factor analysis
is quite substantial (see Harman, 1976). Although REFA was
proposed nearly a decade ago, this method is still novel to applied
researchers in the field of behavioral science. In this section, we
provide a gentle introduction to regularized exploratory factor
analysis (see Jung and Takane, 2008 for more technical details),
and then describe how to implement REFA for exploratory
bifactor modeling in a stepwise fashion.

Regularization is considered as a useful technique for
producing more accurate solutions in a wide range of multivariate
data analysis. A popular application of regularization is ridge
regression (Hoerl and Kennard, 1970), which is based on the
prior knowledge that regression coefficients would never shift
away from zero. We exploit this prior knowledge by imposing
a regularization parameter on regression coefficients. This has
the effect of shrinking regression estimates toward zero, thereby
facilitating the production of more accurate solutions. This
benefit of regularization should be more evident when sample
sizes are small (e.g., Jung and Park, 2018).

The common factor model is equipped with both latent
common and unique factors. Variance of each measured variable
is made up of common variance due to common factors and
unique variance due to unique factors. Part of unique variance
represents random error due to unreliability or measurement
error. One of the primary advantages of exploratory factor
analysis is that it allows researchers to explicitly account for
measurement error in an observed variable. From the viewpoint
of a regularization framework, the common factor model may be
expressed as

X
′

M(L)(λ)X = X
′

X + λL (2)

whereXis an N by P matrix of observed variables and Mis a
generalized ridge metric matrix (Takane and Yanai, 2008). If Lis

set equal to9 , the diagonal matrix of unique variance, and the
regularization parameter (λ) is fixed to -1, then we obtainX

′

X −
9 . Here, X

′

Xrepresents a square matrix that contains the
variances and covariances (or correlations) associated with
observed variables. The term X

′

M(9)(−1)Xcan be formulated in
terms of S−9orR−9 , where Sand Rare sample covariance and
correlation matrices, respectively. We perform an eigenvector
decomposition of this matrix to find factor loading estimates.

In practice, however, unique variances are unknown
a priori and must be estimated using appropriate statistical
methods. Various iterative methods such as maximum
likelihood estimation (e.g., Chen, 2003) have been routinely
used to estimate unique variances in the common factor
model. A number of approaches have been developed to
produce unique variance estimates via non-iterative procedures,
including the partitioned covariance estimator (PACE) option of
comprehensive exploratory factor analysis programs and many
others (e.g., Ihara and Kano, 1986; Jennrich, 1987). Using these
techniques, Lin equation (2) can be replaced with a tentative
estimate of unique variancesL̂. True unique variances (9) may
be written as9 = λL̂. The smaller the value ofλ, the greater
the penalty that is placed on unique variance estimates, which
will lead to their shrinkage. That is, true unique variances are
assumed to be proportional to the tentative estimates of unique
variances obtained by non-iterative procedures. In other words,
REFA shrinks such initial estimates toward zero, thereby making
it possible to produce more accurate results, as they are on
average closer to the true population values.

A practical advantage of REFA is that given non-iterative
estimation procedure, it contains only one free parameter of
unique variances that needs to be estimated: it involves the
estimation of λ (equal to proportion) only. For this reason,
the method performs reasonably well with small samples. In
addition, it has no risk of improper solutions. An optimal value
of the regularization parameter is determined by minimizing
various optimization criteria, such as the traditional maximum
likelihood factor analysis. Given unique variance estimates, factor
loadings can be obtained in closed form and non-iteratively (e.g.,
Jöreskog, 1977).

We now present a simple regularization technique for the
Schmid-Leiman bifactor EFA. We developed a regularized
extension of exploratory bifactor analysis that integrates the
Schmid-Leiman orthogonalization with REFA. The newly
proposed method, called regularized exploratory bifactor
analysis, enables us to exhibit an exploratory bifactor structure
with small sample sizes. The REFA bifactor method involves the
following steps:

1. Reveal the underlying structure of the primary factors with
REFA;

2. Perform an oblique factor rotation (e.g., quartimin);
3. Extract a second-order factor from the primary factor

correlation matrix using REFA; and
4. Apply the Schmid-Leiman transformation to the second-

order factor solution to obtain the loadings for each item on
general and group factors that are orthogonal to each other.

Frontiers in Psychology | www.frontiersin.org 3 April 2020 | Volume 11 | Article 507

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-11-00507 April 7, 2020 Time: 17:3 # 4

Jung et al. Regularized Exploratory Bifactor

The main benefit of exploratory bifactor analysis is to account
for the unique contribution of group factors over and above
the general factor. In the Schmid-Leiman procedure, an item’s
loading on a group factor is simply its loading on the primary
factor multiplied by the square root of the disturbance (the
disturbance is the variance of the primary factor that remains
even after the second-order factor is partialled out). Notably,
the disturbance variance is calculated in the same manner as
described above for the estimation of unique variances in REFA.
The application of the proposed technique will yield more
stable and interpretable estimates of loadings on group factors
in small samples.

SIMULATION EXPERIMENT

The primary goal of the simulation study was to compare the
performance of REFA to that of ULS-FA in terms of bifactor
structure recovery. A secondary goal was to evaluate the salience
of a comprehensive set of important factors and their interactions
in the factor recovery of these approaches. In the following
section, we describe a variety of experimental conditions that
we manipulated in the simulation, the data generation, the
assessment criteria we evaluated, and the process of analysis.

Design
The Monte Carlo simulation involved manipulating five
experimental conditions: Sample Size (N), Variables per Factor
([QSIImage]), Number of Factors ([QSIImage]), Factor Loading
(l), and Factor Correlation ([QSIImage]). These conditions are
commonly adopted in simulation studies in the context of
exploratory factor analysis (e.g., Garrido et al., 2013). Prior
research has shown them to be meaningful conditions for
differentiating the performance of factor analysis procedures
(e.g., Velicer and Fava, 1998; MacCallum et al., 1999; Timmerman
and Lorenzo-Seva, 2011).

The levels of the design factors were chosen such that they
would represent the range of values encountered in empirical
studies. The chosen ranges for the first three factors (N, p/f,
and f ) were essentially similar to those considered by Preacher
and MacCallum (2002) in their simulations based on ULS-FA
with small sample sizes. First, four levels of sample sizes—10,
20, 30, and 50 were simulated. These values were chosen to
cover a broad range of empirical research settings from extremely
small (10) to very small (50). A recent simulation study by de
Winter et al. (2009) on applying ULS-FA demonstrated that even
sample sizes smaller than 10 are sufficient for factor recovery.
Budaev’s (2010) survey of the empirical literature reported
that for factor analysis, the average number of observations
was 64 (the minimum sample size = 4) in animal behavioral
research. The number of variables per factor ([QSIImage]) was
varied at two levels (4, 8) to systematically alter the degree
of overdetermination. The overdetermination of a factor refers
to the degree to which the factor is efficiently represented by
a sufficient number of variables. Four variables per factor are
considered as low overdetermination, and eight are considered
as high overdetermination. Prior studies have found apparent

associations between higher overdetermination and higher
quality solutions in small samples (e.g., MacCallum et al., 1999).
The number of group factors retained was either two or four,
which would be typical of research practice. Next, the values
of factor loading (l) were set to 0.40, 0.55, and 0.70, which,
according to Comrey and Lee (1992), can be considered poor,
good, and excellent, respectively. Finally, the values of factor
correlation ([QSIImage]) were varied as 0.30, 0.50, and 0.70,
corresponding to moderate, large, and very large correlation
levels (de Winter et al., 2009).

Data Generation
The full factorial design for the simulation resulted in a total of
144 factor combinations (4 Sample Sizes× 3 Factor Loadings× 3
Factor Correlations × 2 Variables per Factors × 2 Number of
Factors). For each of the 144 different combinations, we generated
multivariate normal data from[QSIImage], where [QSIImage]
was the implied population correlation matrix derived from
correlated-factors analysis formulation, using the Cholesky
decomposition. For the generated datasets, ULS-FA may be
susceptible to non-convergence or convergence to improper
solutions such as a negative variance partially due to small
samples, whereas no such problems occurred with REFA. For
each combination of conditions described above, a total of 100
replications (unscreened samples) were first used to evaluate
how serious the improper solutions problem is in ULS-FA. The
likelihood of improper solutions with ULS-FA was found to be
deleteriously affected by samples of 20 or fewer. For samples of 10,
approximately 80% of the solutions by ULS-FA were improper.
For samples of 20, the proportion of improper solutions dropped
to 20%, whereas it did not exhibit any improper solutions with
samples of 30 or larger. Extremely small samples can result in
unweighted least squares estimation being unable to reach a
solution. For the current study, however, any simulated sample
that failed to converge within 200 iterations or yielded an
improper solution was removed from further consideration to
compare the two approaches in an impartial manner. The first
100 replications with proper solutions were maintained for each
of the combinations of the design factors, finally resulting in
14400 samples for each approach. Previous studies generally
regarded 100 replications as sufficient to produce consistent
results in Monte Carlo simulation studies for exploratory factor
analysis (e.g., MacCallum et al., 1999).

Performance Measures
The practical utility of an exploratory bifactor analysis procedure
depends heavily on its ability to recover the population factor
structure. To assess the recovery of a bifactor structure under
the approaches, two evaluation measures were calculated for
each of the proper solutions: Tucker’s congruence coefficient
([QSIImage]) and the root mean squared error (RMSE). The
measure of congruence represents a measure of factor similarity
in a single study. On the other hand, one may think of RMSE as
a measure of the accuracy of factor solutions over a long period
within each experimental condition.

In the psychometric literature, the congruence coefficient has
been commonly used to evaluate degrees of factor similarity
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(Lorenzo-Seva and ten Berge, 2006). Tucker’s congruence
coefficient (Tucker, 1951) is a popular tool for evaluating the
similarity of factor interpretations. The measure of congruence
([QSIImage]) is given by

ϕ =
trace(PF′)

√
trace(PP′)trace(FF′)

, (3)

where Pand F represent a p by m population factor loading matrix
and the corresponding sample matrix, respectively. Tucker’s
index is typically computed after an orthogonal Procrustes
rotation to prevent rotational indeterminacy. Higher congruence
coefficient values indicate greater degrees of similarity between
sample and population solutions.

Although high levels of factor similarity are required
for effective interpretations, researchers should also consider
whether item loading magnitudes are substantively meaningful.
Accordingly, the usefulness of statistical procedures that produce
relatively unstable parameter estimates is typically limited. To
evaluate the accuracy of the estimation results, we computed the
root mean squared error (RMSE) using the following equation:

RMSE(g) =
[
trace(E′E)/pm

]1/2
,where E = P − F. (4)

Considering that the general factor and the group factors are
uncorrelated, we computed RMSE values separately for each of
the two types of factors.

Analysis
In this study, we decomposed resulting sample correlation
matrices using the following Schmid-Leiman bifactor procedure.
First, a specified number of primary factors were extracted
through either ULS-FA or REFA and rotated using oblique
direct quartimin rotation (Bernaards and Jennrich, 2005).
Next, a second-order factor was extracted from the primary
factor correlation matrix using each of the two approaches.
Finally, the second-order factor solution was transformed
using the Schmid-Leiman orthogonalization to achieve a
bifactor structure.

All computations for this study were carried out using
MATLAB R2009a (The MathWorks Inc, 2009). We derived
a ULS solution using an iterative principal factoring
technique. The iterative process continued until the decrease
in the criterion value was smaller than 10−3. This study
recovered the order of the sample loadings in order to meet
the highest overall Tucker’s congruence coefficient. The
sign of the loadings can be recovered using a procedure
suggested by Cliff (1966). In the end, for each proper sample
solution, all performance measures were calculated using
formulas (3) and (4).

SIMULATION RESULTS

In this section, we report the performance of ULS-FA and
REFA in terms of recovering the population values for loadings.
For each performance measure, we conducted a full-factorial

six-way mixed ANOVA. A single within-subjects method factor
was the estimation method (M, where M = ULS-FA or REFA).
The between-subject data factors were the above-described five
experimental conditions of the study. Table 1 presents the
results regarding the capabilities of the two estimation methods.
Given that our main focus was to compare the effectiveness
of the two methods in terms of factor recovery, we discuss
only the effects involving the method factor above the cut-
off point. We omit other details of the ANOVAs due to
space limitations.

As Table 1 shows, most of the main and interaction
effects were statistically significant due to the large number of
observations, in addition to fitting all possible interactions in the
ANOVA. For this reason, examining the effect size was crucial
as well (e.g., Paxton et al., 2001). Following accepted practice
for identifying a substantial effect, we focused on the main and
interaction effects that have a partial eta-squared (η2) greater
than 6%, which deserve further examination (MacCallum et al.,
1999, for more details). According to Cohen’s (1988) guidelines
regarding effect sizes, a value of 0.02 represents a small effect, 0.06
a medium effect, and 0.14 or greater a large effect.

Measure of Congruence (QSIImage)
As shown in Table 1, none of the two-way and higher order
interactions with the analysis method in the coefficient of
congruence were substantial enough for further examination; all
of them had effect sizes below the cutoff of 6%. Following Cohen’s
guidelines, nonetheless, nearly all the two-way interactions
involving the sample size, the number of variables per factor,
factor loadings, and the number of factors had non-negligible
effect sizes, and these variables were also theoretically relevant
determinants of factor recovery. We discuss the interaction
of sample size by estimation method further due to its small
effect size (η2 = 0.03), as the primary focus of our research
is the ability of the two approaches in the small sample size
condition. Figure 1 displays the average index of congruence
obtained from the two approaches under the sample size
condition. In general, REFA were associated with higher values
of congruence coefficients (i.e., higher factor similarity) when
compared to those obtained with ULS-FA. Lorenzo-Seva and
ten Berge (2006) suggested the minimum 0.85 threshold for
fair similarity. This means that when the sample size is 30
or greater, REFA might provide meaningful information about
factor similarity.

Root Mean Squared Error (RMSE):
General Factor
The analysis method (η2 = 0.51) had a sufficiently large main
effect. This suggests meaningful differences in the root mean
squared error of general factor loadings between the two
approaches (REFA = 0.15 and ULS-FA = 0.17). Moreover, three
of the two-way interaction effects were statistically significant
and achieved effect sizes larger than 6%: Method [QSIImage]
Factor Loading (η2 = 0.10), Method [QSIImage] Variables per
Factor (η2 = 0.09), and Method [QSIImage] Number of Factors
(η2 = 0.16). Figure 2 shows each of these three interactions.
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TABLE 1 | Results of Full Factorial 6-Way Repeated Measures ANOVAs.

Effects Df Congruence RMSE (General factor) RMSE (General factor)

F η2 F η2 F η2

Within-subjects effects

M 1 3538.57 0.20 14693.03 0.51 21285.50 0.60

M*L 2 161.73 0.02 799.49 0.10 737.34 0.09

M*P 1 344.04 0.02 1356.58 0.09 317.38 0.02

M*F 1 359.26 0.03 2719.85 0.16 563.29 0.04

M*R 2 23.85 0.00 27.78 0.00 3.30 0.00

M*N 3 141.74 0.03 11.62 0.00 147.67 0.03

M*L*P 2 10.81 0.00 7.27 0.00 4.31 0.00

M*L*F 2 38.53 0.01 32.64 0.01 13.18 0.00

M*L*R 4 2.91 0.00 2.20 0.00 1.90 0.00

M*L*N 6 56.04 0.02 10.57 0.00 4.63 0.00

M*P*F 1 170.42 0.01 555.65 0.04 915.51 0.06

M*P*R 2 1.50 0.00 21.87 0.00 8.01 0.00

M*P*N 3 35.19 0.01 25.94 0.01 184.47 0.04

M*F*R 2 1.12 0.00 82.23 0.01 5.46 0.00

M*F*N 3 16.47 0.00 0.94 0.00 81.32 0.02

M*R*N 6 5.47 0.00 2.09 0.00 3.17 0.00

M*L*P*F 2 7.05 0.00 21.87 0.00 42.05 0.01

M*L*P*R 4 2.31 0.00 1.75 0.00 0.70 0.00

M*L*P*N 6 13.94 0.01 25.43 0.01 22.04 0.01

M*L*F*R 4 2.82 0.00 7.70 0.00 1.35 0.00

M*L*F*N 6 16.30 0.01 11.97 0.01 19.54 0.01

M*L*R*N 12 1.40 0.00 1.39 0.00 1.06 0.00

M*P*F*R 2 10.55 0.00 10.86 0.00 3.61 0.00

M*P*F*N 3 9.12 0.00 51.43 0.01 702.54 0.13

M*P*R*N 6 2.32 0.00 2.31 0.00 2.46 0.00

M*F*R*N 6 1.30 0.00 2.20 0.00 1.54 0.00

M*L*P*F*R 4 1.66 0.00 1.33 0.00 0.40 0.00

M*L*P*F*N 6 5.07 0.00 41.01 0.02 29.74 0.01

M*L*P*R*N 12 2.00 0.00 1.66 0.00 2.00 0.00

M*L*F*R*N 12 0.66 0.00 0.56 0.00 1.45 0.00

M*P*F*R*N 6 6.69 0.00 0.98 0.00 7.60 0.00

M*L*P*F*R*N 12 0.90 0.00 0.49 0.00 1.41 0.00

Error (M) 14256

Between-subjects effects

Intercept 1 1563367.12 0.99 202283.98 0.93 595272.88 0.98

L 2 12535.99 0.64 3335.83 0.32 7847.60 0.52

P 1 3.59 0.00 3.00 0.00 249.69 0.02

F 1 3519.71 0.20 198.78 0.01 625.17 0.04

R 2 2.57 0.00 294.15 0.04 22.97 0.00

N 3 3892.86 0.45 6982.22 0.60 13639.73 0.74

L*P 2 28.70 0.00 5.56 0.00 0.37 0.00

L*F 2 32.12 0.00 71.42 0.01 186.11 0.03

L*R 4 7.41 0.00 13.11 0.00 35.81 0.01

L*N 6 50.55 0.02 54.55 0.02 8.70 0.00

P*F 1 66.34 0.01 21.02 0.00 88.05 0.01

P*R 2 1.15 0.00 2.62 0.00 1.12 0.00

P*N 3 29.31 0.01 5.04 0.00 24.20 0.01

F*R 2 2.45 0.00 66.92 0.01 6.88 0.00

(Continued)
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TABLE 1 | Continued

Effects Df Congruence RMSE (General factor) RMSE (General factor)

F η2 F η2 F η2

F*N 3 8.82 0.00 0.88 0.00 24.50 0.01

R*N 6 4.60 0.00 20.53 0.01 34.14 0.01

L*P*F 2 11.60 0.00 5.66 0.00 5.74 0.00

L*P*R 4 1.39 0.00 1.79 0.00 1.27 0.00

L*P*N 6 6.59 0.00 0.66 0.00 6.74 0.00

L*F*R 4 3.52 0.00 1.76 0.00 6.45 0.00

L*F*N 6 28.54 0.01 3.50 0.00 5.70 0.00

L*R*N 12 2.04 0.00 2.60 0.00 3.15 0.00

P*F*R 2 0.00 0.00 0.73 0.00 0.11 0.00

P*F*N 3 6.91 0.00 0.74 0.00 7.18 0.00

P*R*N 6 2.03 0.00 1.00 0.00 1.97 0.00

F*R*N 6 0.60 0.00 3.19 0.00 1.25 0.00

L*P*F*R 4 1.43 0.00 0.67 0.00 1.58 0.00

L*P*F*N 6 0.26 0.00 0.09 0.00 4.12 0.00

L*P*R*N 12 1.84 0.00 1.91 0.00 1.94 0.00

L*F*R*N 12 3.18 0.00 1.24 0.00 4.88 0.00

P*F*R*N 6 0.63 0.00 1.20 0.00 2.27 0.00

L*P*F*R*N 12 0.86 0.00 0.95 0.00 1.20 0.00

Error 14256

M = method, L = factor loading, P = number of variables per factor, F = number of factors, R = factor correlation, and N = sample size. RMSE = root mean squared error.
All F values are statistically significant (p < 0.05) except for those underlined. d.f. = degrees of freedom and = Effect Size. Interaction effects having η2 greater than 6%
are shown in boldface.

The findings displayed in Figure 2 clearly indicate that
REFA is superior across the three meaningful conditions of
factor loading, variables per factor, and number of factors.
As the first column of Figure 2 shows, while we found a
notable mean difference in the RMSE between the two methods
with factor loadings of 0.4, this difference decreased as the
factor loadings increased. Previous studies have reported that
ULS-FA exhibits better performance for factor recovery in the
presence of higher factor loadings (e.g., MacCallum et al.,
1999). As the middle column shows, REFA produced a smaller
RMSE (i.e., closer to true parameters) than ULS-FA across
two levels of overdetermination. The average RMSE value for
REFA under low overdetermination (four variables per factor)
was slightly higher than that under high overdetermination
(eight variables per factor). A decreasing tendency, however,
emerged for ULS-FA: high overdetermination resulted in better
factor recovery. Preacher and MacCallum’s (2002) simulation
study identified the same pattern. As the last column shows,
we found that REFA is clearly superior to ULS-FA with two
group factors and equally accurate or slightly superior with
four group factors. As the number of factors increased, the
differences in the RMSE of the general factor loading estimates
became negligible.

Root Mean Squared Error (RMSE): Group
Factors
The ANOVA for RMSE in the recovery of group factors revealed
three noticeable interactions of interest: Method [QSIImage]

Factor Loading (η2 = 0.09), Method [QSIImage] Variables per
Factor [QSIImage] Number of Factors (η2 = 0.06), and Method
[QSIImage] Variables per Factor [QSIImage] Number of Factors
[QSIImage] Sample Size (η2 = 0.13). Although we found a sizable
two-way interaction between method and factor loadings, we
do not discuss this interaction below because it follows the
same pattern as earlier results for the analysis of the interaction
between these two design factors in the general factor. We
describe the three-way interaction in detail later as it is nested
within the four-way interaction.

We place particular emphasis on the four-way interaction
for the following reasons: First, this higher-order interaction
had the largest effect size worthy of further investigation.
Second, it was produced by the interaction of the sample
size with the three factors that had already appeared in
the lower-order interactions. These results demonstrated the
impact of sample size on the performance of the two
approaches, which can be attributed to different procedures for
the estimation of unique variance associated with each first-
order factor.

Figure 3 presents the four-way interaction of Method
[QSIImage] Variables per Factor [QSIImage] Number of
Factors [QSIImage] Sample Size. We found several intriguing
characteristics with respect to group factor recovery. First,
uniformly, REFA yielded lower RMSE than ULS-FA across all
sample sizes. The two-way interaction of Method [QSIImage]
Variables per Factor can be seen in the majority of the six blocks.
In general, the difference in the RMSE between the two methods
was more pronounced for weakly determined factors (here, four
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FIGURE 1 | Two-way interaction between Method and Sample Size with congruence values as dependent variable (Horizontal bar = a criterion cutoff of 0.85).

FIGURE 2 | Two-way interactions of Method with Factor Loading, Variables per Factor, and Number of Factors with the RMSE of general factor as dependent
variable.

variables per factor) (see also Jung, 2013). Second, when few
group factors were retained, REFA resulted in smaller RMSE
under higher overdetermination (eight variables per factor) as
compared to under lower overdetermination (four variables per

factor) across all sample sizes. Of particular note is that ULS-FA
performed similarly under the two levels of overdetermination
when N = 10. However, this method experienced a steeper
decline in the RMSE as sample sizes increased. This suggests
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FIGURE 3 | Four-way interactions of Method [QSIImage] Variables per Factor [QSIImage] Number of Factors [QSIImage] Sample Size with the RMSE of group
factors as dependent variable (FAC = number of factors and N = sample size).

that sample size plays a greater role in the performance of ULS-
FA than in the performance of REFA. Overall, sample size and
overdetermination are likely to have an important impact on
good recovery of group factors. Third, as the number of group
factors increased, however, there were relatively few differences in

RMSE between the lower and higher levels of overdetermination
for each approach across all sample sizes (except for N = 50). This
finding suggests that, under this condition, sample size is likely to
have little impact on the quality of results and good recovery can
be obtained with relatively larger samples.
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DISCUSSION

In this section, we discuss the implications of the simulation study
and lay out guidelines for choosing between the two approaches.
Researchers generally regard REFA as a viable alternative to
ULS-FA in small-sample situations. However, to date, no study
has examined the relative performance of these two methods
in the context of exploratory bifactor analysis. Consequently,
comprehensive Monte Carlo study was performed systematically
to compare the relative performance of REFA and ULS-FA in
several experimental conditions.

Our major findings are as follows: First, when factor loadings
were poor, and thus communalities were low, REFA generally
recovered loadings on general factor better than ULS-FA. When
factor loadings were excellent, reflecting high communalities,
ULS-FA recovered its loadings relatively well. The finding
that ULS-FA performed well for a small sample coincides
with the findings of previous studies, which have performed
factor analyses with small sample sizes (e.g., MacCallum
et al., 1999). Second, in general, REFA had smaller RMSEs
of group factors than those of ULS-FA across all sample
sizes. When few weakly determined factors were retained,
REFA generally performed better in recovering loadings on
group factors than ULS-FA. When a small number of factors
were highly overdetermined, the differences in the RMSE
between the two methods became negligible as sample sizes
increased. However, in the case of extracting a large number
of factors, the differences between them in the estimates of
loadings on group factors were rather small regardless of
levels of overdetermination. Finally, factor correlations did
not lead to substantial differences in factor recovery between
the two methods. We expected this result as the bifactor
model relies on the assumption of relatively high correlation
among factors in the estimation of parameters. These findings
have important implications for researchers who may use
exploratory bifactor analysis under the condition of small
sample sizes.

Implication for Practice
It is well known that exploratory factor analysis requires a
relatively larger sample size to perform well, such as 100–
200 observations. However, data sets with small samples are
common in the various behavioral science disciplines such
as comparative psychology and behavior genetics. Given the
exigencies of applied research, behavioral scientists have called
for the development of statistical methods that are effective
in such traditionally difficult situations. This problem is likely
to be exacerbated as the number of observed variables and
latent variables increases. Recently, Jung and Takane (2008)
have developed REFA via incorporating regularization methods
into the common factor model. REFA has been widely used
particularly in the comparative psychology literature (e.g.,
Tkaczynski et al., 2019). The current study expanded the
literature by incorporating the idea of regularization into
the bifactor model.

The present study provides a greater understanding of factor
recovery capability of REFA and ULS-FA within the framework

of exploratory bifactor modeling. First, the ability of REFA to
perform relatively well with small samples, in particular in the
case of a small number of underlying factors, is an important
result since small sample sizes may be the rule rather than the
exception, and researchers are more favorably inclined to develop
efficient and parsimonious theories. Since ULS-FA is known to
perform similarly to REFA with a large number of factors, there
may be little reason to choose REFA over ULS-FA under the
retention of large numbers of factors. Second, when researchers
are less confident in selecting the correct number of factors, the
choice of REFA or ULS-FA will likely be influenced by the degree
of reliability of measurement. Guadagnoli and Velicer (1988)
pointed out that factor scores are considered reliable if each factor
has four or more loadings of at least 0.6 regardless of sample size.
Researchers should take care to maintain reliable measures. If
the measurement error is assumed to be small, the use of ULS-
FA is justifiable. However, in the presence of a large amount
of measurement error, REFA is recommended. Third, due to
the greater likelihood of improper solutions with ULS-FA for
extremely small samples of 10 and 20, researchers may consider
using REFA over ULS-FA. Under such condition, however,
factor similarity was poor with both of the two approaches.
This can potentially misguide factor interpretation. Furthermore,
they were associated with a large range of RMSE values. In
sum, these findings suggest that the results obtained by REFA
for samples of 10 and 20 should be discussed with caution
in terms of accuracy and factor interpretation. When samples
are 30 or larger, REFA tends to produce a bifactor solution
reasonably well.

Limitations
As with any study, the present study is not free of limitations.
First, this study was designed to generate synthetic data
within a continuous variable framework. The bifactor model
is often estimated with ordinal-scale data using the ULS
estimation procedure. Thus, it may be required to investigate
the performance of REFA and ULS-FA with the sample matrix
of ordinal-scale variables. Second, as is the case with all Monte
Carlo simulation studies, the relative performance of each
method in this study depended on the specific levels chosen
for the experimental conditions. Although our simulation study
took into account various experimental conditions that are
frequently used in Monte Carlo simulation studies in the area
of common factor analysis, the generated simulation conditions
may not reflect the wide array of scenarios in empirical studies.
For instance, population model misfit (e.g., due to minor
factors) was not taken into account in the current study, even
though it is inevitable to some extent in empirical studies and
it may have harmful impact on factor recovery, particularly
in the analysis of empirical data with a small number of
observations. This signifies that the use of ULS-FA or REFA
for small samples might lead to less optimal results with
empirical data than suggested by the simulated data results.
Thus, future studies should be conducted to fully investigate
the relative performance of the two approaches under a wide
range of conditions, in the presence of model misfit (e.g.,
MacCallum et al., 2001).
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