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The Effect of User Psychology on the
Content of Social Media Posts:
Originality and Transitions Matter
Lucia Lushi Chen*, Walid Magdy and Maria K. Wolters

School of Informatics, University of Edinburgh, Edinburgh, United Kingdom

Multiple studies suggest that frequencies of affective words in social media text are

associated with the user’s personality and mental health. In this study, we re-examine

these associations by looking at the transition patterns of affect. We analyzed the content

originality and affect polarity of 4,086 posts from 70 adult Facebook users contributed

over 2 months. We studied posting behavior, including silent periods when the user

does not post any content. Our results show that more extroverted participants tend

to post positive content continuously and that more agreeable participants tend to avoid

posting negative content. We also observe that participants with stronger depression

symptoms posted more non-original content. We recommend that transitions of affect

pattern derived from social media text and content originality should be considered in

further studies on mental health, personality, and social media.

Keywords: affect, social media, emotion, Facebook, personality traits, depression, mental health, non-original

content

1. INTRODUCTION

Many people express rich moods and emotions in their social media posts. Psychologists use the
word “affect” to describe these experiences of feelings and emotions. Affect plays an important
role in cognition (Gross et al., 1998) and well-being (Silvera et al., 2008). Therefore, affective
expressions in social media text have emerged as a key variable for making inferences about
users’ personality traits (Golbeck et al., 2011; Bachrach et al., 2012; Farnadi et al., 2013) or mental
health (De Choudhury et al., 2013; Coppersmith et al., 2014; De Choudhury andDe, 2014; Bazarova
et al., 2015).

Existing studies formulate the associations between affect and well-being based on the
frequencies of affective words used in social media text (Yarkoni, 2010; Golbeck et al., 2011;
Schwartz et al., 2013; Park et al., 2015; Chen et al., 2020). However, patterns of affect are an
important class of symptoms of affective disorders (Frijda, 1993; Rottenberg, 2005; Bylsma et al.,
2011; Carlo et al., 2012; Thompson et al., 2012; Houben et al., 2015; Sheppes et al., 2015). Personality
may also predispose individuals to specific moods (Rusting and Larsen, 1995; Rusting, 1998). With
this in mind, we examined how patterns of affect expressed in social media text are related to users’
mental health and personality.

While non-original content has been extensively studied in opinion mining (Balahur et al.,
2009; Agarwal et al., 2011), it has been comparatively neglected in the study of psychological
interpretations of social media data. However, social media users often use lyrics or quotes to
communicate their emotions. Such content comes from other media, such as literature, videos,
films, or music, which can evoke strong emotional experiences (Scherer and Zentner, 2001; Juslin
and Laukka, 2004; Scherer, 2004). Since the affect of the non-original content may be different from
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the social media users’ affect when they are post this content,
we differentiated between original and non-original content in
our analysis.

This pilot study was designed to examine the following
research questions:

1. Changes in Affect: To what extent do changes in the affect of
social media posts correlate with users’ personality traits and
mental well-being?

2. Originality: To what extent does the use of non-original
material in their posts correlate with users’ personality traits
and mental well-being?

Following best practice in sentiment analysis and opinion
mining, we distinguish between positive, negative, neutral, and
mixed (both positive and negative) affect (Moilanen and Pulman,
2007; Agarwal et al., 2011; Rosenthal et al., 2015).

We used a well-known dataset, myPersonality (Bachrach
et al., 2012; Youyou et al., 2015), which enriches Facebook posts
with many validated psychological measures. In MyPersonality,
positive mental well-being is measured using the Satisfaction
with Life Scale (Diener et al., 1985, 1999), while the presence
of depressive symptoms is assessed using the Centre for
Epidemiologic Studies Depression scale (CES-D) (Radloff,
1977). Personality traits are established following the OCEAN
model (McCrae and John, 1992), which consists of the five
traits Openness to Experience, Conscientiousness, Extroversion,
Agreeableness, and Neuroticism.

We included all 70 adult users who provided sufficient, regular
Facebook data for 2 months before completion of the CES-D
questionnaire and corrected for multiple comparisons in our
statistical analysis. We find that the transitions from one affective
state to another expressed in social media posts give us a highly
nuanced view of personality traits. While the amount of non-
original posts in ones’ social media status updates is closely linked
to depression symptoms, this link is mediated by neuroticism.

2. BACKGROUND

Affect refers to both mood and emotion. Moods are slow-moving
states that can be influenced by people, objects or situations,
whereas emotions are quick reactions to stimuli (Watson, 2000;
Rottenberg and Gross, 2003) and are highly situation- or object-
specific (Bylsma et al., 2008). Mood influences the probability of
having emotions of the same valence—negative mood facilitates
negative emotions, and positive mood makes positive emotions
more likely (Fredrickson, 1998; Rottenberg, 2005). Affect is an
important predictor of mental well-being, including a person’s
overall satisfaction with life (Headey et al., 1993; Singh and
Jha, 2008; Chen et al., 2017), and the level of symptoms of
depression (Coppersmith et al., 2015; Resnik et al., 2015; Tsugawa
et al., 2015).

Personality also predisposes people to certain affective
states (Rothbart et al., 2000). While neuroticism is associated
with negative affect (Pishva et al., 2011), positive affect is
strongly linked to extroversion (Fujita et al., 1991; Watson
and Clark, 1997). Extroverts experience more positive affect

because they engage in more social situations (Diener and
Emmons, 1984; Ryan and Deci, 2001). Individuals who score
high on agreeableness have a greater ability to regulate
negative affect (Meier et al., 2006; Haas et al., 2007). This
relationship between affect and personality is also reflected
in social media studies (Pennebaker and King, 1999; Golbeck
et al., 2011; Schwartz et al., 2013; Lin et al., 2017). For
example, people who use negative affective words in their
social media posts tend to have lower conscientiousness, lower
agreeableness (Golbeck et al., 2011), and higher neuroticism
(Pennebaker and King, 1999).

In psychology, quantitative representations of affect are
typically multidimensional (Russell, 1980). In this study, we focus
on valence, which is represented in many classic affect models.
Traditional measures, such as the Positive and Negative Affect
Schedule (PANAS) (Watson et al., 1988), report the strength of
positive and negative valence. Mixed valence can occur when
people experience “dialectic” emotion, which is a mix of positive
and negative emotions (Schimmack et al., 2002; Russell, 2003).

The personality trait measurements in myPersonality
are based on Costa and McCrae’s well-validated OCEAN
model (McCrae and John, 1992). The model consists of five
dimensions: extroversion, agreeableness, conscientiousness,
neuroticism, and openness to experience. Neuroticism refers to
the degree of emotional stability. Openness reflects the degree
of creativity and curiosity. Conscientious individuals tend to
be careful and diligent. Extroversion refers to a tendency to be
energetic and friendly. Agreeableness reflects the tendency to be
compassionate and to cooperate with others (Digman, 1990).
The five-factor structure has proved to be robust in both self and
peer ratings (McCrae and John, 1992), in both children and adult
(Mervielde et al., 1995), and across different cultures (McCrae
and Allik, 2002) and to be stable over time (McCrae and John,
1992).

3. DATA AND METHODOLOGY

The myPersonality data set (Bachrach et al., 2012; Youyou et al.,
2015) contains more than 180,000 Facebook users, enriched with
a variety of additional validated scales (Bachrach et al., 2012).
The collection of myPersonality data complied with the terms
of service of Facebook, informed consent for research use was
obtained from all users, and researchers had to seek permission
to use the dataset. Permission for the use of this database was
obtained before it closed for new studies in 2018. The study was
granted Ethical Approval by the Ethics Committee of the School
of Informatics, University of Edinburgh.

3.1. Choice of Scales
From the extensive data collected within myPersonality, we
chose two scales for quantifying mental well-being, the
Center for Epidemiologic Studies Depression Scale (CES-D)
and the Satisfaction with Life Scale (SWL). The CES-D scale
measures a key aspect of mental health, the presence of
depression symptoms (Radloff, 1977). The scale has high internal
consistency, test-retest reliability (Radloff, 1977; Roberts, 1980;
Orme et al., 1986), and validity (Orme et al., 1986). Following
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previous social media studies (Park et al., 2012; De Choudhury
et al., 2013), we adopt a score of 22 or higher as a cut-off value
for likely depressive disorder (maximum score: 60). The five-
item SWL scale has been tested across different cultures and
age groups (Pavot and Diener, 2009) and has been found to
have high internal consistency and temporal reliability (Diener
et al., 1985). Personality traits were measured using a 100-item
scale using items from the open-source International Personality
Item Pool (Goldberg et al., 2006) that were validated against the
NEO-PI-R (Schwartz et al., 2013) instrument.

3.2. Selection of Participants
The data set was originally designed for a study of the effect
of mental well-being and values on social media disclosure. We
therefore selected only those participants who had completed
the CES-D scale, the SWL scale, and the Schwartz Value
survey (Schwartz, 1992) in addition to the full personality
questionnaire. A total of 301 participants in myPersonality
provided full data for all four scales.

To ensure we had enough posts to assess the frequency of
affect transitions, we only included users in our sample that
regularly updated their public Facebook feed (regular users). We
defined regular users as individuals who posted on average twice a
week or more. We estimated posting frequency using the average
post-count per day during the sampling frame. If an individual
had a post-count per day of 0.3, this individual made around 110
posts in 365 days, which was roughly equivalent to an average of
two posts per week. Of the original 301 participants, 122 (40.5%)
were regular users.

Since the CES-D asks about symptoms in the past week, we
excluded a further 31 users who had not posted any content in the
week before completing the CES-D scale. We then focused on a
60-days span (2months) before CES-D completion to ensure that
we had sufficient data to track the development of users’ moods.
We removed 14 users who contributed <20 posts during that
time. Finally, we removed four users who were under 18 years
old and three users with more than 20% of the posts written in
a language other than English, because English was the common
language of the annotation team. The final sample consisted of
4,086 posts from 70 users.

3.3. Corpus Annotation
3.3.1. Social Media Affect
For the purpose of this study, we refer to the affect shown
in social media posts as social media affect. In this study,
following (Mohammad, 2016), we operationalize valence as the
post-author’s attitude toward a primary target of opinion. We
refer to the “dialectic” affective state as mixed valence. If there
is no clear trend toward positive or negative affect, the associated
valence is neutral.

After extensive piloting, we created an annotation guideline
(available as part of the supplementary material) that was largely
based on Mohammad (2016)’s work on defining the valence of
a social media post. Each post is assigned one of four affect
polarities: + (positive), − (negative), ± (mixed), or 0 (neutral).
We used manual annotation since this is commonly used in

computational linguistics to create a baseline gold standard data
set for further analysis (Teufel, 1999).

Of the 4,086 posts, 2,698 (66%) were annotated by a team of six
trained annotators and 1,185 (29%) by the first author; 5% of all
posts were annotated by all seven annotators to establish inter-
rater reliability, which was measured using Cohen’s κ (Gamer
et al., 2019). Average inter-rater reliability between the first
author and the annotators is 0.88, and it is 0.78 among the
six annotators.

After annotation, most of the posts were of positive valence
(N = 1,588, 39%), followed by negative valence (N = 1,164, 28%),
neutral valence (N = 982, 24%), andmixed valence (N = 312, 8%).
A total of 40 posts were excluded from analysis because they did
not contain English text.

3.3.2. Originality
We define posts that consist of quotes from sources, such as
song lyrics, books, or movies as non-original content; all other
content was defined as original. Since non-original content might
not directly reflect the user’s moods or emotions, annotators
were instructed to annotate such posts according to the likely
emotions of the author. For example, if a post consists of
an uplifting motivational quote, annotators considered the
underlying valence to be positive.

In order to establish the originality of a post, we retrieved the
first page of results obtained by searching for the post-text using
the Google API. For each web page on the first page of results, we
computed the cosine similarity between the post-content and the
page content. Posts with a cosine similarity >0.96 were labeled
as non-original, and posts with a cosine similarity between 0.92
and 0.96, where the website links or website names included the
words “lyrics” or “quote” were labeled as potentially non-original.
Posts with a cosine similarity lower than 0.92 were labeled as
original. The cutoff points were determined based on a sample of
300 posts manually annotated for originality by the first author.
On these posts, the classifier yields 100% recall, 81% precision,
and an F1-score of 0.89. In our data set, 287 (7%) of all posts were
identified as non-original.

3.4. Modeling Affect Transitions
We examine two types of transitions:

• Post-level vs. Day-level: Post-level transitions focus on
changes in affect between subsequent social media posts,
whereas day-level transitions focus on changes in overall
dominant affect between subsequent days.

• Silence vs. Non-silence: Not all users post every day. In our
default models, these silent days are ignored, whereas in our
with-silencemodels, days without posts are explicitly modeled
as Silence.

The post-level social media affect is likely to be influenced
by underlying emotions, which change more quickly, whereas
the day-level social media affect is likely to be influenced by
underlying mood during the day. Day-level affect was calculated
as follows. If the majority of the posts pij on day dj have the same
affect a, then the affect of day dj is set to a. If there is an equal
number of positive (+) and negative (−) posts or if the number
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TABLE 1 | Affect and originality representation for a sample week.

Monday TuesdayWednesday Thursday Friday Saturday Sunday

Affect

Post-level + – + – + + + S ± 0 + –

Day-level – + + S ± 0 ±

Originality

Post-level O N O O O N N N S O O N N

↔; −, negative valence; +, positive valence; ±, mixed valence; S, silence day; O, original

content; N, non-original content.

of mixed affect (±) posts is equal to the number of posts with
other types of affect, affect is set to ± (mixed). For transitions
between original and non-original posts, we only consider the
post-level representation. Table 1 shows an example of the affect
and originality representations.

3.5. Statistical Analysis
Demographic differences between users above and below the
CES-D cut-off score for probable depression were assessed using
Wilcoxon-Mann-Whitney tests (R-package “Stats”).

We used Pearson correlation coefficients to assess the
significance of correlations between social media data on the
one hand and personality traits and mental well-being on the
other hand. Due to the small sample size and the number of
correlations computed, all correlation coefficients were estimated
using a permutation approach (Higgins, 2003), as implemented
in the R PackagejmuOutlier (Garren, 2017). Correlations that
reach p < 0.01 or better are reported as significant; correlations
that reach p < 0.05 are reported as trends in the data. For
all correlations reported in the paper, we give the estimated
correlation coefficient, the bootstrap 95% confidence interval,
and the corresponding coefficient of determination r2.

4. RESULTS

4.1. Demographics and Baseline Statistics
Table 2 shows the basic statistics of our sample. Our data
predominantly comes from single female Caucasian young
adults. The average CES-D score is above the cut-off for possible
depressive disorder.

Thirty-nine (56%) participants had a CES-D score of 22 or
higher (mean: 33, SD: 6.5), which means that it is possible that
they have depressive disorder, and 31 (44%) had a score of 21 or
lower (mean: 12, SD: 6).

Participants with possible depressive disorder are less
extroverted (Z = 375, p < 0.005) and have higher levels
of neuroticism (Z = 990, p < 0.001), lower levels of
conscientiousness (Z = 375, p < 0.001), and lower satisfaction
with life (Z = 323, p < 0.001). Detailed results are reported in
Figure 1 Plot 1.

All scales are normally distributed (Shapiro-Wilks test), except
for openness to experience (W = 0.96, p < 0.05) and satisfaction
with life (W = 0.95, p < 0.05), which are bimodal. Figure 1
Plot 1 shows the correlations between different personality

TABLE 2 | Demographics of the sample.

Variable N (%) Variable Mean (SD)

Gender Age

- Female 49 (70%) - Female 23.52 (6.56)

- Male 21 (30%) - Male 22.84 (7.13)

Ethnicity Personality

- Caucasian 54 (75%) - Openness to Experience 4.19 (0.46)

- Black 3 (4%) - Conscientiousness 3.20 (0.75)

- Asian 5 (7%) - Extraversion 3.11 (3.83)

- Other 8 (14%) - Agreeableness 3.55 (0.68)

- Neuroticism 2.98 (0.89)

Living status Mental well-being

- Living with partner 8 (10%) - SWL 4.18 (1.44)

- Single 54 (77%) - CES-D 23.79 (11.86)

- Married 5 (7%)

- Unknown 3 (4%)

Caucasian includes White people of American, British, and other origins; Black includes

African-Americans and Black people from Europe. SWL, score for Satisfaction with Life

Scale; CES-D, Center for Epidemiologic Studies Depression Scale.

dimensions. As expected, the five personality dimensions are
not orthogonal.

4.2. Social Media Affect: Frequencies vs.
Transitions
For overall frequencies of affect category, the only clear
correlation is between extroversion and positive content. Overall,
more extroverted participants are more likely to have days where
they make predominantly positive posts (r = 0.29, p < 0.01,
95%CI = (−0.15, 0.32), r2 = 0.08). In addition, participants who
score higher on agreeableness tend to post fewer negative posts
and have fewer days with predominantly negative posts [both r =
−0.26, p < 0.05, 95%CI = (−0.48,−0.04), r2 = 0.07].

When we look at transitions between affect categories,
however, a more nuanced picture emerges. Table 3 summarizes
the correlations between personality, well-being and transition
types. Significant correlations are summarized in Table 4. Due
to the number of correlations presented, we choose a cut-off of
p < 0.01, which is stricter than the normal p < 0.05.

Several transition types are correlated positively and
negatively with Extroversion and Agreeableness. Neuroticism,
conscientiousness, and SWL show interesting trends (p < 0.05)
that do not reach significance (c.f. Table 3).

More extroverted participants are more likely to post
predominantly positive content several days in a row [day-level,
+↔+, r = 0.30, p < 0.001, 95% CI = (0.06, 0.54), r2 = 0.09]. They
have more transitions to or from a silence day with a positive
post [post-level with-silence, S↔+, r = 0.29, p < 0.01, 95% CI =
(−0.01, 0.46), r2 = 0.08]. This pattern fits well with the overall
predominance of posts with positive affect. Extroverts are also
less likely to alternate between days with neutral and days with
non-neutral content [day-level, for both 0↔+ and 0↔−, r =
−0.28, p < 0.01, 95% CI = (−0.52,−0.09), r2 = 0.08].
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FIGURE 1 | Basic statistics for personality trait scores, SWL and CES-D scores. Plot 1 is a heat map of correlations between personality traits, SWL, and CES-D

scores (∗∗∗p < 0.001). Plot 2 illustrates the distribution of the CES-score in the entire sample (N = 70). The dotted line indicates the cutoff score of 22.

People who score higher on agreeableness are less likely to
follow a post with negative affect with another negative-affect
post [−↔−, post-level with-silence: r = −0.37, p < 0.001, 95%
CI = (−0.50, −0.06), r2 = 0.14]. This tendency is much less
pronounced on the day level [−↔−, r = −0.22, p < 0.1, 95%
CI = (−0.44, −0.02), r2 = 0.04]. On top of that, they are more
likely to alternate between days with mixed valence and silence
[day-level,±↔S, r = 0.28, p < 0.01, 95% CI = (−0.01, 0.46), r2 =
0.08, post-level with-silence, ±↔S, r = 0.29, p < 0.01, 95% CI =
(0.08, 0.52), r2 = 0.08].

Participants with higher neuroticism tend to alternate between
positive and negative content, but this is only evident when we
take silence into account [+↔−, post-level with-silence: r = 0.23,
p < 0.05, 95% CI = (0.00, 0.47), r2 = 0.04, post-level without-
silence: r = 0.16, 95% CI = (−0.08, 0.41), r2 = 0.025, day-level: r =
0.21, p < 0.05, 95% CI = (−0.46,−0.10), r2=0.04].

There are interesting differences in transition patterns that
incorporate information about silence days and those that do
not. When disregarding silence days, we observe that people with
higher conscientiousness or extroversion are slightly less likely
to follow a neutral post with another neutral post [post-level
without-silence, conscientiousness, 0↔0, r = −0.23, p < 0.05,
95%CI = (−0.41,−0.04), r2 = 0.07; extroversion, 0↔0, r =−0.24,
p < 0.05, 95% CI = (−0.41,−0.04), r2 = 0.07].

When we take into account silence days for computing
transitions, we find several more interesting trends. People
who are more satisfied with life are more likely to follow a
neutral post with another neutral post [0↔0, day-level: r =
0.25, p < 0.05, 95% CI = (−0.01, 0.44), r2 = 0.06]. In
addition, people with higher neuroticism are more likely to
alternate between positive and negative posts [0↔−, day-level:
r = 0.21, p < 0.05, 95% CI = (−0.01, 0.40), r2 = 0.04] but
less likely to make a positive post after one or more silence
days [S↔+, post-level with-silence: r = −0.22, p < 0.05,
95% CI = (−0.48, 0.00), r2 = 0.04]. We found that silence-
to-silence transitions are not correlated with personality or
mental health.

4.3. Post-originality
High CES-D scores are significantly correlated with posting non-
original content [r = 0.29, p < 0.01, 95% CI = (0.10, 0.46), r2

= 0.08]. There is a similar tendency for participants with higher
neuroticism scores [r = 0.25, p < 0.05, 95% CI = (0.06, 0.43), r2 =
0.07]. Examining transitions between post-originality shows that
these effects stem from slightly different posting patterns. Users
with higher CES-D scores tend to follow non-original content
with non-original content [N↔N, post-level with-silence, r = 0.26,
p < 0.05, 95% CI = (0.07, 0.43), r2 = 0.07] or to alternate between
original and non-original content [N↔O post-level with-silence,
r = 0.27, p < 0.05, 95% CI = (0.08, 0.44), r2 = 0.07]. Users
with higher neuroticism scores tend to post-sequences of non-
original content [N↔N, post-level with-silence, r = 0.25, p <

0.05, 95% CI = (0.06, 0.43), r2 = 0.05] and are less likely to
post-original content before or after a period of silence [O↔S,
post-level with-silence, r = 0.28, p < 0.05, 95% CI = (0.09,
0.45), r2 = 0.08].

Since neuroticism is closely linked to depression symptoms,
we also computed a partial correlation between content
originality and CES-D while controlling for neuroticism. The
resulting correlation was no longer significant (r = 0.14, p =

0.22, r2 = 0.02). Therefore, the association between content
originality and depression symptoms might be moderated
by neuroticism.

5. DISCUSSION

5.1. Main Findings
Many studies have found associations between the frequency
of affective words used in social media text and personality.
However, existing studies often saw affect as static and only
focused on the strength of bipolar valence (positive/negative).
Instead, our work focuses on affect patterns. We encode
posting behavior, transitions between affect states, and content
originality. From a practical point of view, our technique can
supplement experience sampling techniques (Myin-Germeys

Frontiers in Psychology | www.frontiersin.org 5 April 2020 | Volume 11 | Article 526

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Chen et al. Psychology of Social Media Posts

TABLE 3 | Correlations between personality, SWL, and CES-D scores and affect transitions. Number of participants N = 70.

Post-level representation (post-plus silence)

S↔S −↔− +↔+ ±↔± ±↔± 0↔0 +↔− ±↔+ ±↔− ±↔0 0↔+ 0↔− S↔+ S↔− ±↔S S↔0

NOcc 1238 346 542 29 230 599 143 134 100 424 414 641 384 137 211

ope 0.09 −0.17 −0.17 −0.16 −0.05 −0.14 −0.07 −0.08 0.11 0.01 0.03 0.17 0.00 0.13 0.03

con −0.06 0.01 0.09 −0.09 −0.15 0.11 0.00 −0.01 −0.14 −0.07 −0.08 0.16 0.00 0.15 −0.15

ext 0.04 −0.12 0.16 −0.10 −0.19 −0.06 −0.03 −0.12 −0.09 −0.09 −0.17 0.29** −0.04 0.00 −0.18

agr 0.14 −0.37*** 0.03 0.02 −0.15 −0.22* 0.08 0.04 0.04 −0.04 −0.23* 0.23* −0.04 0.29** −0.13

neu −0.07 0.19 0.18 0.18 −0.03 0.23* 0.11 0.04 0.02 0.05 −0.05 −0.22* −0.03 −0.23* −0.13

swl 0.04 −0.10 −0.13 −0.10 0.06 −0.03 0.02 −0.05 −0.04 0.02 −0.08 0.02 0.16 −0.02 0.18

CESD −0.04 0.19 0.08 0.09 0.00 0.04 0.15 0.07 0.03 −0.06 0.11 −0.20· 0.00 −0.11 −0.03

Post-level representation (post-only), N = 70

NOcc 396 694 34 313 728 188 166 142 547 502

ope −0.16 −0.05 −0.06 −0.02 −0.05 0.06 −0.01 0.14 0.09 0.13

con −0.07 0.18 −0.07 −0.23* 0.08 0.14 0.10 −0.11 −0.13 −0.12

ext −0.04 0.33*** 0.04 −0.24* 0.05 0.08 −0.10 −0.15 −0.16 −0.20·

agr −0.28** 0.18 0.00 −0.16 −0.10 0.26* 0.28** 0.13 0.03 −0.26*

neu 0.14 0.00 0.11 −0.02 0.16 −0.14 −0.09 −0.08 0.01 −0.12

swl 0.00 −0.12 −0.11 0.11 0.02 0.09 0.09 −0.02 0.08 −0.04

CESD 0.14 −0.04 0.03 0.04 −0.03 −0.06 −0.11 0.04 −0.11 0.13

Day-level representation, N = 70

NOcc 228 281 271 267 304 287 303 296 298 261 311 242 259 261 261

ope 0.12 −0.17 −0.11 −0.05 −0.02 −0.08 0.00 −0.14 −0.07 −0.01 −0.02 0.12 −0.02 0.19 0.13

con −0.06 −0.03 0.25* 0.05 −0.01 0.03 −0.03 −0.04 −0.16 −0.19 −0.12 0.08 0.10 0.06 −0.07

ext 0.06 −0.11 0.30*** −0.03 −0.14 0.04 0.14 −0.13 0.01 −0.28** −0.28** 0.24* −0.08 0.02 −0.17

agr 0.11 −0.22 0.15 −0.05 0.08 −0.12 0.16 −0.06 0.11 −0.08 −0.17 0.15 −0.07 0.28** −0.09

neu −0.08 0.16 0.00 0.19 −0.17 0.21* 0.09 0.11 −0.01 0.12 0.08 −0.14 −0.12 −0.26* −0.03

swl 0.02 −0.08 −0.01 −0.08 0.25* −0.03 −0.06 −0.10 0.03 −0.06 −0.04 −0.02 0.12 0.06 0.08

CESD −0.03 0.11 −0.10 0.08 −0.18 0.02 0.10 0.08 0.08 −0.01 0.21· −0.18 0.03 −0.16 0.05

Pearson correlation P-value (permutation testing): · < 0.1, ∗ < 0.05, ∗∗ < 0.01, ∗∗∗ < 0.001, bidirectional transition types:↔; −, negative valence; +, positive valence; ±, mixed valence;

0, neutral; S, silence day; NOcc, number of occurrences of each transition type; ope, openness; con, conscientiousness; ext, extraversion; agr, agreeableness; neu, neuroticism; swl,

satisfaction with life scale; CESD, Center for Epidemiologic Studies Depression Scale. Bold: p < 0.05.

et al., 2018) to help clinicians and patients develop a more
comprehensive view of a person’s affect patterns, arrive at a
better-substantiated diagnosis, and make improved treatment
decisions. However, this depends on whether the patient is
willing to share information from their social media feed with
their therapist. Overall, the correlations seen between affect
transitions and personality traits are in line with the consensus
in the early literature (Gross et al., 1998). Extroverts tend to
produce sequences of positive posts. This behavior fits well with
the positive emotional core in extroverts stipulated in (Watson
and Clark, 1997). Participants with higher agreeableness are less
likely to post-sequences of negative posts. This could be due to
their ability to regulate negative affect (Meier et al., 2006; Haas
et al., 2007).

Although the psychology literature suggests a strong
association between negative mood states and neuroticism
(Rusting and Larsen, 1995), we did not find this in our data.
Our results are in line with previous studies of verbal cues to
personality traits in social media (Yarkoni, 2010; Golbeck et al.,
2011; Schwartz et al., 2013; Park et al., 2015). Golbeck et al.
(2011) found that social media users who were more likely to
talk about anxiety were on the higher end of the neuroticism
scale. We speculate that self-presentation bias may influence
how social media users regulate their expression of negative
emotions in their public posts. The only relevant association
we found was that social media users on the high end of
neuroticism are more likely to switch between posting positive
and negative affective content. This finding aligns well with the
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TABLE 4 | Summary of the significant correlations between transition states and

the five personality traits (p < 0.01).

Transitions Post-level

(with-silence)

Post-level

(without-silence)

Day-level

Extraversion S ↔ + ↑ – –

0 ↔ + – – ↓

0 ↔ – – – ↓

+ ↔ + – ↑ ↑

Agreeablness – ↔ – ↓ ↓ –

± ↔ S ↑ – ↑

± ↔ – – ↑ –

↓ Indicates a significant negative correlation at p<0.01 or better, ↑ indicates a significant

positive correlation at p<0.01 or better. — Indicates that the correlation is not significant

at this level. Bidirectional transition types:↔; −, negative valence; +, positive valence; ±,

mixed valence; 0, neutral; S, silence day.

fact that high neuroticism is associated with high emotional
instability (Costa and McCrae, 1992).

The link between posting non-original content and elevated
depression symptoms appears to be moderated by neuroticism.
This suggests that high levels of neuroticism predispose users
both to depressive symptoms and to an indirect disclosure of
emotions through quotes and lyrics.

In our sample, the prevalence of depressive symptoms is
higher than would be expected in the general population. In the
original CES-D paper, Radloff (1977) proposed three levels of
depression severity: low (0–15), mild-to-moderate (16–22), and
high (23–60). They found that only 21% of the general population
scored above the low symptom level. In contrast, in our sample,
nearly half of the participants exhibit a high level of symptoms
(>22). Within the context of social media studies of depression,
however, our data set is not exceptional. For many studies in the
area, high symptom individuals account for nearly half of the data
set (De Choudhury et al., 2013; Tsugawa et al., 2015; Nadeem,
2016; Reece et al., 2017; Orabi et al., 2018).

Our results support the claim that affect expressed in social
media data text is associated with social media users’ affect
patterns in real life. However, the data set used in this study is
from the early 2010’s and only covers the well-established social
media platform Facebook. The associations found in this study
are likely to be slightly different from those found in another
social networks (e.g., Instagram) or in a new data set collected
10 years later.

5.2. Limitations
Due to the restrictions imposed by the need for sufficient
Facebook updates to allow analysis, our final sample is relatively
small. Given the size of the significant effects we found in
the data, power calculations indicate that a well-powered study
should include data from around 200 users (Schönbrodt and
Perugini, 2013). It also skews heavily toward younger female
Caucasians with relatively low satisfaction with life and strong
depression symptoms. It is possible that other groups of users
(e.g., non-Caucasians, males) are less likely to disclose personal

information about mood and emotions on their public Facebook
pages (Dosono et al., 2017; McDonald et al., 2019).

6. CONCLUSION AND FUTURE WORK

In this pilot study, we demonstrated the benefits of detailed
representations of social media affect for unpacking the
relationship between personality, mental well-being, and the
content posted on social media. Importantly, our representations
include non-binary affect categories (positive, negative, mixed,
neutral), and take into account content originality. As a
consequence, we were able to obtain a more detailed picture of
the link between patterns of affect and depressive symptoms.

In future work, we plan to enrich our data set with more
in-depth analyses of original vs. non-original content, extend
coverage by including a larger sample of the myPersonality data
set, and construct statistical models that allow us to observe
long-term trends in posting patterns. Future studies should
also examine the extent to which affect expressed in non-
original content is aligned with the users’ affect when they post
the material.
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