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Introduction: Clinically relevant information can go uncaptured in the conventional

scoring of a verbal fluency test. We hypothesize that characterizing the temporal aspects

of the response through a set of time related measures will be useful in distinguishing

those with MCI from cognitively intact controls.

Methods: Audio recordings of an animal fluency test administered to 70

demographically matched older adults (mean age 90.4 years), 28 with mild cognitive

impairment (MCI) and 42 cognitively intact (CI) were professionally transcribed and fed

into an automatic speech recognition (ASR) system to estimate the start time of each

recalled word in the response. Next, we semantically cluster participant generated animal

names and through a novel set of time-based measures, we characterize the semantic

search strategy of subjects in retrieving words from animal name clusters. This set of

time-based features along with standard count-based features (e.g., number of correctly

retrieved animal names) were then used in a machine learning algorithm trained for

distinguishing those with MCI from CI controls.

Results: The combination of both count-based and time-based features, automatically

derived from the test response, achieved 77% on AUC-ROC of the support vector

machine (SVM) classifier, outperforming the model trained only on the raw test score

(AUC, 65%), and well above the chance model (AUC, 50%).

Conclusion: This approach supports the value of introducing time-based measures

to the assessment of verbal fluency in the context of this generative task differentiating

subjects with MCI from those with intact cognition.

Keywords: neuropsychological tests, short term memory, animal fluency, biomarkers, mild cognitive impairment

(MCI), computerized assessment
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1. INTRODUCTION

Early detection of the signs of transition from normal cognitive
aging to Mild Cognitive Impairment (MCI) is highly valuable,
particularly for preventing the transition to the more severe
stages of dementia such as Alzheimer’s disease (AD). Typically,
quantitative assessment of cognition is carried out in the clinic
by a trained psychometrician or neuropsychologist through
a battery of cognitive tests that examine various aspects of
cognitive abilities such as attention, memory, reasoning, and
language skills (Borson et al., 2006; Woodford and George,
2007). Full conventional assessment, involving the use of pencil
and paper, is a time-consuming process that can take up to
several hours and may become burdensome when, for example,
repeated re-assessment is required to monitor the progression
of dementia. Not surprisingly, there has been a growing
interest in developing more automated alternative methods that
allow low-cost, scalable, and home-based cognitive assessments
for detection of cognitive decline. More efficient methods of
assessment can play a crucial role in screening for the detection
of cognitive decline and can potentially target a broader segment
of the population at more frequent intervals.

Among cognitive tests, verbal fluency (VF) tests have been
widely used in several dementia screening batteries. In a VF test,
participants are asked to name as many words in a category (e.g.,
animals) as possible in a short duration of time, typically 1 min.
The VF test is administered in two different ways: (1) semantic
fluency, in which participants are asked to generate words from
a semantic category such as animals, fruits, or vegetables, and
(2) phonemic fluency where participants must generate words
that begin with a particular letter such as “F” or “S.” In the
conventional scoring of VF tests, the count of uniquely generated
words in the test comprises the final score. Prior research suggests
that verbal fluency is a function of individuals’ age regardless of
cognitive functioning and younger populations perform better in
this test compared to older adults (Alenius et al., 2019; Taler et al.,
2019). Within older adults with normal cognition, Farina et al.
(2019) highlights that within a short period of one’s life, the rate
of decline in VF score is not significant. In contrast, individuals
with MCI achieve lower VF score than the healthy population
and their score declines faster in the same period of time.

One disadvantage of conventional scoring is that it does
not consider other clinically relevant information that can be
captured from the response, such as the sequential pattern of
words produced in a semantic fluency test (Taler et al., 2019).
In an attempt at a more detailed assessment of an animal
fluency (AF) test, Troyer et al. (1997) proposed a computational
approach for characterizing the semantic retrieval process that
revolves around two sub-processes (known as two-part memory
retrieval): (1) clustering, in which a participant retrieves words
that share some subcategories (e.g., {dog, cat} are bothmammals),
and (2) switching, in which a participant switches to a different
semantic subcategory for retrieving a new word (e.g., {[cat,
falcon], [elephant, shark]}) (Troyer et al., 1997). To quantify
the semantic similarity of animal names for switching and
clustering, they first manually developed a structured table that
categorizes 545 animal names into 22 subcategories that cover a

particular cluster of related animals (e.g., domestic animal, birds,
etc.). Animal names in this table are not exclusive to a single
subcategory and can be part of up to four subcategories. Next,
they segmented each subject’s answer into multiple clusters based
on a semantic search model defined by them. Then, they counted
the number of clusters and switches. Their experimental results
using these measures show that young participants generate
more words and also switch more frequently as compared to
older participants. In another study, using count-based measures
extracted from switching and clustering components of AF test
(mean cluster size and count of switches), Troyer et al. (1998)
experimentally verified the effectiveness of these two features
for discriminating a group of patients with dementia from
demographically matched control groups. We use this method
of identifying switches and clusters in our experiments and
refer to it as “Troyer.” Despite the potential usefulness of these
features, there exist several limitations in computing switching-
and clustering-based features from the preexisting manually
constructed table of animal names. For example, the assignment
of multiple subcategories to a word can cause an ambiguity
in determination of subcategory switches (Woods et al., 2016).
Alternatively, Woods et al. (2016) proposed a new computational
method, explicit semantic analysis (ESA), based on the semantic
relatedness of subsequent words computed in a vector space
by cosine similarity distance given the vector representation of
words. Unlike Troyer’s approach that relies on a structured table
of animal names, ESA detects the occurrence of a switch by
comparing the pairwise cosine distance of two successive words
to a predefined threshold value.

While count-based measures, derived from clustering and
switching components, are powerful in capturing the semantic
pattern of retrieved words, they fail to quantify the difficulty
of retrieving a new word from a semantic cluster, often known
as lexicon search strategy. Inspired by the marginal value
theorem (MVT) (Charnov, 1976), Hills et al. (2012) proposed
a computational method for characterizing the lexicon search
strategy observed in individuals’ AF test responses. Traditionally
employed to model the foraging behavior of animals, MTV
optimizes the benefit-cost ratio, the estimation of whether it is
more beneficial to continue searching for food at the current
patch of food vs. expending the effort to move some distance
with the hope of discovering a more bountiful patch. This
optimization problem in animals’ foraging strategy resembles
the semantic-retrieval strategy in the AF test in which one may
retrieve more words over the course of the test if optimally
choosing when to switch to a new cluster. The critical measures
that allow for extracting higher level timing information from
switch and cluster components (e.g., average time spent in
clusters) which characterize the lexicon search strategy are
timestamps—the start and end time of each recalled word in
the response. Obtaining timestamps through manual annotation
of verbal responses is a time-consuming process and also
prone to subjective judgment. To mitigate this problem, Hills
et al. (2012) visually presented the test instruction through
a computer screen and asked participants to type in their
retrieved animal names. This process allowed them to collect
the timing of entries and to subsequently extract timing
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information. However, the nature of data acquisition in this
proposed test administration framework assumes typing skills,
which can be particularly problematic for those older individuals
who may have physical conditions or might be less familiar
with these devices.

In this study, we address this problem by introducing a
computational method using an automatic speech recognition
(ASR) system that automatically estimates the timestamps from
the responses. Using the timestamps and identified switch and
cluster components, we then extract a set of timing features
following the approach proposed by Hills et al. (2012). Finally, we
summarize the assessment of a response by augmenting its count-
based features with its automatically extracted timing features.
Focusing on the verbal responses of 70 subjects (28 with MCI
and 42 demographically matched normal controls) who have
performed an AF test, our ultimate goal is to develop automated
machine learning algorithms for distinguishing MCI subjects
from normal controls based on the combination of count-based
and time-based features.

2. MATERIALS AND METHODS

2.1. Data Collection and Corpus
The subjects in this study come from existing community
cohort studies of brain aging at the Layton Aging & Alzheimer’s
Disease Center, an NIA-funded Alzheimer’s center for research
at Oregon Health & Science University (OHSU). The Clinical
Dementia Rating (CDR) scale (Morris et al., 1997) was used,
as a clinical reference, for classifying subjects into groups: CDR
= 0.5, considered MCI, while CDR = 0, defined cognitively
intact participants.

Individual audio recordings of 98 animal fluency test sessions
along with the manual transcriptions of their verbal responses
were used in study. Out of 98 participants, 28 were diagnosed
with MCI and the remaining 70 participants were cognitively
intact (CI). Our statistical analysis using the Student’s t-test
showed that there was a significant difference in the demographic
factors of participants between MCI and CI groups. It is
possible that observed changes in spoken language patterns of
participants withMCI is the consequence of subject differences in
demographic factors such as age or education level regardless of
cognitive decline (Mathuranath et al., 2003). In order to control
for demographic factors, we used a freely available package,
“ldamatch,” that selects a subset of CI group which is statistically
matched to the MCI group using exhaustive search (Gorman,
2016). Out of these 70 participants, Within the matched samples,
all participants are White people except a participant from the
CI group with Asian ethnicity. Table 1 reports the baseline
characteristics of 70 sub-sampled participants (28 with MCI and
42 CI) of more equal educational level, age, and sex. Additionally,
Mini-Mental State Examination (MMSE) (Cockrell and Folstein,
2002) and AF test scores (i.e., the total count of correctly retrieved
animal names) are presented in this table.

2.2. Semantic Clustering
As described above, the core of our computational method for
characterizing verbal responses revolves around the switch and

TABLE 1 | Baseline characteristics of MCI and demographically controlled

participants.

Variable
Intact MCI

p-value
n = 42 n = 28

Age 89.9 (5.55) 91.2 (5.17) 0.32

Gender (% Women) 64.3% 50% 0.85

Years of Education 14.3 (2.70) 14.8 (2.79) 0.53

MMSE 28.0 (1.63) 26.0 (3.16) 0.08

AF score 17.3 (4.99) 13.3 (4.12) 0.04

The Kolmogorov–Smirnov test was used to calculate p-values.

cluster components; from them, we subsequently extract two
sets of count-based and time-based features. In our approach,
we employ both methods previously mentioned: Troyes-based
(Troyer et al., 1998) and ESA-based (Woods et al., 2016)methods.
The difference between these methods lies in the semantic
representation of animal names. Troyer’s method uses amanually
crafted table of animal names categorized in 22 semantically
related subcategories: two animal names are semantically similar
if they both belong to the same subcategories. While Troyer et al.
(1997) represents an animal name precisely with an index of a
subcategory, ESA represents it through a long vector in a high-
dimensional vector space, in which semantically related words
cluster around each other. Thus, using a similarity measure, such
as cosine distance, one can readily identify how semantically
close two words are. For more detail on ESA, we refer readers
to Gabrilovich and Markovitch (2007). The top table in Figure 1

displays a partial response of a subject to the AF test, in which
a sequence of produced words {cat, falcon, bat, elephant, shark,
dolphin} is corresponded to the sequence of cosine similarities
d(Wi−1,Wi) between the pair of previous and current words: {–,
0.077, 0.012, 0.053, 0.055, 0.007, 0.067}. According to ESA, the
higher the cosine similarity, the stronger the relationship between
the pair of two words. Practically, the cosine distance of two
words is compared to a predefined threshold value—a critical
factor in the success of the ESAmethod. In our working example,
given the threshold value of 0.05, the word pair of cat and falcon
is semantically different because d(cat, falcon) = 0.01 is lower
than the threshold, 0.05. While typically a single threshold is
used across all subjects, we adapt the threshold value to every
subject following an approach proposed in Woods et al. (2016).
For every subject, we first normalize the all cosine distances
computed across all word pairs of the response to a unit range
and 75% of the mean cosine distance is set as a subject-specific
semantic threshold.

2.3. Computational Methods for
Characterizing Verbal Responses
2.3.1. Count-Based Features
After removing all non-animal words from a response, the
following set of count-based features are extracted from the
switches and clusters components: (1) the total number of unique
animal words (standard AF score), (2) the total number of
switches (NS), and (3) the average number of words in clusters
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FIGURE 1 | In this example, we manually set the threshold to 0.05. Based on that, there exists two switching positions marked by red arrows. The switching duration

(SD) of the first switching is 0.7 | the time difference between falcon and cat. The intra-cluster retrieval time (ICRT) of the first switching is 0.2 | time difference between

bat and falcon. Thus, the absolute difference between the SD and ICRT in the first switch, optimal switching rate (OSR), will be 0.5.

(ANWC), (4) the total number of unique words, (5) the total
number of duplicate words, (6) the mean of log of word
frequency, (7) the standard deviation of word frequency, (8) the
mean of words’ syllables, (9) the standard deviation of words’
syllables, (10) the mean of words’ typicality, (11) the standard
deviation of words’ typicality, (12) the mean of ESA of adjoining
words (MESA), (13) the mean of ESA between every word and
every other word in the answer (MAESA), (14) the ratio between
MESA and MAESA, (15) the total number of switches, (16) the
average number of words in clusters, and (17) the total number
of single word clusters. These features were extracted based on
Woods et al. (2016)’s open-sourced code. Using a feature selection
method (will be described at section 2.3.3.1), we ranked the
relative importance of the these features and picked up the first
three features as most informative features in our computational
model. We also noticed numerous cases in our dataset where
a single word appeared in its own cluster. To capture this
phenomenon, we developed a new feature that measures the ratio
between the count of single word cluster to the total number of
cluster and refer to it as single cluster ratio (SCR).

2.3.2. Time-Based Features
Our approach for characterizing the lexicon search strategy is
based on the marginal value theorem (MVT) (Charnov, 1976),
where we hypothesize that healthy individuals optimally switch

to a new cluster leading to the production of more animal names
while those individuals with MCI are less capable of finding
optimum transition points. With a poor switching strategy, a
participant either lingers too long in a cluster or moves too fast
to a new cluster; ultimately producing fewer animal names. Based
on this assumption, we define the following time-based features
to capture the difficulty of retrieving a new word in an AF test: (1)
switching duration (SD), the elapsed time of the transition from
one to another, and (2) intra-cluster retrieval time (ICRT), the
duration between the first two retrieved words in a new semantic
cluster. The latter measures how fast one produces a new word
once switched to a new cluster. Similar to Hills et al. (2012)’s
approach, the central lower-level features required in computing
SD and ICRT are timestamps. Along with the sequence of words,
Figure 1 shows the sequence of timestamps {1.0, 1.5, 2.2, 2.4,
2.9, 3.8, 4.2} representing the onset of each word measured in
seconds. Extracting the timestamps along with the ESA-derived
switches and clusters, one can compute these features from our
example as follows:

SD1,2 = {(tfalcon − tcat), (tshark − telephant) = {0.7, 0.9} (1)

ICRT1,2 = {(tbat − tfalcon), (tdolphin − tshark) = {0.2, 0.4} (2)

Note that the proposed method for measuring ICRT remains
valid if subjects were able to produce at least two animal words
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once switched to a new cluster. Next, we use SD and ICRT
features and craft another feature, optimal switch rate (OSR), that
estimates the success of a switch by measuring the difference
between the switching duration and intra-cluster retrieval time
as follows:

OSR1,2 = {|SD1 − ICRT1|, |SD2 − ICRT2|} = {0.5, 0.6} (3)

where |()| is the absolute value operator. The more successful
a switch, the smaller the OSR. As the number of switches
and clusters may vary across responses, the length of the
SD and ICRT feature vectors vary accordingly. Noting that
our ultimate objective is to utilize these features for learning
classification algorithms, computed time-based features need
to be summarized into a global feature vector of a fixed
dimension for each read response. To unify the dimension of
the global feature vector across all responses, each feature is
summarized in terms of standard statistical aggregates such as
mean, median, variance, minimum and maximum. In practice,
this proposed computational approach will face a few limitations
to be addressed in section 2.3.2.2.

2.3.2.1. Time alignment
Manual extraction of timestamps from a response is a labor-
intensive task and also prone to subjective judgment. To
automate the process, we use the “forced alignment” algorithm
implemented in the Kaldi ASR toolkit (Povey et al., 2011)
to extract time information from a verbal response. Forced
alignment is a sequence matching process in which a spoken
audio segment is time aligned to a given sequence of words. Given
the audio segment of an utterance and its corresponding word-
level transcription, forced alignment automatically generates the
word boundaries (e.g., the timestamps for when a word starts and
ends in an utterance) from which we can compute subsequent
higher-level features such as elapsed time between two successive
words. For further details on “forced alignment,” we refer readers
to McAuliffe et al. (2017).

2.3.2.2. Practical issues
Ideally, a given response would consist of only animal names,
but in reality, the recordings often contain extraneous speech,
including filler and conversational words as well as interruptions
from the examiner. Sometimes a participant will ask how much
time remains for the test, and other times the examiner offers
words of encouragement. In more than half of the recordings,
both the examiner and the participant engaged in a bit of casual
conversational speech, and the duration and frequency of such
interruptions varied across the recordings. Encouragement from
the examiner is usually a few short words (e.g., “good”), while a
response to a time checkmight be a whole sentence (e.g., “you still
have ten seconds left”). Prior to feature extraction, we remove all
the non-animal words from the response. From a computational
point of view, trimming out of these extraneous words results in
a shortened response with altered timestamps that will ultimately
influence the uniformity of time-based features across different
subjects. To compensate for this issue, we first normalize the
timestamps to the length of “shortened” audio and then measure

the SD and ICRT features. In our working example shown in
Figure 1, the original 58-s long recording was “shortened” to
50 s after filtering out non-animal words. Then, the relative
timestamps are used for computing SD and ICRT features.
Figure 1 shows both SD and ICRT features before and after
time normalization.

Another common issue in the AF test is the presentation of
plural forms of animal names (e.g., “pigs” rather than “pig”).
In order to normalize all animal names in transcriptions to
their singular forms, we apply a word stemmer algorithm on
responses to remove morphological affixes from words, leaving
only the word stem. Also note that many animal names follow
irregular pluralization rules (i.e., “hippopotami” and “oxen”).
Additionally, some animal names contain more than one word
(i.e., “great white shark” and “mountain lion”). To tackle this
problem, we built a tool to retrieve the normalized form from
the internet. First, we found the singular form of each noun from
the Merriam-Webster website, then we referenced Wikipedia
to decide whether a multi-word sequence is an animal name.
Conveniently, the Wikipedia template for an article about a
species includes a biological taxonomy table, so upon looking
up a given species, we could confirm it belongs to the kingdom
Animalia to positively identify an animal name.

2.3.3. Machine Learning Algorithms
Figure 2 outlines the flow of data that produces time- and count-
based features from verbal responses to distinguish participants
with MCI from those with intact cognition. Given an audio
recording and a word-level transcription for a verbal response,
we extract both count-based features and time-based features
and augment them into a global feature vector. As noted earlier,
time-based features are derived from the timestamps which
are automatically extracted by the forced-alignment algorithm
described in section 2.3.2.1. Representing a verbal response as a
global feature vector allows for training a classification algorithm,
support vector machine (SVM) (Smola and Schölkopf, 2004)
classifier. A SVM classifier is a discriminativemodel that attempts
to distinguish between two classes of data points separated by
a hyperplane in a high dimensional space. The parameters of
the hyperplane are learned from a set of training examples. We
trained linear and non-linear SVM classifiers employed from
the open-source Scikit-learn toolkit (Pedregosa et al., 2011). All
experimental results, presented in the next sections, are based
on the linear SVM as it outperformed the non-linear SVM. We
also repeated the experiment using a “Chance” classifier which
randomly assigned participants into MCI and CI classes.

Prior to training a SVM model, we scale the range of
computed features into a constrained range using Scikit-learn’s
RobustScaler. This is a necessary step in our computational
framework as we noticed that the range of derived features greatly
differ from each other. For example, the number of correct animal
words ranges from 4 to 30 within the responses while the mean
count of switches ranges from 2 to 9. Features with large scale
will dramatically impact what the machine learning algorithm
would learn and erase most benefit that features with smaller
scale offers. RobustScaler centers and scales the data according to
the following equation, operating separately on each dimension
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FIGURE 2 | Block diagram of computational framework including to distinguish participants with MCI from those with intact cognition based on Audio recording and

Transcription of their responses to an animal fluency test. The first block of this plot, Feature Representation (shown by the black box), represents the characteristics

of the response using Time-based and Count-based features. The second block, Machine Learning (shown by the green box), first picks up the more informative

features through the Feature Selection and using those, predicts the participant’s cognition status (MCI or intact).

of the global feature vector:

f (xi) =
xi − Q1(x)

Q3(x)− Q1(x)
(4)

where xi denotes to the ith feature; Q1(x) and Q3(x) are the
feature’s 25th and 75th quantiles, respectively.

2.3.3.1. Feature selection
Employing a large number of features to train a statistical model,
such as an SVM classifier, may lead to overfitting and result
in lack of generalizability. It has been previously shown that a
strategically reduced subset of features can significantly improve
themodel’s predictive power (Hastie et al., 2005). From the Scikit-
learn toolkit (Pedregosa et al., 2011), we chose a feature selection
technique known as recursive feature elimination with cross-
validation (RFECV), which ranks the importance of features
based on a given scoring function and returns a subset of features.
It constructs a smaller subset of features, and calculates the model
performance given each remaining subset. The elimination
process continues until all features are exhausted. Finally, the
feature set that maximizes the model performance across all
feature sets is selected as the best performing feature set.

2.3.4. Performance Criteria
To evaluate the performance of the proposed classifier, we
adopted the following evaluation metrics: (1) Sensitivity - the
portion of correctly identified MCI participants (true positives).
Sensitivity assesses the capability of the model to distinguish
MCI from cognitively intact participants; (2) Specificity - the
portion of correctly identified cognitively intact participants
(true negative). Specificity measures how well the model avoids

false positives; and (3) Area under the curve of receiver
operating characteristics (AUC ROC). The most common
method for evaluating the performance of a binary classifier is
the ROC (Hanley and McNeil, 1982), which plots the sensitivity
(true positive rate) of the classifier vs. 1-specificity (false positive
rate) of the classifier as the classification threshold varies. We use
a classification threshold in a grid search schema to cover the
most positive threshold (everything true) to the most negative
threshold (everything false).

2.3.5. Cross-Validation on the Imbalanced Dataset
To demonstrate whether our statistical analyses and experimental
results were independent of our data sets, we used cross-
validation (CV) techniques in which the train and test sets are
rotated over the entire data set. In an imbalanced dataset, a
machine learning algorithm receives more information from
the class which has more samples and consequently may not
learn properly from the smaller-sized class. To overcome this
problem in our imbalanced dataset, we use a special leave-one-
pair-out (LOPO) cross validation scheme. LOPO cross validation
first slices the dataset into multiple pairs, each includes one CI
instance and one MCI instance. At every iteration, it selects
one pair as testing set and from the rest, creates a balanced
training set by randomly selecting instances from the class with
larger samples. In our example with 28 MCI and 42 CI samples,
leaving one pair for the test, LOPO randomly selects 27 CI out
of remaining 41 CI samples at each training iteration. To reduce
the effect of randomization in our final results, we shuffle the
data and repeat the LOPO cross validation 500 times. Lastly, we
average across 500 final scores and report that as the performance
of our model.
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3. RESULTS

3.1. Statistical Analysis
To explore the effectiveness of our proposed features in
differentiating subjects withMCI fromCI controls, we conducted
a statistical analysis on extracted features using Kolmogorov-
Smirnov test. As shown in Table 2, both mean OSR and median
OSR features significantly distinguish the two groups with p-
values of p < 0.04, p < 0.3, respectively. Probability distributions
of the extracted features, depicted in Figure 3, show that the
average of both mean OSR and median OSR features across CI
controls is less than the average of those with MCI. This indicates
that CI controls have less difficulty retrieving a new word upon
a switch to a new cluster as compared to those with MCI. The
statistical analysis also shows the discriminative power of the
raw AF score for differentiating these two groups. The last two
features picked up by our feature selection method, ANWC and
the NS, were not able to detect a significant difference between
MCI and CI groups.

TABLE 2 | Kolmogorov–Smirnov test results of features that use ESA for semantic

representation.

Feature name Statistic p-value

AF score 0.33 0.04

ANWC 0.25 0.21

NS 0.21 0.39

SCR 0.13 0.91

MeanOSR 0.35 0.03

MedianOSR 0.36 0.02

FIGURE 3 | Probability distribution of features (y-axis) selected by the feature

selection algorithm. The dynamic range of features have been normalized

according to the RobustScaler approach. The dotted line from left to right are

25% quantile, 50% quantile, and 75% quantile.

3.2. Classification Results
We compared the performance of our trained SVM classifiers
for distinguishing between participants with MCI and the CI
controls. We independently extracted time and count based
features from switch and cluster components identified by both
Troyer’s table-based and Troyer et al. (1997) and ESA semantic
similarity based approaches to explore the effectiveness of these
methods on extracted features. Not all the extracted features
are expected to be useful, and in fact many are likely to
be noisy. We applied the RFECV feature selection method,
described at section 2.3.3.1, to extracted features and evaluated
several models using cross-validation to pick the one with
optimal performance. Ultimately, three count-based and three
time-based features, presented in Table 2, were picked for
the classification models. To understand the contribution of
the different features, we introduced them incrementally and
measured their performance across the LOPO cross-validations
in terms of Sensitivity, Specificity, and AUC ROC reported in
Table 3. For each SVM model in this table, we first optimized its
hyper-parameters including the margin of the decision function,
shown as “C” in the table, and of regularization form (either
L1 or L2) that is added to the SVM cost function as an
additive penalty term. The first SVM model was estimated
with count-based features and subsequently, time-based features
were introduced. To explore the effectiveness of features, we
repeated the experiment and compared the results of our final
models with three baseline models: a “Chance” classifier which
randomly assigned participants into MCI and intact classes, and
two SVM classifiers trained on demographic features of subjects
(age, gender, and years of education and referred to as Dem.)
and conventional AF score. As described earlier (section 2.1),
subjects in both groups are demographically matched, and thus
the performance of the SVM trained on demographic features is
close to the “Chance” model. As shown by the results, all SVM
classifiers outperform all three baseline models in terms of ROC
AUC. Results also indicate that addition of time-based features—
whether extracted based on ESA or Troyer methods—further
improves the performance.

3.3. Effectiveness of Correct Identification
of Switch and Cluster Components
Unlike Troyer’s approach, in which a structured table of animal
names identifies the switch and cluster components, the ESA-
based approach uses a predefined threshold for deciding whether
two consecutive words belong to the same semantic cluster. For
example, in Figure 1, we set the threshold to be 0.05 for this
subject and segment these seven animal names into three clusters
based on the threshold. If we change the threshold and set it
to be 0.06, cluster2 will be split into three clusters such that
each cluster only contains one term. Since the discriminative
power of count-based and time-based features highly depends
on the identification of switch and cluster components in the
response, one question is how the threshold setting influences the
classification result. In order to gauge the influence of this factor,
we incrementally increased the threshold from 50 to 100% with
a step size of 5% and created 11 feature sets. Using these distinct
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TABLE 3 | Classification results using selected features (mean over 500 leave-pair-out spatial cross-validation repeats).

Method Features ROC AUC (%) Sensitivity (%) Specificity (%) SVM hyperparameter

Troyer-Based
Count 70.25 62.71 66.48 C = 0.1, Penalty = L2

Count + Time. 77.76 76.02 67.11 C = 10, Penalty = L1

ESA-Based
Count 73.81 75.46 60.46 C = 10, Penalty = L1

Count + Time 77.09 70.27 69.68 C = 10, Penalty = L1

Dem. 59.30 49.25 59.64 C = 10, Penalty = L2

AF score 65.63 67.30 63.04 C = 1 ∗ 10−10, Penalty = L2

(Chance Model) 50.00 49.56 49.99 C = 1, Penalty = L2

FIGURE 4 | The x-axis is the different threshold setting (xx%) of mean cosine

similarity of an individual’s answer. The y-axis is the ROC AUC score.

feature sets extracted from all subjects except a pair of randomly
selected subject purposely left for the test, we trained 11 SVM
models and measured the AUC ROC of the classification task on
the pairs of test subjects. Figure 4 presents the average AUC ROC
across 500 iterations of LOPO cross-validation at each threshold
value. As shown in this figure, the classification model reaches
to the highest AUC ROC with a threshold of 75%. This plot
also verifies the importance of switch and cluster components,
identified as a function of the threshold value, in the performance
of the classification model.

4. DISCUSSION

We have shown that a widely adopted form of a verbal fluency
test (animal category fluency) used in cognitive assessment
batteries distinguished MCI from demographically matched CI
control participants (Cooper et al., 2004; Radanovic et al., 2009).
Using count-based fluency scoring resulted in similar diagnostic
category discrimination as reported by others using conventional
counting (Oh et al., 2019). Others have used ASR techniques
to examine the VF test. In Pakhomov et al. (2015), the same
Kaldi ASR toolkit (Povey et al., 2011) and in König et al. (2018),
Google’s Automatic Speech Recognition (ASR) service were used
for automatic transcription of responses. These studies either

attempt to predict the raw VF score based on automatically
generated response (Pakhomov et al., 2015) or only investigate
count-based measures beside the raw VF score for differentiating
MCI from cognitively intact participants (König et al., 2018).
In contrast, the crux of work that differentiates it from these
studies is how we employ the ASR system not only for automatic
transcription but to perform the “forced alignment” algorithm
for quantifying the temporal properties of verbal responses
leading to the extraction of time-based measures. As showed by
our experimental results, our time-based measures significantly
improved the accuracy of our classification model.

In considering the goal of automating the administration
and scoring of this test, we developed a method to go beyond
conventional scoring that relies on the number of correctly
produced category items. This unsupervised approach ultimately
will require an algorithm that can be objectively applied
employing machine learning to discern not only the simple
counts, but other aspects that may add to the discriminatory
power of the VF test. We experimentally showed that the
conventional test score (i.e., the number of correctly recalled
animal names within a minute) cannot capture other clinically
useful information from the test and once it is solely used
for training a SVM classifier, the resulting model achieved a
poor performance. To mitigate this shortcoming, we proposed
a computational approach for automatically analyzing the verbal
responses via a set of time-based features that characterize the
semantic search strategy during the word retrieval process. We
statistically showed that these proposed features can differentiate
individuals with MCI from CI controls. Additionally, they
positively contributed toward the performance of a SVM
classification model once they were added to standard count-
based features. In spite of promising results achieved through
the proposed computational model, considerable work remains
to improve accuracy of the classification algorithms. Our analysis
relied on animal names that were included in the Troyer et al.
(1997)’ table. However, there are always animal names that
are unknown to this table and current analyses treat them
as non-animal names and that impacts our assessment. A
valuable avenue for future research would be to explore the
feasibility of natural language processing (NLP) techniques to
address this limitation usingmore sophisticatedmethods of word
representation that is not limited to a word table. Addressing
these limitations in future work is expected to result in
viable speech-based outcome measures, derived from the verbal
fluency test, for individuals with a range of neurodevelopmental
disorders including MCI and Alzheimer’s disease. The proposed
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methodology can increase the capacity for screening/detection
of MCI by employing measures that cannot be easily computed
manually in real time.
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