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A diagnostic judgment of a teacher can be seen as an inference from manifest
observable evidence on a student’s behavior to his or her latent traits. This can
be described by a Bayesian model of inference: The teacher starts from a set
of assumptions on the student (hypotheses), with subjective probabilities for each
hypothesis (priors). Subsequently, he or she uses observed evidence (students’
responses to tasks) and knowledge on conditional probabilities of this evidence
(likelihoods) to revise these assumptions. Many systematic deviations from this model
(biases, e.g., base-rate neglect, inverse fallacy) are reported in the literature on Bayesian
reasoning. In a teacher’s situation, the information (hypotheses, priors, likelihoods)
is usually not explicitly represented numerically (as in most research on Bayesian
reasoning) but only by qualitative estimations in the mind of the teacher. In our
study, we ask to which extent individuals (approximately) apply a rational Bayesian
strategy or resort to other biased strategies of processing information for their
diagnostic judgments. We explicitly pose this question with respect to nonnumerical
settings. To investigate this question, we developed a scenario that visually displays
all relevant information (hypotheses, priors, likelihoods) in a graphically displayed
hypothesis space (called “hypothegon”)–without recurring to numerical representations
or mathematical procedures. Forty-two preservice teachers were asked to judge
the plausibility of different misconceptions of six students based on their responses
to decimal comparison tasks (e.g., 3.39 > 3.4). Applying a Bayesian classification
procedure, we identified three updating strategies: a Bayesian update strategy (BUS,
processing all probabilities), a combined evidence strategy (CES, ignoring the prior
probabilities but including all likelihoods), and a single evidence strategy (SES, only
using the likelihood of the most probable hypothesis). In study 1, an instruction on
the relevance of using all probabilities (priors and likelihoods) only weakly increased
the processing of more information. In study 2, we found strong evidence that a
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visual explication of the prior–likelihood interaction led to an increase in processing the
interaction of all relevant information. These results show that the phenomena found
in general research on Bayesian reasoning in numerical settings extend to diagnostic
judgments in nonnumerical settings.

Keywords: Bayesian reasoning strategies, information processing, judgment under uncertainty, teachers’
diagnostic judgment, visualization of Bayesian update

INTRODUCTION

Judgments on other people’s knowledge, even when based on
accurate knowledge and sound evidence, are uncertain and
fallible (Nickerson, 1999). For example, when teachers assess
students’ abilities, their diagnostic judgments are based on
evidence available in a concrete situation (e.g., the student’s
solution on a task) and on their prior knowledge on the
student’s abilities. Generally, teachers’ judgments are framed by
their theoretical knowledge (e.g., pedagogical content knowledge
about typical misconceptions) (Schrader, 2009; Herppich et al.,
2018; Loibl et al., 2020).

Often, such diagnostic judgments are investigated with respect
to their accuracy and their dependence on personal and
situational characteristics (for a meta-analysis, see Südkamp
et al., 2012). Less often to be found is research on the cognitive
processes underlying the diagnostic judgments of teachers (e.g.,
Glock and Krolak-Schwerdt, 2014; Pit-ten Cate et al., 2016).
For many years, diagnostic judgments of clinicians have been
investigated with a focus on cognition, e.g., within the heuristics-
and-bias paradigm (cf. Round, 2001; Gill et al., 2005; Croskerry,
2009) and with respect to Bayesian reasoning (Edwards, 1968;
Gigerenzer and Hoffrage, 1995; Griffiths et al., 2008).

A diagnostic judgment of a teacher can be seen as an inference
from manifest observable evidence on a student’s behavior to
his or her thinking or latent traits. Usually, such an inference is
inherently uncertain. Hence, the result of a diagnostic judgment
is rather a set of hypotheses about the observed student with
varying plausibility than an unequivocal classification of the
student. For example, a student may give a wrong answer when
asked to compare two decimals – e.g., stating that 4.8 < 4.63 –
because he or she treats the fractional parts of decimal numbers
as natural numbers (8 < 63). Many students do so consistently
(Moloney and Stacey, 1997) with a high probability. However, an
uncertainty remains, since even students with this misconception
may occasionally solve a task correctly. In addition, students
with other misconceptions may give the same wrong answer
(e.g., by ignoring the decimal point: 48 < 463), and even those
students who do understand decimals well may occasionally (i.e.,
with a low probability) give a wrong answer. Therefore, the
inference from the observed behavior to an underlying cognition
is uncertain, even though the students’ cognitions are well known,
as is the case for comparing decimals.

From the perspective of the accuracy of teachers’ judgments,
these uncertainties can be interpreted as reduced diagnosticity
either due to imperfect specificity or sensitivity of the tasks or
due to inadequate knowledge or reasoning of the teachers. As a
consequence, one would strive to optimize the tasks or to train the
teachers. However, from the perspective of the cognitive processes

underlying the judgment, one may probe deeper into the teachers’
thinking and ask how teachers incorporate such uncertainties in
their judgments.

A prominent approach that describes judgments under
conditions of uncertainty is the Bayesian model of inference
(Edwards, 1968; Gigerenzer and Hoffrage, 1995; Cosmides and
Tooby, 1996; Griffiths et al., 2008): An initial uncertainty is
modeled as a set of assumptions (hypotheses) about a situation,
with subjective probabilities for each hypothesis (often called
“priors” or “base rates”). Subsequently, observed data (i.e.,
“evidence”) is used to update these probability assumptions –
provided one knows the plausibility of the evidence, expressed
by its conditional probabilities (also called “likelihoods”).

The ideal probabilistic model for this “updating process” is
given by formal Bayesian reasoning. The Bayes’ formula can
be used to describe, by means of probability calculus, how the
probabilities of hypotheses change when evidence is produced:

P (Hi|E) = P (E|Hi) × P (Hi) ×
1

6jP
(
E|Hj

)
P
(
Hj
)

posterior
probability of
hypothesis Hi,
given data E

likelihood of
data E under
hypothesis Hi

prior
probability of
hypothesis Hi

Normalization
to have sum of
probabilities = 1

Many researchers argue that people are capable of intuitively
applying the Bayesian update strategy, represented numerically
by this formula, when they make judgments under conditions
of uncertainty (e.g., Martins, 2006; Zhu and Gigerenzer, 2006;
Girotto and Gonzales, 2008). However, there is also much
evidence for systematic deviation from this model. Some of
the most often reported biases relate to disregarding the prior
distribution (base-rate neglect, Kahneman and Tversky, 1996,
p. 584) by only considering the likelihoods proportionally:
P(Hi|E) ∝ P(E|Hi) – in an extreme form even mistaking one
conditional probability for the other: P(Hi|E) = P(E|Hi) (inverse
fallacy, Villejoubert and Mandel, 2002). Another biased strategy
would be to assume wrong base rates for the hypotheses P(Hi),
for example an anchoring bias caused by an expert blind spot, i.e.,
experts’ tend to overestimate the knowledge of novices (Nathan
and Koedinger, 2000). We use the term Bayesian (update)
strategy only for the (approximative) application of the Bayes’
rule above. However, it might be sensible to apply a broader
understanding of Bayesian reasoning (Baratgin and Politzer,
2010; Mandel, 2014; see section “Discussion”).

In the context of diagnostic judgments of teachers, the
diagnostic situation is structurally analogous to the judgment
situations indicated in the literature above, which does not refer
to teachers: A teacher’s prior assumptions (hypotheses) on a
students’ latent trait (e.g., a decimal-comparison misconception)
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relies on his or her estimation of the typical prevalence (base
rates) of these misconceptions. A student’s behavior or response
to a task (manifest data, evidence) can be used to revise these
assumptions (by updating the prior hypotheses).

The structure of this updating process in the context of
teachers’ diagnostic judgment on student knowledge is displayed
in Figure 1: In order to update the probabilities of the
hypotheses [from P(Hi) to P(Hi|E)], the teacher processes
his or her diagnostic knowledge (i.e., prior probabilities and
conditional probabilities) as well as the information provided
in the diagnostic situation (i.e., the evidence). Uncertainty
plays a major role in this updating process: Students do
not respond consistently (cf. conditional probabilities), and
different student knowledge may lead to same responses
(ambiguity/limited diagnosticity).

However, a teacher’s situation also differs from the situation
typically encountered in research on Bayesian reasoning, since
these pieces of knowledge and information are usually not
explicitly represented by numbers but only by qualitative and
subjective estimations in the mind of the teacher. Any assumed
process of Bayesian reasoning therefore also relies on processing
such information in a qualitative, nonnumerical way.

Against this background, we ask to which extent individuals,
who are asked for a diagnostic judgment in a situation as
described here, are able to (approximately) apply a rational
Bayesian strategy or resort to other “biased” strategies of
processing information for their diagnostic judgments. We
explicitly pose this question with respect to nonnumerical
settings, bearing in mind that Bayesian and other types of
reasoning are already researched and reported extensively for
numerical settings.

To systematically investigate this question, we develop a rich
scenario of diagnostic judgment (three possible hypotheses,
diagnostic tasks with limited reliability, and diagnosticity) that
is displayed in an optimized way for accessing all relevant
information (prior probabilities, conditional probabilities,
updating procedure) in a qualitative way, without recurring to
numerical representations or mathematical procedures (as, e.g.,
systematically investigated in Hoffrage et al., 2015).

THEORETICAL BACKGROUND

Teachers’ Diagnostic Judgments Under
Uncertainty – Through the Lens of
Bayesian Reasoning
Identifying learners’ misconceptions is one key task of teachers
in order to address these misconceptions adequately in teaching
(Weinert et al., 1990). However, such diagnostic judgments are far
from straightforward and – like many types of human judgment –
characterized by uncertainty (Tversky and Kahneman, 1974;
Kozyreva and Hertwig, 2019; Mandel et al., 2019). As described
earlier, students with different misconceptions can show the same
behavior (i.e., give an identical answer to a task) – either because
the task cannot distinguish between several misconceptions
or because the students do not respond consistently. Both
phenomena are sources of uncertainty for teachers’ diagnostic

judgments. In order to judge in a rational way, teachers have to
apply effective strategies to deal with the diverse uncertainties.
When doing so, teachers usually do not resort to numerical
or mathematical procedures of probability calculus but take
into account their knowledge (gained by experience or based
on literature) on the assumed relative probabilities of the
misconceptions and the expected (in)consistency of students’
answers in a qualitative, nonnumerical manner. In other words,
they may engage in Bayesian reasoning without applying the
explicit Bayesian formula (cf. Martins, 2006). Although the
literature on Bayesian reasoning in many different contexts
abounds, all studies rely on numerical representation and
calculation of some sort, and no research relates to the situation
of teachers’ diagnostic judgments as depicted in Figure 1. Still,
the literature on Bayesian reasoning provides many insights into
various strategies and biases in Bayesian reasoning and viable
support structures to influence these strategies systematically, as
outlined in the following.

There is evidence that humans are capable of utilizing
Bayesian update strategies when making judgments under
uncertainty (Martins, 2006; Girotto and Gonzales, 2008). Even
children are able to do so, at least if the information is provided in
natural frequencies instead of probabilities (Zhu and Gigerenzer,
2006; Pighin et al., 2017). However, as indicated above, children
and adults also often fail to apply the Bayesian update strategy
(e.g., Gigerenzer and Hoffrage, 1995; Weber et al., 2018). Instead,
they consistently process only a part of the relevant information,
resulting in reasoning strategies that deviate from optimal
Bayesian reasoning (e.g., Gigerenzer and Hoffrage, 1995; Zhu and
Gigerenzer, 2006; Cohen and Staub, 2015).

There is some discussion whether it is appropriate to consider
these strategies defective (using the term “biased”) or whether
they may be effective in certain situations (ecological rationality:
Simon, 1955; Gigerenzer and Hoffrage, 1995). However, this
discussion is not relevant for our investigation, since we do not
address the questions of effectiveness (i.e., ecological validity) of
the strategies under investigation.

Against this background, two questions and the respective
lines of research (although not conducted specifically for the
case of teachers’ diagnostic judgments) are of relevance for our
research interest:

(1) Which (biased) strategies of processing (nonnumerical)
information do individuals apply, when not following a
Bayesian update strategy?

(2) How can individuals be supported in (approximatively)
applying an Bayesian update strategy?

Biased Strategies of Processing Information for
Updating Judgments
One of the most familiar and often studied judgment situations
refers to a medical test of an illness with given prevalence [i.e.,
base rate P(H)], a given sensitivity [i.e., positive-when-true rate,
likelihood P(E|H)] and a given specificity [i.e., negative-when-
false rate P(¬E|¬H)] (e.g., Gigerenzer and Hoffrage, 1995). In
such a situation, the probability that a person, selected at random,
who receives a positive test result actually has the disease P(H|E)
can be calculated according to the Bayes rule. The posterior
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FIGURE 1 | The structure of teacher’s diagnostic judgment based on knowledge, evidence, and information processing and the role of uncertainty.

probability P(H|E) is the rational choice for the judgment on
the patient’s state given the evidence of the test. Since the base
rate is low in most medical diagnostic test situations, the Bayes
rule leads to a much lower posterior probability estimations than
most individuals typically estimate (ibid.), even when strongly
supported (Weber et al., 2018). Indeed, research has shown that
humans often do not apply the Bayes rule, resulting in biased
judgments, where the most often reported biases in judgment
updating relate to disregarding the prior distribution (base-rate
neglect, Kahneman and Tversky, 1996, S. 584).

In a systematic analysis on the types of update strategies
in the context of Bayes reasoning tasks (i.e., tasks with a
similar structure to the prototype described above), Cohen and
Staub (2015) showed that most participants’ judgment strategies
amount to not making use of all sources of information (prior
probabilities of hypotheses and likelihoods of evidence under
each hypothesis), leading to biased update strategies. They further
provided evidence that most participants seem to estimate the
posterior probability based on only one of the multiple provided
probabilities or by computing a weighted sum of several, but not
all probabilities. In their studies, the most frequently used pieces
of information were the likelihood of the evidence (i.e., positive-
when-true rate) and the likelihoods of the evidence under the
other hypotheses (i.e., positive-when-false rate).

The findings of Cohen and Staub (2015) rely on an analysis
of intraindividual consistency in strategy use. Thereby, they
substantiate the earlier classification of interindividual differences
in strategies by Zhu and Gigerenzer (2006): In their studies with
fourth to sixth graders and adults, they also found strategies
focusing on one probability. Subjects either considered only the
priors P(H) (called conservatism, Edwards, 1968; or base rate
only, Gigerenzer and Hoffrage, 1995) or only the likelihood
of the evidence at hand P(E|H) (called representative thinking

or Fisherian, Gigerenzer and Hoffrage, 1995; inverse fallacy,
Villejoubert and Mandel, 2002). In their studies, no one used
the joint occurrence of the evidence (P(E|H)· P(H) = P(E ∧ H)),
a strategy found by Gigerenzer and Hoffrage (1995). Subjects
who actually computed a weighted sum focused only on the
evidence [e.g., P(E|H)/6P(E|Hi)], called evidence only (Zhu and
Gigerenzer, 2006). These subjects took the likelihoods of the
evidence under all hypotheses into account (i.e., true and false
positive rate) but disregarded the base rate. Thus, this strategy
can also be considered a type of base-rate neglect (Tversky and
Kahneman, 1974; Bar-Hillel, 1983). Gigerenzer and Hoffrage
(1995) found another similar strategy (likelihood subtraction), in
which subjects take into account more than a single likelihood in
their computation in a subtractive fashion and ignore the base
rate [P(E|H)− P(¬E|¬H)]. Zhu and Gigerenzer (2006) found
an additional strategy, not reported elsewhere, which they called
“Pre-Bayes.” It corresponds to taking the correct denominator
but focusing on the positive-when-true rate as numerator. While
the children in their study frequently used this strategy, it may
have been triggered by the presentation of the Bayes problems
with natural frequencies, which makes the positive-when-true
rate salient. Table 1 provides an overview of the most common
strategies. From the point of view of information processing, they
can be categorized as prior-only strategies (POS), single evidence
strategies (SES), combined evidence strategies (CES), and the
Bayesian update strategy (BUS).

The multitude of erroneous strategies appears to suggest
that humans do not succeed well in situations of Bayesian
reasoning, even when the situation is presented in an accessible
way, using natural frequencies and visual representations
(Weber et al., 2018). Nevertheless, Martins (2006) argued that
humans do take uncertainties into account by revising their
judgments based on new information in a way that resembles
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TABLE 1 | Overview of most common update strategies.

Processed information

Strategy types, variants/denotations Likelihood/positive-
when-true rate

Likelihoods of alternatives/
positive-when-positive rate

Prior probabilities/
base rate

Prior-only strategy (POS) Conservatism (Edwards, 1968; Zhu and
Gigerenzer, 2006); base-rate only
(Gigerenzer and Hoffrage, 1995)

X

Single evidence strategies
(SES)

Representative thinking (Zhu and
Gigerenzer, 2006); Fisherian (Gigerenzer
and Hoffrage, 1995); inverse fallacy
(Villejoubert and Mandel, 2002)

X

Combined evidence
strategies (CES)

Evidence only (Zhu and Gigerenzer, 2006);
likelihood subtraction (Gigerenzer and
Hoffrage, 1995)

X X

Bayesian update strategy
(BUS)

Bayesian update (correct application of the
Bayes’ rule)

X X X

the rational Bayesian strategy. Similarly, Nickerson (1999) stated
that the refinement of one’s knowledge on people relies on an
ongoing adjustment process and is based on evidence that one
collects. The facts that Bayesian reasoning has been identified at
least for some situations, groups, and cases by prior research (e.g.,
Gigerenzer and Hoffrage, 1995; Zhu and Gigerenzer, 2006; Cohen
and Staub, 2015) and that any form of reduction of numerical
calculation and information saliency of presentation appears
to be effective (see section “Supporting the Application of the
Bayesian Update Strategy”) support the assumption that humans
are, in principle, capable of intuitively applying the essence of the
Bayes’ rule, depending on the situational conditions.

In a nutshell, the strategies differ in the amount and
type of processed information. While research has shown
individual differences with regard to the use of the available
information (Cohen and Staub, 2015), the perception and
processing of information also depend on the representation of
the situation and the amount of support, which we will analyze in
the next section.

Supporting the Application of the Bayesian Update
Strategy
How individuals process the relevant information for Bayesian
reasoning highly depends on the situation (cf. McDowell and
Jacobs, 2017). During the last decades, research has investigated
how to represent the information in a way that supports
individuals in applying the Bayes update strategy. The common
idea is to assist the individuals in gathering the relevant
information and constructing an adequate structural mental
model of the situation. The most prominent representation
strategies that have been shown to be effective are (a) using
natural frequencies instead of probabilities (cf. meta-analysis by
McDowell and Jacobs, 2017) and (b) visualizations that increase
the salience of the structure (e.g., Khan et al., 2015; Böcherer-
Linder and Eichler, 2017).

Multiple studies have shown that people are better in solving
Bayesian tasks that are represented with natural frequencies (also
called natural sampling) than tasks that present the information
in the form of probabilities (e.g., Zhu and Gigerenzer, 2006; Hill

and Brase, 2012; for a meta-analysis, see McDowell and Jacobs,
2017). The Bayesian update strategy is computationally simpler
if probabilities are represented as joint frequencies because the
base rate is already contained in the joint frequencies, and,
therefore, there is no need to additionally include the base rate
in the calculation. However, this advantage is only relevant in
settings with numerical representations and calculation demands.
In addition to the reduced computational load, it has been argued
that, in Bayesian tasks with natural frequencies, the information
is given in the same chronological order in which information is
naturally acquired (ecological rationality framework, Gigerenzer
and Hoffrage, 1995). Moreover, the way the information is
provided highlights the structure of the task (i.e., the nested-
set relations, Sloman et al., 2003) and thereby facilitates the
construction of an adequate situation model.

Another way to increase the salience of the structure of
the situation (i.e., nested-set relation) is to provide adequate
visualizations (for an overview, see Khan et al., 2015), such
as tree diagrams (Yamagishi, 2003; Weber et al., 2018) or unit
squares (Böcherer-Linder and Eichler, 2017; Pfannkuch and
Budgett, 2017). Notably, visualizations increase the performance
not only for tasks presented with probabilities but also for tasks
presented with natural frequencies (McDowell and Jacobs, 2017),
indicating an added value in additionally presenting the nested-
set structure with visualizations. When comparing different
visualizations, Böcherer-Linder and Eichler (2017) argue that the
tree diagram reveals the nested-set relation only in a numerical
way, whereas the unit square adds a geometrical, qualitative
representation. This assumption receives support by the finding
that the unit square supported the correct application of the
Bayes’ rule more than the tree diagram. One can assume that
such nonnumerical representations, which render saliency to
relevant information (to overall structure and to the relative
sizes) support Bayesian reasoning. However, so far, visualizations
have only been provided in addition to the numerical values,
not in isolation.

Another potential way of supporting the use of the available
information would be to highlight the relevance of the
information. In a different area of teachers’ diagnostic skills
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(noticing students’ beliefs), Zeeb et al. (2019) have shown
that highlighting the relevance of integrating different types
of knowledge (and giving an example) significantly improved
the integrated used of different types of knowledge. It seems
reasonable that such an instruction on the relevance of
integration could also be beneficial in the context of judgment
under uncertainty by fostering the use and integration of all
available information.

Modeling Bayesian Reasoning in Nonnumerical
Settings
In our study, the focus on teachers’ diagnostic judgments is
accompanied by two central premises for the theoretical framing
and the ensuing investigations.

As first premise, we recognize that the literature on Bayesian
reasoning focuses – by always providing numerical information –
on applying the Bayes rule by (more or less extensive) calculation.
While the numerical information is often accompanied with
graphical representation to visualize the structure of the situation
(e.g., Böcherer-Linder and Eichler, 2017), no study solely relied
on qualitative, nonnumerical information. However, in the
context of teachers who update their judgments regarding their
students’ misconceptions based on the students’ solution, the
pieces of information are rather not represented by numbers
but only by qualitative estimations, and thus, the process of
Bayesian reasoning also relies on processing such information in
a qualitative and approximative way.

As a second premise, we note that research explains the fact
that humans often fail to apply the Bayesian update strategy
appropriately on the basis that they often do not use (perceive
and process) all relevant information and instead apply different
biased strategies. While such strategies have been found in the
context of numerical Bayesian reasoning, it seems reasonable
to assume that similar strategies also appear in processing
the available qualitative (i.e., nonnumerical) information in the
context of judgments under uncertainty. More precisely, the
following strategies (known from the literature on numerical
Bayesian reasoning) can also be expected in nonnumerical
settings, considered here:

(a) the rational (i.e., mathematically correct) BUS, that is,
processing the conditional probabilities of a student’s
solutions under all plausible hypotheses (likelihoods of
evidence) and the prior probabilities of these hypotheses,

(b) a CES (cf. evidence only: Zhu and Gigerenzer, 2006;
Likelihood subtraction: Gigerenzer and Hoffrage, 1995),
that is, ignoring the prior probabilities, but combining the
data likelihoods regarding all hypotheses (by considering
a normalized, relative size),

(c) a SES (cf. representative thinking: Zhu and Gigerenzer,
2006; Fisherian: Gigerenzer and Hoffrage, 1995;
inverse fallacy: Villejoubert and Mandel, 2002), that
is, only considering the data likelihood regarding
the most probable hypothesis (i.e., ignoring both the
data likelihoods regarding the alternative (less likely)
hypotheses and the prior probabilities).

However, a POS (cf. conservatism: Edwards, 1968; Zhu and
Gigerenzer, 2006; base rate only: Gigerenzer and Hoffrage, 1995),
that is, not updating the judgment at all, seems less likely as
teachers generally focus on and react to their students’ responses
and, thereby, naturally process the evidence.

Since we are interested in the use of information rather
than the mere perception, we aim at constructing a situation
in which all information necessary for the individual to
generate a judgment is available and maximally salient. We
then investigate whether individuals under these circumstances
actually perform judgments that resemble Bayesian reasoning.
To specify a scenario for our investigation, we first describe
the types of hypotheses and evidence on students that we
restrict our investigation to (see section “Decimal Strategies
and their Diagnostics”) and then specify the environment
(diagnostic situation) which frames the judgments processes of
the participants (see section “A Computer-Based Setting for
Nonnumerical Diagnostic Strategies”).

Decimal Strategies and Their
Diagnostics
In order to investigate the expected updating strategies described
above in a single coherent framework of teachers’ diagnostic
strategies, we use the case of diagnostic judgment on students’
decimal comparison misconceptions, since in this area, a theory
on students’ (mis)conceptions is empirically well founded (e.g.,
Moloney and Stacey, 1997).

Although these misconceptions are sometimes called
strategies, in the following, we prefer using the term
misconceptions to reduce confusion with the strategies applied
by teachers during the diagnostic judgment process.

The three most prevalent decimal-comparing misconceptions
are shown in Table 2. The table also presents examples
for the most frequent types of diagnostic tasks to detect
the misconceptions.

Studies on the prevalence of these misconceptions often
investigate students from different age groups, countries, and
school types (Sackur-Grisvard and Léonard, 1985; Nesher and
Peled, 1986; Padberg, 1989; Resnick et al., 1989; Moloney and
Stacey, 1997; Steinle, 2004; Heckmann, 2006). They reveal that
there is a considerable variation depending on the stage of
curriculum. For example, the whole-number misconception is
dominant in younger children. The shorter-is-larger-conception
typically arises after the introduction of fractions and then
decreases with each grade. In Germany, at the start of grade 5
(before the introduction of fractions), a relative frequency of the
misconceptions WN/ID/SL of 60%:30%:10% (Heckmann, 2006)
is a plausible assumption for a distribution of misconceptions and
will be used in our study.

A Computer-Based Setting for
Nonnumerical Diagnostic Strategies
In section “Teachers’ Diagnostic Judgments Under Uncertainty –
Through the Lens of Bayesian Reasoning,” we obtained an
overview on Bayesian judgment in order to generate plausible
assumptions on teachers’ information processing strategies
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TABLE 2 | Common misconceptions when comparing decimal fractions (cf. Moloney and Stacey, 1997).

Decimal comparing misconceptions Description Diagnostic task and response

Whole-number misconception (WN) Students interpret the decimal point as a separator
of two numbers and consider the sizes separately

“4.125 > 4.7 because 125 > 7”

Ignore-decimal-point misconception (ID) Students ignore the decimal point and proceed as if
they compared natural numbers

“2.45 < 1.328 because 245 < 1328”

Shorter-is-larger misconception (SL) Some students consistently choose the number
with fewer decimal places as the larger

“2.3 > 2.67 because tenths are larger than hundredths” or
“because a third is larger than 1/67”

during diagnostic judgments. In section “Decimal Strategies
and Their Diagnostics,” we analyzed a content area (comparing
decimals) in order to define a research-based knowledge base on
students’ misconceptions, diagnostic tasks, and the uncertainties
connected to this topic, initially independently from the teacher
using this knowledge.

In order to investigate the genesis of diagnostic judgments (a)
under the condition of uncertainty and (b) in a nonnumerical
setting, we use this theoretical basis to follow the research
strategy of the DiaCoM framework (Loibl et al., 2020), which
was designed to generally structure research on diagnostic
judgment processes. Its components are the following: (1)
specification and systematic variation of the diagnostic situation
with regard to perceptible information (here: evidence on
students’ solutions to given tasks), (2) specification of relevant
diagnostic knowledge (here: prior probabilities and conditional
probabilities), (3) specification of diagnostic thinking as cognitive
processing of information and knowledge (here: the use of
information during Bayesian or non-Bayesian updating), and
(4) operationalization of diagnostic judgment (here: posterior
probabilities) and prediction of this judgment.

(1) Specification of the Diagnostic Situation

Identifying students’ misconceptions is one key task of
teachers in order to address these misconceptions adequately.
However, these judgments regarding students’ misconceptions
often are not straightforward. As described earlier, students with
different misconceptions can come to the very same answer –
either because the task cannot distinguish between several
misconceptions or because the students do not follow their
erroneous strategy with complete consistency. Both factors lead
to judgments under uncertainty.

In our study, the students’ misconception space is restricted
to the three most frequent decimal comparing misconceptions
as described above (see section “Decimal Strategies and their
Diagnostics”). This restriction also implies that we do not include
students who fully understand decimals and therefore solve all
comparison tasks correctly (most of the time). Thus, a teacher
in our study assumes to encounter a student who pertains to
one of three mutually exclusive misconception groups. This
defines the set of three hypotheses (WN, ID, and SL) for the
diagnostic judgment.

A piece of evidence that a teacher encounters in our study
consists of a student’s response to one of the three diagnostic tasks
as presented in Table 3. Each task is assumed to have a sensitivity
of 80% throughout all cases. We keep this feature of the diagnostic

tasks constant because, in this study, we are not interested in the
influence of variation in sensitivity but in the use or disregard
of information on evidence in general. Furthermore, assuming
the same sensitivity for all tasks reduces the amount of diagnostic
information that has to be processed.

A feature that typically arises in diagnostic judgments
is the phenomenon that the tasks do not detect students’
misconceptions unambiguously – a situation that has been only
rarely addressed in research on Bayesian reasoning. The resulting
pattern in the set of evidences (three task types with two
responses depending on three misconceptions) used in this study
is presented in Table 3. It results from the combination of the
(erroneous) mathematical student reasoning pertaining to each
misconception and the mathematical structure of the numbers
in the task. An in-depth analysis of all conceivable task types to
induce erroneous results and detect misconceptions (i.e., varying
length of the part before and after comma, position of zeroes,
especially leading and trailing zeroes) showed that the task types
chosen here are most straightforward to allow diagnosing the
misconceptions. Another task type, not used here, would be, e.g.,
3.95 > 3.76, which would not allow to differentiate between any
two of the misconceptions.

The evidence presented in a single diagnostic situation
comprises a diagnostic task and a student’s response, one at a
time. To each teacher, several cases of different students are
presented in a row.

(2) Specification of Diagnostic Knowledge

In order to achieve adequate judgments (probabilities for
possible hypotheses), an individual has to take into account
diagnostic knowledge on different probabilities: the prior
probabilities for the different misconceptions as well as the
likelihoods for each misconception given certain evidence.
Figure 2 illustrates how this information can be displayed
graphically in a distinct and comprehensive manner.

• The three hypotheses (WN, DL, SL) are represented
as vertices spanning a planar equilateral triangle (see
Figure 3).
• The interior and boundary of this triangle comprises all

possible distributions of three probabilities: (p1, p2, p3)
with p1 + p2 + p3 = 1, and thus constitutes a ternary
hypothesis space (or for short “hypothegon”).1 A location

1Each hypothesis triple (p1, p2, p3) with p1 + p2 + p3 = 1 can be found at a unique
point within the hypothegon with the sizes of each pi as its relative height from
the side opposite to the vertex. Mathematically, this is formalized by so-called
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TABLE 3 | Pattern of most likely response (evidence E) of each task under the condition of a student’s misconception (hypothesis H).

Hypothesis Decimal comparing misconceptions Task 1: 4.8 > 4.63 Task 2: 3.7 > 3.02 Task 3: 3.49 > 3.4

H1 Whole-number misconception (WN) Wrong Right Right

H2 Ignore-decimal-point misconception (ID) Wrong Wrong Right

H3 Shorter-is-larger misconception (SL) Right Right Wrong

The likelihood of the evidence indicated in the table is P ( E|H) = 0.8.

at a vertex indicates the certainty of the hypothesis (e.g.,
p1 = 1); the center point represents a uniform distribution
(p1 = p2 = p3 = 1/3).
• The prior distribution is represented twofold: with the

position of the “prior point,” the prior distribution and
by the length of three bars, pointing to the respective
hypotheses. Figure 2 shows the position and bar diagram
for a prior probability (base rate) of 60, 30, and 10% of the
three misconceptions.
• The likelihoods of the two possible responses

(right/wrong) to a given task are represented qualitatively
as stacked bars at the corners of the hypothegon. For
example, the task 4.8 > 4.63 is responded correctly.
The likelihood of a correct response by a student with
misconception WN is 20%, same as by a student with
misconception ID. The likelihood of a correct response
by a student with misconception SL is 80%.

To be able to process the given information, teachers
require knowledge on the misconceptions (cf. see section
“Decimal Strategies and Their Diagnostics”), and they have to
understand the meaning of the probabilities involved (cf. see
section “Teachers’ Diagnostic Judgments Under Uncertainty –
Through the Lens of Bayesian Reasoning” and Specification
of the Diagnostic Situation). Both types of knowledge can
be manipulated by instruction. Furthermore, teachers have
to pay attention to all information given. As indicated in
section “Supporting the Application of the Bayesian Update
Strategy,” this attention can be manipulated by the representation
of the information (especially the nested-set relation) or by
relevance instruction.

(3) Operationalization of Observable Diagnostic Judgment

In the same manner in which the prior probabilities for
hypotheses are located in the hypothegon, also the updated
hypotheses, i.e., the posterior probabilities, can be represented as
locus within the hypothegon, and the updating process amounts
to moving the point to a new position. The new locus of
the point represents the qualitative estimation of the posterior
probabilities. In this way, the updating procedure can be executed
in an intuitive manner: moving closer towards a hypothesis

“barycentric homogeneous coordinates” (or “convex combinations”), introduced
by Möbius (1827). Beyond applications in physics, chemistry, or biology, the
ternary diagram (sometimes called De Finetti diagram) is occasionally used in
social science to visualize normalized triples of quantified cognitive constructs
(e.g., De Finetti, 1971, 2017 for distributions of subjective probability; Susmaga and
Szczêch, 2015 for interestingness measures, Jøsang, 2016 for formalized subjective
logic).

expresses a strengthened belief, positioning the point between
two hypotheses expresses (subjective) ambiguity (see Figure 2).

(4) Specification of Diagnostic Thinking

With diagnostic thinking, Loibl et al. (2020) refer to the
assumed processing of information. As summarized in section
“Modeling Bayesian Reasoning in Nonnumerical Settings,” we
assume that teachers process all or only part of the information
given (i.e., evidence, prior probabilities, and/or likelihoods),
corresponding to the update strategies discussed in section
“Teachers’ Diagnostic Judgments Under Uncertainty – Through
the Lens of Bayesian Reasoning.” Although teachers are not
assumed to mathematically calculate the posterior probabilities,
the four update strategies can still be presented by formulas.
The formulas as well as the results of the three update
strategies for the example given above are displayed at the
right side of Figure 3. The fourth strategy (prior only) is
excluded from our analysis, since it would be realized by not
moving the point – which is an improbable behavior under the
circumstances of the study. The green dots in the triangle in
Figure 3 correspond to the locus of the point for the posterior
probabilities, when teachers judge according to one of the
three strategies:

(a) They may only process the likelihood of the hypothesis
with the highest likelihood (SES). In the example, this is
SL with a likelihood of 80%. When no further information
is processed, this likelihood is taken as probability of the
hypothesis. We assume that the remaining probability of
20% is (possibly implicitly) distributed over the remaining
hypotheses. This strategy leads to the locus of the
smallest green dot.

(b) They may process and balance the likelihoods of all three
hypotheses (CES), i.e., they consider the following values:
WN 20%, ID 20%, and SL 80%. The relative sizes (i.e.,
normalized to give a sum of 1) are taken as probabilities
of the hypotheses. This would result in WN 17%, ID 17%,
and SL 67%. These posterior probabilities are represented
by the locus of the middle green dot.

(c) They may process all relevant information following the
Bayes’ rule (BUS), which leads to the following posterior
probabilities: WN 46%, ID 23%, and SL 31%, represented
by the locus of the biggest green dot.

RESEARCH QUESTIONS

When people update their hypotheses based on uncertain
evidence (e.g., teachers’ updating their assumptions based on
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FIGURE 2 | Hypothegon representing a ternary hypothesis space, a judgment as a position in this space, and the evidence likelihoods (conditional probabilities) of
the response. In order to make a judgment (posterior), one can drag the point to a new position.

FIGURE 3 | Hypothegon (left hand side) and visualization of update strategies (right hand side).

students’ solutions), they may only have access to nonnumerical
information. When only part of the information on relevant
probabilities is processed, this may result in updating strategies
different from Bayesian reasoning. We investigate the following
research question (RQ1):

Can common types of updating strategies known from numerical
settings also be detected in a nonnumerical setting?

H1: We hypothesize that the following strategies are identifiable
within the nonnumerical setting described above:

• a Bayesian update strategy (BUS), that is, processing all
probabilities (priors and likelihoods),

• a combined evidence strategy (CES), that is, ignoring the
prior probabilities (also known as base rate neglect), but
taking into account the likelihoods of the evidence under
all hypotheses,
• a single evidence strategy (SES), that is, ignoring the

prior probabilities (base-rate neglect) and only using the
likelihood of the most probable hypothesis (also known as
inverse fallacy).

In our setting, the nonnumerical information on the
probabilities relevant for Bayesian reasoning is represented in a
salient manner. However, the existence of non-Bayesian updating
strategies within this setting (as commonly found in other
settings, see above) suggests that not all individuals use all of
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this information. In numerical settings, this can be influenced by
means of instruction or representation. Therefore, we investigate
the following research question (RQ2):

Does instruction on the relevance of using all probabilities (priors
and likelihoods) increases the processing of more information
represented in the nonnumerical setting?

H2: We hypothesize that the instruction increases the individuals’
processing of information, leading to an increase in the BUS and
a decrease in the SES.

METHODS

Participants
The 26 preservice teachers who participated in the study all
completed their bachelor in teaching mathematics and took
courses in a master program on teaching mathematics at the
time of the study. Participants were randomly assigned to two
conditions: one condition with a salient presentation of priors
and likelihoods (“control condition”) and one condition with an
additional instruction on the relevance of priors and likelihoods
(“relevance instruction condition”, see section “Influence of
instruction (RQ2)”]. With these conditions, we aim to increase
the variance of the different strategies in order to identify
strategy types (RQ1) and to test our assumptions regarding the
processing of information (RQ2). The descriptive statistics of the
participants are presented in Table 4.

Generating Evidence on Updating
Strategies (RQ1) – The Nonnumerical
Setting
In our study, the investigation of Bayesian reasoning in
nonnumerical settings is framed by a scenario of diagnostic
judgment as described in section “A Computer-Based Setting for
Nonnumerical Diagnostic Strategies.” It is a complex judgment
situation with

• three possible hypotheses (on students’ misconceptions),
• two possible outcomes (right/wrong responses),
• three task types with limited diagnosticity.

All relevant pieces of information (prior probabilities,
conditional probabilities, updating procedure) are represented
graphically and qualitatively, i.e., without numerical
representations or formulas, within the hypothegon on a
computer screen (Figure 3). Thus, the updating of an initial
judgment does not rely on mathematical procedures. As
preservice teachers are not assumed to be familiar with
this representation, they first received an oral step-by-step
instruction (about 20 min) that included showing the different
features of the diagnostic environment. The instruction provided
information about the misconceptions and the diagnostic tasks
(including the sensitivity) and explained the meanings of the
hypothegon, i.e., the triangle, the bar charts, and the positions of
the judgment point. We also informed that we did not include
students who fully understand decimals and solve comparison

tasks correctly. A comprehension test with three items tested the
understanding of the representation.

After the instruction, the participants had to judge 12 cases
by moving the point and thus updating the probabilities for the
three hypotheses. Each case represented a student (by a gender-
neutral name), a task and the students’ response (with a reminder
if the response was right or wrong). The prior probabilities were
set to 60% for WN, 30% for ID, and 10% for SL in all cases
for two reasons: First, these percentages fit to the frequencies
found in studies with different age groups (see section “Decimal
Strategies and Their Diagnostics”). Second, these percentages
allow to differentiate between different update strategies.

As our pilot studies showed that participants need several
cases to get used to the representation and stabilize their updating
strategy, we implemented two analogous sequences of six task-
response combinations and only analyzed the updating strategy
of the second sequence. The cases were balanced with respect
to the pattern of misconception–task–response combination (see
Table 5): Three task responses had a high likelihood only for
one misconception; three task responses had high likelihoods for
two misconceptions.

Updating Strategies (RQ1) – A Bayesian
Classification Approach
In order to assess and compare the subjects’ use of update
strategies, we constructed cases with values for the probabilities
(priors and likelihoods) that allow for distinguishing the
subjects’ diagnostic thinking (i.e., use of information, update
strategy) by evaluating the evidence on their diagnostic judgment
behavior (i.e., choice of posterior probabilities via location in
the hypothegon).

The judgment of a subject, represented by his or her choice
of position (Figure 4, left hand side) may, in some cases, be
attributed unambiguously to one update strategy but may, in
other cases, be consistent with more than one update strategy
(Figure 4, right hand side).

In order to account for this uncertainty in interpreting a
subject’s judgment, we used an analysis based on a Bayesian
classification approach: We assume that each subject had a
consistent update strategy and model our knowledge on the
subject’s strategy by a set of probabilities:

pi

(̂
HBUS

)
= probability of the hypothesis2 that subject i has

the Bayesian update strategy (BUS),

and analogously pi

(
ĤCES

)
and pi

(
ĤSES

)
We then account for the fact that subjects only approximately

determine their updated posterior in the qualitative approach,
by attributing to the evidence Ê (i.e., the subjects’ chosen locus
of a judgment) the likelihood p(Ê |ĤBUS

) under the condition
of him or her having a strategy (e.g., BUS) with the following

2We use the circumflex accent to avoid confusion between the subjects’
(i.e., teachers’) hypotheses H on students’ misconceptions with our (i.e., the
researchers’) hypotheses Ĥ on the teachers’ strategies.

Frontiers in Psychology | www.frontiersin.org 10 July 2020 | Volume 11 | Article 678

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-11-00678 July 1, 2020 Time: 18:33 # 11

Leuders and Loibl Bayesian Reasoning in Non-numerical Settings

TABLE 4 | Descriptive statistics of participants of study 1 and study 2 [means (SD)].

Study 1 Study 2

(1) Control
condition

(2) Relevance instruction
condition

Total (1 + 2) Interaction explication
condition

N 14 12 26 16

Gender female/male 10/4 7/5 17/9 9/7

Age 24.14 (1.66) 23.25 (1.14) 23.73 (1.48) 24.06 (1.61)

Semester 7.93 (1.14) 7.12 (0.58) 7.58 (0.99) 8.00 (1.32)

High school diploma, grade 1(best) through 5 2.51 (0.43) 2.31 (0.42) 2.42 (0.43) 2.33 (0.52)

Understanding of setting (max. 3 points) 3.00 (0.00) 2.92 (0.29) 2.96 (0.20) 2.90 (0.30)

Gaussian distribution

p
(

Ê
∣∣ĤBUS

)
=

1
N

exp
(
−

1
d

∣∣∣Ê − Ê BUS
∣∣∣2) ,

and analogously p
(

Ê
∣∣ĤCES

)
and p

(
Ê
∣∣ĤSES

)
.

Ê is represented by the probability vector belonging to the location
of the actual judgment and Ê BUS by the probability vector
belonging to the location when applying the BUS. Using this
model to update the probability of the hypotheses pi

(
ĤBUS

)
,

pi

(
ĤCES

)
, and pi

(
ĤSES

)
on each subject with the evidence

Êi,j from the cases j = 1...6 as described above, we define a
naive Bayesian classification procedure (Duda et al., 2012). This
approach has proven valid also in many cases with dependencies
between the likelihoods (Domingos and Pazzani, 1997).

The normalization factor N of this probability density need
not be calculated, since it cancels out when we evaluate ratios of
probabilities. The parameter d represents the radius within the
probability density decreases to 1

e ≈ 37% from its maximum. We
chose d = 0.1 as a value that allows for an efficient distinction
and reflects the imprecision of approximative nonnumerical
judgments. For the numerical analysis of the data, we used a
discrete approximation on 1,250 points in a hexagonal lattice
within the hypothegon.3

Figure 4 illustrates the probability distribution for two cases
and demonstrates how the Bayesian classification approach
accounts for the fact that evidence can be considered to support
more than one hypothesis on the subjects’ strategies.

When a subject judges consistently by applying one strategy in
all six cases, e.g., BUS, the evidence should lead to a considerable
increase in the respective posterior probability for this strategy

pposterior
i

(
ĤBUS

)
∝ p

(
Êi,6

∣∣ĤBUS
)

p
(

Êi,1
∣∣ĤBUS

)
· pprior

i

(
ĤBUS

)
and a decrease in the posterior probabilities for the other
strategies. The classification of the subject i as having strategy
BUS vs. CES vs. SES is then supported by the amount of change
in the probability ratios. These changes of probability based on
evidence are typically expressed by Bayes factors. In the present

3The calculations were programmed by the first author in CindyScript (Richter-
Gebert and Kortenkamp, 2000; www.cinderella.org), the code can be made
available by request.

TABLE 5 | Description of the six analyzed cases in the order of the presentation.

Likelihood of response under the
condition of misconception . . . (presented

as bar at the respective vertex)

Case: task and response WN ID SL

1 3.7 > 3.02 Right 80% 20% 80%

2 4.8 < 4.63 Wrong 80% 80% 20%

3 3.49 > 3.4 Right 80% 80% 20%

4 3.7 < 3.02 Wrong 20% 80% 20%

5 4.8 > 4.63 Right 20% 20% 80%

6 3.49 < 3.4 Wrong 20% 20% 80%

analysis, there are six possible ratios of two hypothesis, of which
two are independent. BFBUS:CES(i), for example, is defined by

pposterior
i

(
ĤBUS

)
pposterior

i

(
ĤCES

) = ∏
j=1...6

p
(

Êi,j

∣∣∣ĤBUS
)

p
(

Êi,j

∣∣∣ĤCES
)

︸ ︷︷ ︸
·

pprior
i

(
ĤBUS

)
pprior

i

(
ĤCES

)
def

BFBUS:CES (i)

To substantiate the classification decision for each subject,
we recur to (a) the ratio of the dominant hypothesis to the
subsequent one, e.g., BFBUS:CES(i) = 100:1 and (b) the highest
posterior probability, when assuming equally distributed priors,
e.g., pposterior

i

(
ĤBUS

)
= 99.9%.

Influence of Instruction (RQ2)
To test our hypotheses with regard to research question 2, we
designed a relevance instruction. Participants were randomly
assigned to one of two conditions. Participants in the control
condition did not receive further instruction and proceeded
as described above. Participants in the relevance instruction
condition received verbal explanations on how to incorporate all
relevant information in the update following the Bayesian update
strategy (without explicit reference to Bayes):

Use all the information given to you by the different
bars. This works best in the following way: First, note the
probabilities for the three misconceptions. Most students
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have the WN misconception; very few have the SL
misconception. Second, look at how well each of the three
misconceptions fit to the student’s response: If a student
solves the problem 4.8 > 4.63 correctly, SL fits because
these students are likely to solve the task correctly. Thus,
the SL misconception becomes more likely. However, that
does not rule out the other misconceptions: For instance,
the WN misconception does not fit. Nevertheless, it is
possible that the student has the WN misconception but
does not answer consistently. This is quite likely because,
in general, it is highly probable that a student has the WN
misconception. Thus, you should consider the probabilities
for the misconceptions again. (1) First, look at all the
probabilities for the misconceptions. (2) Then, lock at the
misconceptions that fit to the response, which ones are
more likely. (3) Then, also look at the misconceptions that
do not to the response, which ones are still probable [(1)–(3)
was also repeated as reminder].

The instruction did not include an example of the procedure
in order to avoid superficial copying of the updating strategy. In
both conditions, there was a short reminder to use all information
(control condition) and to remember the instruction (relevance
instruction condition) just before the last six cases (i.e., before the
cases chosen for the analysis).

Differences in the distribution of the three update strategies
between the conditions are analyzed using a Bayesian
contingency tables test (with a joint multinomial model)
(Gunel and Dickey, 1974).

RESULTS

Distribution of Strategies (RQ1)
The evaluation of the judgments according to the Bayesian
classification approach described in section “Generating
Evidence on Updating Strategies (RQ1) – The Nonnumerical
Setting” resulted in a set of parameters for each participant,
which allow for a classification decision:

(a) The Bayes factor BFBUS:CES(i) indicates the increase of the
likelihood of one classification over the other (here, BUS
over CES). Here, we focus for each subject on the ratio
of the dominant hypothesis to the subsequent one, e.g.,
BF1:2(i) = 100:1.

(b) The posterior probabilities pposterior
i

(
ĤBUS

)
,

pposterior
i

(
ĤCES

)
, and pposterior

i

(
ĤSES

)
describe the

certainty of the classification under the assumption
of equal priors. For example, ppost,max

i = 99.9% can be
regarded as a 99.9% certainty of explaining a participants’
judgments by the Bayesian update strategy.

The certainty for the classification [described by both, BF1:2(i)
and ppost,max

i ] of the 26 participants to one of the three assumed
types of updating strategy (BUS, CES, and SES) is listed in Table 6.
We indeed identified the assumed types of updating strategies
known from numerical settings in our nonnumerical setting (cf.

H1), with most participants classified as following either CES
or SES. Only four participants were classified as using the BUS.
Notably, all of these four participants were classified with very
strong evidence.

Overall, most participants could be classified with strong
evidence. However, four participants could only be classified
with weak evidence (BF1:2(i) between 1 and 3), all of these
classified as CES or SES.

Effect of Relevance Instruction on
Information Processing (RQ2)
To test whether the instruction on the relevance of priors
and likelihoods (relevance instruction condition) increased the
likelihood of processing more information, we compared the
distribution of the three assumed strategies (BUS, CES, and
SES) across the two conditions. Descriptively (see Table 7),
fewer participants of the relevance instruction condition were
classified as using the SES strategy in comparison to their
counterparts in the control condition (cf. hypothesis 2). However,
the Bayesian contingency tables test revealed a Bayes factor
(BF10) of only 3.139. Following the interpretation of Lee and
Wagenmakers (2014), a Bayes factor of 3 can be regarded as
only anecdotal (or at most moderate) evidence for different
distributions across the conditions.

DISCUSSION

Classification of Updating Strategies
(RQ1)
In our study, we attempted to theoretically distinguish and
empirically detect the types of updating strategies, which are
suggested by the general literature on Bayesian reasoning, also
in a nonnumerical setting of diagnostic judgments. As shown in
Table 1, we classified these strategies with respect to different
levels of information use (priors, single, or combined evidence).
For most subjects in our sample, we could produce very strong
evidence for their use of a BUS, CES, or SES. Overall, our
results support the plausibility of the classification of strategies
by the level of information use. The relatively low number of
participants (4 out of 26), which included all information in
their judgment and therefore can be assumed as performing
(nonnumerical) Bayesian reasoning, is in line with previous
findings (McDowell and Jacobs, 2017).

Notably, the only subjects (4 out of 26) with weak evidence
were classified as CES or SES. This is explainable by the fact that,
in our realization (i.e., with the given priors and likelihoods),
these two strategies lead to less distinct posterior probabilities (cf.
Figure 4). Furthermore, our classification approach was based on
the assumption of a relative stability of the strategy use by each
individual (cf. Cohen and Staub, 2015). It therefore does not allow
to investigate any intra-individual variation of the strategy use in
a similar approach as Cohen and Staub (2015).

In our study, we used a specific nonnumerical, graphical,
and computer-based realization for assessment of reasoning
strategies, applying a triangular representation of a ternary
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FIGURE 4 | Calculated positions of the exact strategies Bayesian update strategy (BUS), combined evidence strategy (CES), single evidence strategy (SES), and a
teachers’ actual judgment J for two task–response configurations. The circles define areas of similar likelihoods in 10% percentile steps. On the left hand side,
judgment J has highest likelihood for BUS; on the right hand side, it can be regarded as evidence for SES, but also for CES and less for BUS.

TABLE 6 | Certainty of classification.

BF1:2 > 1 >3 > 10 >30 > 100 >1000 Sum

(ppost,max
i ) (>50.0%) ( > 75.0%) (>90.9%) ( > 96.7%) (>99.0%) ( > 99.9%)

BUS 0 0 0 1 0 3 4

CES 3 1 0 0 0 6 10

SES 1 2 2 2 1 4 12

Sum 4 3 2 3 1 13 26

Evidence Weak Moderate Strong Very strong Extreme Extreme

hypothesis space, the “hypothegon.” We consider our findings
as indicative of the feasibility of this approach and envision
to use the “hypothegon” paradigm for further investigations of
nonnumerical reasoning (see section “Overall Discussion”).

Admittedly, there are limitations connected to the concrete
realization: The approach requires a theoretically justified
selection of hypothesis prior to the analysis. We chose three
fundamental strategy types (BUS, CES, and SES). However,
we cannot exclude that other, quite different strategy types –
or mixtures of strategies – may be found to explain the
subjects’ behavior. This could be investigated by further
validation studies recurring either to think aloud data or to
experimental variation.

Our classification of the strategies draws on a naive
Bayesian classifier procedure, which allowed to rationally
deal with the multiple evidence (on subjects’ judgments
on different cases) and the relative contributions of each
evidence to multiple hypotheses (on subjects’ possible
updating strategies).

However, the robustness of the results with respect to the
assumptions of this classification procedure should be reflected.
We checked that a variation of the “gaussian classification radius”
(d = 0.1) within reasonable limits (0.05 < d < 0.20) had no
essential influence on the classification results. Furthermore,
the assumption of independence of the consecutive judgments,
which is essential to naive Bayesian classification, was not

TABLE 7 | Distribution of strategies across conditions.

BUS CES SES Total

Control condition 1 4 9 14

Relevance instruction condition 3 6 3 12

Total 4 10 12 26

empirically tested within our framework but made theoretically
plausible by varying and balancing the cases.

Impact of Relevance Instruction on
Information Use (RQ2)
The prevalence of non-Bayesian updating strategies (22
out of 26 subjects) suggests that (although all relevant
information was presented in a salient manner) not all
individuals use all information. Moreover, our results
showed that the instruction on the relevance of using all
probabilities (priors and likelihoods) did not substantially
increase the likelihood of processing more information.
Our study revealed only anecdotal evidence of an increase
in the BUS and a decrease in the SES in the relevance
instruction condition in comparison to the control condition.
To explain this finding, we consulted literature and
compared our relevance instruction to the most common
approaches of supporting Bayesian reasoning in numerical
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FIGURE 5 | Hypothegon with visual explication of the interaction of priors and
likelihoods.

settings: using frequencies instead of probabilities (e.g.,
Zhu and Gigerenzer, 2006; Hill and Brase, 2012) and
using visual representations (Böcherer-Linder and Eichler,
2017; Pfannkuch and Budgett, 2017). These approaches
can also be interpreted as setting a focus on the subset
of possibilities defined by new evidence (cf. Baratgin and
Politzer, 2010 for a differentiation between focusing and other
revision processes). The deeper analysis of these support
approaches revealed that they do not only highlight the
relevance of using all information (as in our relevance
instruction) but also explicitly show how these pieces of
information are connected. More specifically, they display
the interaction (i.e., multiplication) of likelihoods and priors
as follows.

If likelihoods are presented as joint frequencies (e.g., 2 of the
10 students with SL solve this task correctly), the priors (for
this example 10 of 100 students) are already contained in the
joint frequencies. In addition, joint frequencies verbally highlight
the interaction of the likelihoods and priors (i.e., 2 of 10 of
100, called nested-set relations, Sloman et al., 2003) and thereby
facilitate the construction of an adequate situation model of
the prior–likelihood interaction. Another way to increase the
salience of the multiplicative prior–likelihood interaction is to
provide adequate visualizations (for an overview, see Khan et al.,
2015). Research has shown that complementing the numerical
values with nonnumerical representations that render salience
to the prior–likelihood interaction (such as the unit square, e.g.,
Böcherer-Linder and Eichler, 2017) support Bayesian reasoning.
Against this background, we devised a visual representation of
the prior–likelihood interaction in our nonnumerical setting
(see Figure 5) and investigated its effect on the processing
of all information in a second study. By scaling the length
of the likelihood bars in relation to the size of the priors,
the multiplicative nature of the prior–likelihood interaction is
explicitly shown and – similar as in the unit square – allows
to compare the absolute lengths of the likelihood bars as direct
representations of the posteriors.

RESEARCH QUESTION OF STUDY 2

The finding of the predominance of non-Bayesian updating
strategies within our setting, even in the relevance instruction
condition, suggests that not all individuals are able to process
the interaction of the information (priors and likelihoods).
In numerical settings, this can be influenced by means of
representations that make the interaction explicit. Therefore, we
investigate the following research question (RQ3):

Does a visual explication of the prior–likelihood interaction
in the nonnumerical setting increases the processing of the
information in the sense of Bayesian reasoning?

H3: We hypothesize that a visual explication of the prior–
likelihood interaction in an interaction explication condition
leads to an increase in the BUS and a decrease in the SES in
comparison to the control condition of study 1.

DESIGN OF STUDY 2

Additional 16 preservice teachers from the same cohort as study 1
participated in the study. The descriptive statistics are presented
in Table 4.

To test our hypotheses with regard to research question 3,
we designed a visualization that makes the interaction of the
probabilities (priors and likelihoods) explicit (see Figure 5).

Participants in the interaction explication condition received
the same instruction as participants in the relevance instruction
condition from study 1. In addition, at the end, the visualization
was explained as follows: “We can see that the smaller green
portion of the bar for the WN misconception is about the
same size as the larger green portion of the bar for the
SL misconception. Thus, if a student solves the problem
correctly, it is equally likely that he or she has the WN or the
SL misconception.”

RESULTS OF STUDY 2

We first analyzed the certainty for the classification [both
BF1:2(i) and ppost,max

i ] of the 16 new participants to one
of the three assumed types of updating strategy (BUS, CES,
and SES). As shown in Table 8, all participants could be
classified with strong or extreme evidence. As further support
for hypothesis 1 (H1), we again identified all three assumed
types of updating strategies, now with most participants classified
as using the BUS.

To test whether the explication of the prior–likelihood
interaction (interaction explication condition) increased
the likelihood of processing the interaction of all relevant
information, we compared the interaction explication
condition to the control condition (study 1) with regard to
the distribution of the three assumed strategies (BUS, CES, and
SES). Descriptively (see Table 9), participants of the interaction
explication condition were less often classified as using the
SES and more often classified as using the BUS in comparison
to their counterparts in the control condition (cf. hypothesis
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TABLE 8 | Certainty of classification of participants in interaction explication condition.

BF1:2 > 1 >3 > 10 >30 > 100 >1000 Sum

( ppost,max
i ) (>50.0%) (>75.0%) (>90.9%) (>96.7%) (>99.0%) (>99.9%)

BUS 0 0 2 0 0 7 9

CES 0 0 3 0 1 2 6

SES 0 0 0 0 0 1 1

Sum 0 0 5 0 1 10 16

Evidence Weak Moderate Strong Very strong Extreme Extreme

3). The Bayesian contingency tables test revealed a Bayes
factor (BF10) of 327.993, which can be regarded as extreme
evidence for different distributions across the conditions.
The results of this study are discussed within the section
“Overall Discussion.”

OVERALL DISCUSSION

Identifying Update Strategies in a
Nonnumerical Setting
In this work, we analyzed how people update their hypotheses
based on uncertain evidence (e.g., teachers’ updating their
assumptions based on students’ solutions), when they only
have access to nonnumerical information. Based on the
results from numerical settings, we assumed that people
tend to process only part of the information on relevant
probabilities, resulting in updating strategies different
from Bayesian reasoning. With regard to RQ1, we showed
that the three assumed updating strategies (BUS, CES,
and SES), which are known from numerical settings, are
indeed also identifiable within the nonnumerical setting
investigated in our studies.

Moreover, in line with findings from numerical settings,
most participants did not follow the BUS when no further
support was given. This finding supports the notion that
subjects do not process and integrate all available information.
Thus, we consider these findings as a validation of an
information processing account of Bayesian (or non-Bayesian)
reasoning. In numerical settings, the processing of information
has been effectively influenced by means of instruction or
representation (e.g., Khan et al., 2015; Böcherer-Linder and
Eichler, 2017). In this vein, we devised similar interventions
in the nonnumerical setting and conducted two studies.
In study 1, an instruction on the relevance of using all
probabilities (priors and likelihoods) increased the processing
of more information represented in the nonnumerical setting
only weakly (RQ2).

A deeper analysis of research on Bayesian reasoning
revealed that not only the quantity of information use is
relevant but also its specific quality, more specifically the
interaction (i.e., multiplication) of likelihoods and priors
in the judgment process. Therefore, we supplemented the
intervention by explicit instruction and representation of
this interaction (similar to the representations used in

TABLE 9 | Distribution of strategies across conditions.

BUS CES SES Total

Control condition 1 4 9 14

Interaction explication condition 9 6 1 16

Total 10 10 10 30

numerical studies, e.g., Böcherer-Linder and Eichler, 2017).
In study 2, we found very strong evidence that the visual
explication of the prior–likelihood interaction led to
an increase in processing the interaction of all relevant
information (RQ3).

These divergent effects of the two interventions suggest
that many individuals do not merely fail to process all
information (possibly altered by relevance instruction) but
are missing to account for the interaction of these pieces
of information correctly. This issue can only be influenced
by reducing the necessity to convert the information. In
numerical settings, this has been done effectively by presenting
the probabilities as joint frequencies that already contain
the priors, which automatically highlights the structure of
the task (i.e., the nested-set relations, Sloman et al., 2003).
Nonnumerical settings allow providing visualizations to
increase the salience of the structure of the situation. This
approach has already been shown effective in supporting
the calculation in numerical settings (e.g., Böcherer-Linder
and Eichler, 2017) and has now also proven effective in a
nonnumerical setting.

To better understand this effect and also the interplay between
numerical and nonnumerical information, further research with
systematic combination and variation of the type of displayed
information should be conducted.

Benefits and Limitations of the Specific
Nonnumerical Setting (“Hypothegon”)
The environment to investigate Bayesian reasoning in
nonnumerical settings is framed and supported by the
specific choice of a graphical representation, which we dubbed
“hypothegon.” It comprises the triangular representation of a
ternary hypothesis space and allows for the intuitive localization
of probability distributions (priors and posteriors) and their
change (updating). This has proven an effective setting for
the nonnumerical presentation of probability information and
investigation of updating strategies.
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Although the hypothegon heavily relies on the ternary
situation of three hypotheses (represented in two dimensions),
it can be extended in two directions: Two hypotheses can
be represented along a line segment (which has already been
done frequently); four and more hypotheses can be represented
by multiple projections of subspaces. However, the intuitive
interpretation probably is limited by the ternary case. In our
specific setting, we could demonstrate that it is possible to render
it sufficiently comprehensible, at least to adults (cf. Table 4,
Understanding of setting).

Of course, the hypothegon can be further shaped and used in
research within and beyond the context of teacher judgements.
In addition, within the context of teacher judgement, there
are many aspects that we excluded from our studies. For
example, it is plausible that teachers do not only perceive
and process one piece of evidence at a time (i.e., one task–
response case), but rather integrate the information from several
responses from one student in order to form a decision. In
the current studies, we refrained from such multistep cases to
reduce complexity. However, a better understanding of how
several pieces of evidence on a student interact and how
teachers process this information would allow to investigate
research questions such as: How much evidence do teacher
process before feeling confident in the decision (cf. Codreanu
et al., 2019)? Do other teacher variables, such as his or
her mindset alter the number of processed evidence (cf.
Weinhuber et al., 2019)?

Furthermore, teacher judgment also relies on the context
of judgment and on teachers’ knowledge and goals. While in
our study with student teachers, the restriction of contextual
information helped to model and identify basic strategies, a more
realistic setting can be expected to have considerable influence on
the information processing.

The Ecological Rationality of
(Non)Bayesian Reasoning in Diagnostic
Judgments
We characterized the BUS by a complete (approximate) use of
probability information and Bayesian reasoning – which from a
mathematical point of view can be regarded as optimal. From
this point of view, the contrasting strategies (CES and SES) are
characterized by a prior neglect and thus suboptimal.

By modeling the situation in a nonnumerical way
(probabilities as bars, uncertainty as prior position between
hypotheses), we tried to avoid the normative framing of
mathematically correct statistical reasoning, which is often
applied in research in Bayesian reasoning (Mandel, 2014).
However, in our experimental framework, we instructed
the subjects with respect to the intended interpretation of
the external representation. Thus, we did not investigate
their mental reasoning processes, e.g., when accepting or
discarding given base rates as priors or when interpreting
the change of position as update. Therefore, we would
not consider judgments, which we classify as CES or SES,

categorically as non-Bayesian reasoning. Baratgin (2002) as
well as Baratgin and Politzer (2010) distinguish between
focusing and updating. They refer to focusing when –
given that all information is known and conforming to the
Bayesian rule – humans revise their probability estimation by
focusing on the relevant subset of the initial probability space.
They refer to updating when humans’ posterior probability
estimation is coherent with a revision of their beliefs about
the situation. While we assume focusing processes when
investigating the BUS strategy, our nonnumerical setting
also provides an opportunity to explore subjective belief
revisions more deeply.

Furthermore, we do not assume that these strategies, when
applied in the diagnostic context of teachers judging students,
necessarily imply better or worse performance. There may be
many reasons why also normatively deficient strategies can be
regarded as cognitively successful, thus reflecting perspective
of ecological rationality (Simon, 1972; Kozyreva and Hertwig,
2019). As a heuristic, SES and CES may be adapted to
relevant situations. For example, teachers may use a first
judgment as orientation for gaining further information on the
student, e.g., by selecting more specific tasks or by eliciting
verbal explanations. More generally speaking, when diagnostic
judgments are integrated in complex instructions, their adequacy
cannot be evaluated by their local optimality. Finally, in reality,
priors (base rates) may be either much less extreme and
therefore less relevant than assumed here, or the probabilities
used here may even be partially known or unknown to the
teacher so that a more fundamental type of uncertainty arises
(Gigerenzer, 2008).

In this respect, there are still many open questions as to the
status of the investigated strategies within the ecology of realistic
settings. A first step of investigating such question could be the
analysis of the boundary conditions of “optimality” with respect
to parameters and types of heuristics.
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