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Department of Ophthalmology, Counties Manukau DHB, Auckland, New Zealand

An ideal performance evaluationmetric would be predictive, objective, easy to administer,

estimate the variance in performance, and provide a confidence interval for the level

of uncertainty. Time series forecasting may provide objective metrics for predictive

performance in mental arithmetic. Addition and summation (addition combined with

subtraction) using the Japanese Soroban computation system was undertaken over

60 days. The median calculation time in seconds for adding 10 sequential six digit

numbers [CTAdd) was 63 s (interquartile range (IQR) = 12, range 48–127 s], while

that for summation (CTSum) was 70 s (IQR = 14, range 53–108 s), and the difference

between these times was statistically significant p < 0.0001. Using the mean absolute

percentage error (MAPE) to measure forecast accuracy, the autoregressive integrated

moving average (ARIMA) model predicted a further reduction in both CTAdd to a mean of

51.51 ± 13.21 s (AIC = 5403.13) with an error of 6.32%, and CTSum to a mean of 54.57

± 15.37 s (AIC = 3852.61) with an error of 8.02% over an additional 100 forecasted

trials. When the testing was repeated, the actual mean performance differed by 1.35

and 4.41 s for each of the tasks, respectively, from the ARIMA point forecast value.

There was no difference between the ARIMA model and actual performance values

(p-value CTAdd = 1.0, CTSum=0.054). This is in contrast to both Wright’s model and

linear regression (p-value < 0.0001). By accounting for both variability in performance

over time and task difficulty, forecasting mental arithmetic performance may be possible

using an ARIMA model, with an accuracy exceeding that of both Wright’s model and

univariate linear regression.

Keywords: ARIMA model, time series, mathematics, forecasting–methodology, cognitive performance

1. INTRODUCTION

Learning curves aim to model the gain in efficiency (increase in productivity, decrease in activity
time, or both) of a repetitive task with increasing experience. The mathematical representation of
the learning process is of particular interest across several disciplines including psychology (Mazur
andHastie, 1978; Balkenius andMorén, 1998; Glautier, 2013), medicine (Sutton et al., 1998; Ramsay
et al., 2000; Dinçler et al., 2003; Hopper et al., 2007; Harrysson et al., 2014; Blehar et al., 2015),
economics/industry (Cunningham, 1980; Lieberman, 1984; Badiru, 1991; Smunt and Watts, 2003)
and more recently, artificial intelligence (Schmajuk and Zanutto, 1997; Perlich et al., 2003; Li et al.,
2015).
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Learning occurs most rapidly early in training, with equal
increments in performance requiring a longer practice time in the
later stages of the learning process. The classical understanding is
that these diminishing returns result in learning curves that are
smooth, decelerating functions (Mazur and Hastie, 1978; Jaber
andMaurice, 2016). In 1880Hermann Ebbinghaus first described
the learning curve as a forgetting function; in a series of rigorous
experiments he approximated the parameter as a negative
exponential equation (Murre andDros, 2015). In 1936 TPWright
investigated direct labor costs of assembling a particular aircraft
and noted that the cost decreased with worker experience, a
theory subsequently confirmed by other aircraft manufacturers
(Wright, 1936). Analogous to Ebbinghaus’s forgetting curve, he
predicted the acquisition of skill followed a negative power
function currently referred to as Wright’s Model:

yt = a · xb (1)

Where yt = the cumulative average time per unit, x =

the cumulative number of units produced, a = the time
to produce the first unit and b = learning coefficient (the
slope of the function) ranging from −1 to 0; values close to
−1 indicate a high learning rate and fast adaptation to task
execution. Subsequently, JR Crawford described an incremental
unit time model aimed at improving time representation in
the algorithm, by substituting (x) in Wrights’ model with
the algebraic midpoint of the time required to produce a
batch of units; this modification was a consequence of an
observation that the time to complete a task decreased by a
constant percentage, whenever the sum of the units doubled
(Crawford, 1944; Jones, 2018). Three-parameter, two-parameter
and the constant time exponential models were described to
improve longterm predictions (Knecht, 1974; Mazur and Hastie,
1978). These algorithms were outperformed by multi-parameter
hyperbolic models, where neutral, positive and negative learning
episodes are represented through corresponding variable slope
smooth curve profiles (Mazur and Hastie, 1978; Nembhard and
Uzumeri, 2000; Shafer et al., 2001; Anzanello and Fogliatto,
2007). While the conventional univariate learning curves express
a quantitative dependent variable in terms of an independent
variable, multivariate models were eventually formulated to
encode both qualitative and quantitative factors influencing the
learning process (Badiru, 1992).

The smooth curves generated by these formal models provide
an estimate at the average level of a set of observations.
However, variation in performance demands a more rigorous
representation of the learning process. This variation can be
represented in a time series through two stochastic terms.
an autoregressive term (AR), calculated as a weighted value
from another point in the series, and a moving average
(MA), which is estimated from the error terms in the series
(Hyndman and Athanasopoulos, 2018). Characterization of time
series using either an AR, MA, or combined ARMA processes
was suggested independently in the 1920s by the Russian
statistician and economist Eugen Slutsky (Slutzky, 1937), and
the British statistician George Yule (Yule, 1921, 1926, 1927).
It was not until the 1970s when Box and Jenkins described

the autoregressive integrated moving average (ARIMA) model,
which uses differencing of successive observations to render the
series stationary, which is an essential property of the series
for statistical validity (Milgate and Newman, 1990; Manuca and
Savit, 1996). This study aims to investigate whether accounting
for variance in the mental arithmetic using an ARIMA model is
more accurate at forecasting performance, compared to Wright’s
model and univariate linear regression.

2. MATERIALS AND METHODS

2.1. Test Description
The learning period duration was 60 days, followed by 8 test
days to assess the model forecasts. Tests were conducted between
7:00 and 7:30 a.m. Test sheets were randomly generated from
the Soroban exam website (www.sorobanexam.org). Each sheet
lays out both the questions and answers of a set of 10 columns
of numbers (called a trial in this study). A sheet was composed
of a mixture of six addition and four summation trials. The test
difficulty was set to what is known in the Japanese Soroban exam
system as difficulty level 3rd kyu, which consists of numbers
ranging between 100,000 and 999,999. At the end of the test, a
trial outcomewas compared with the printed result and recorded.
The last cell of the trial column was color coded with either a
blue or red color, to indicate a successful or unsuccessful trial,
respectively. Also, the time to complete a set of additions or
summations was recorded in seconds. An example test sheet is
provided in Figure 1. The in-built iOS voice over app (High
Sierra 10.13.6) was used to vocalize the list of numbers from
a .pdf list from the test sheet. Cumulative calculation time was
defined as calculation time in seconds for adding 10 sequential
6-digit numbers, which either represented the addition task only
(CTAdd) or a combination of addition and subtraction (CTSum).
The author had limited prior experience with the Soroban (self-
taught in 2017). Refer to the Supplementary Material section for
the learning and test phase of the dataset.

2.2. The Soroban
The Soroban is a mechanical calculator, of which the origins are
traced back to Mesopotamia, 2,500 years BC. Basic mathematical
operations (addition, subtraction, multiplication, and division)
can be performed using the device. There are two principles
of operation: all calculations are performed as a number is
pronounced, i.e., from the left to right. In addition, it reduces
the complex mental mathematics to a simpler task, by using
an algebraic principle of the method of complements, being
in this case, either five or ten (Association, 1989; Schumer,
1999). Number representation and an example calculation is
demonstrated in Figure 1. For clarification colored arrows are
the next move in an operation (yellow = up, red = down). All
computations are performed from left to right. Beads in contact
with the central horizontal beam are considered in the final
calculation. In this example of an addition operation (522+398),
computation is started by representing the number 522 on the
Soroban (Figure 1Ci). The number (300) is then added to the
hundreds rod (Figure 1Cii). Direct representation can take place
with this step as there are an adequate number of beads not
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FIGURE 1 | Test example. (A) The test consisted of 10 columns (trials) of 6-digit numbers labeled 1–10. There were six addition and four summation trials per test

sheet. To provide a visual indicator of performance in each sheet, color coding at the last cell of each column, where a blue or red color was used to indicate a correct

or incorrect result, respectively. (B) Digits from 0 to 9 are represented on each rod by adding the numerical value of all beads contacting the central horizontal beam.

The lower beads have a numerical value of 1, whereas the single upper bead has a value of 5. (C) An example of an addition operation (522+398) showing the

principles of number representation and complementary number calculations (details provided in the text). Images generated with abacus software http://www.

komodousa.com.
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contacting the central beam. Adding 90 to the tens rod is not
possible directly therefore, the complementary technique is used,
in this method 100 − 10 = 90, a bead is added to the hundreds
rod and another subtracted from the tens rod (Figure 1Ciii). To
add 8 to the ones rod the complementary technique again, where
10− 2= 8, a bead is added to the tens rod and 2 subtracted from
the ones rod giving a result of 920 (Figure 1Civ).

2.2.1. Time Series Model Description
An ARIMA time series model is mainly defined by three terms
(p,d,q), which represent the autoregressive (p), integrative (d),
and themoving average (q) parameters of themodel, respectively.
The general mathematical description of the model is provided
below (Box et al., 2015):

ϕ(B)zt = φ(B)▽dzt = θ0 + θ(B)at (2)

where

φ(B) = 1− φ1(B)− φ2(B)
2....− φp(B)

p (3)

θ(B) = 1− θ1(B)− θ2(B)
2....− θq(B)

q (4)

1. (B) is the backward shift (lag) operator, which is defined by
Bkzt = zt−k. This operator is convenient for describing the
process of shifting between successive points in the series. That
is to say B, operating on zt , has the effect of shifting the data
back one period.

2. φ(B) is the autoregressive polynomial operator in B of degree
(p); it is assumed to be stationary, that is, the roots of φ(B) =
0 lie outside the unit circle.

3. ϕ(B) = θ(B)▽d is the generalized autoregressive (backward
difference ▽zt) operator; which is a non-stationary operator
with d of the roots of ϕ(B) = 0 equal to unity, that is, d
unit roots. The backwards difference operator is defined as
▽zt=zt − z(t−1)=(1− B)zt . Differencing is used to stabilize the
series when the stationarity assumption is not met.

4. θ(B) is the moving average polynomial operator in B of degree
(q); it is assumed to be invertible, that is, the roots of θ(B)= 0
lie outside the unit circle.

5. The error term (at), which is assumed to have a Gaussian
distribution, with a mean (µ) of zero and a constant variance
of (σ 2

ǫ ).

In practical terms, fitting the ARIMA model requires defining
the model order (p,d,q). The autoregressive (ar) term, determines
the value of (p), which is a datapoint in the series weighted by
the value of proceeding data points. The term is given a number
(arn); this represents the lag value in the series from where the
correlation was calculated. The moving average (man) corrects
future forecasts based on errors made on recent forecasts;
this term determines the (q) of the model order calculated
from the partial autocorrelation function, which is a summary
of the relationship between an observation in a time series
with observations at prior time steps with the relationships of
intervening observations removed. The integrated (d) portion
of ARIMA models does not add predictors to the forecasting

equation, rather, it indicates the order of differencing that has
been applied to the time series to remove any trend in the data
and render it stationary.

2.2.2. Statistical Analysis
Data was analyzed in R. The distributions of CTAdd and
CTSum were modeled using the fitdistplus() package (Delignette-
Muller and Dutang, 2015). Results are expressed as the median,
range and interquartile range (IQR). Pearson’s Chi-squared test
(χ2) with Yates’ continuity correction was used to assess the
differences in the accuracy of the calculated result between the
addition and summation tasks. The Wilcoxon ranked sum test
was used to assess the differences in CTAdd and CTSum.

Parameters of Wright’s model were estimated using the
learningCurve() package in R. This package uses Equation (1) in
its calculations (Boehmke and Freels, 2017). The learning natural
slope estimate (b) was calculated using the equation:

b < −
Log10T − Log10t

Log10n− 1
(5)

where T = total time (or cost) required to produce the first
n units, t = time of all trials, n = total trials. The learning
rate estimate (s) is calculated from the natural slope estimate by
applying the following equation:

s =
10b∗log10(2)+2

100
(6)

To forecast the 100th additional trial direct substitution in
Equation (1) of (x) was done, where x = time for the 947th and
663rd attempt for the addition and summation tasks, respectively
(a= the time for the first attempt in each of these tasks).

Univariate linear regression was utilized to assess the
correlation between the time to perform the task and the number
of trials and the equation of the best line fit was derived. The
adjusted correlation coefficient (R2) was used to represent the
proportion of the variance explained by the model fits. The
residual standard error (RSE) was used to assess model fit to
the residuals.

The autoregressive integrated moving average model
(ARIMA) was used for forecasting. The time series was plotted
together with autocorrelation (acf) and partial autocorrelation
functions (pacf). Although automated fitting of the time series
(auto.arima) from the forecast package was initially used,
acf and pacf graphs were used to confirm the order (p,q,d)
of the series. After visual inspection of the time series plot
suggested stationarity (mean, variance, and auto-covariance
being independent from time), this assumption was confirmed
by applying two statistical tests: the augmented Dickey-Fuller
test (ADF), which is unit root test for stationarity, and The
Kwiatkowski–Phillips–Schmidt–Shin test (KPSS). Unit roots
(difference stationary process, i.e., a stochastic trend in a time
series, sometimes called a “random walk with drift”), which
exist in a time series if the value of α=1 in the general time
series equation:

Yt = αYt−1 + βXe + ǫ (7)
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The lag length (k) was chosen for this test (CTAdd k = 6, and
CTSum k = 5) to avoid serial correlation of the residuals by
choosing the last statistically significant lag, as determined by
the partial autocorrelation function (pacf). The KPSS test was
then applied, which is used for testing the null hypothesis that an
observable time series is stationary around a deterministic trend
(mean) or is non-stationary due to a unit root. Selection of the
ARIMA model order (p,d,q) was chosen using the automated
R auto.arima() command, which combines unit root tests,
minimization of the corrected Akaike’s Information Criterion
(AICc) and Maximum likelihood estimation (MLE) to obtain an
ARIMA model (Hyndman and Athanasopoulos, 2018). Validity
of the model parameter choice was confirmed by plotting the
autocorrelation (ACF) and partial autocorrelation (PACF) plots
of the stationary data to determine a possible model candidate
as suggested by the minimal AICc. Model fitting diagnostics also
considered the lowest root mean square error (RMSE) and mean
absolute percentage error (MAPE). A plot of the ACF of the
residuals was done to confirm if the residuals appeared to be
white noise. Once these criteria were met the forecast equations
were calculated. The characteristic roots of both time series
equations were plotted to assess whether the model is close to
invertibility or stationarity in relation to the complex unit circle.
Any roots close to the unit circle may be numerically unstable,
and the corresponding model will not be suitable for forecasting.
This possibility is mitigated through the auto.arima() function,
which avoids selecting a model with roots close to the unit
circle (Hyndman and Khandakar, 2008). Plotting the fittedmodel
against the time series plot was performed. The models were
tested for autoregressive conditional heteroscedasticity using the
McLeod-Li test. Plotting the acf of the residuals and the Ljung-
Box test were performed to assess for autocorrelations. In order
to assess the model performance, the mean point forecast was
reported from each model. In addition, forecasted data was
generated from the model parameters and compared with actual
test performance for an additional 100 trials using a pairwise-
Wilcoxon test with Bonferroni correction. A p-value of<0.05 was
considered statistically significant for all tests.

3. RESULTS

Over 60 days a total of 1,410 trials were conducted. The actual
test time was 26.28 h during which a total of 847 addition and
563 summation trials were conducted. A variable number of
trials, ranging from 0 to 70 trials per day were carried out. The
distribution of both CTAdd and CTSum was non-normal and
best fit a skewed exponential power type 4 distribution (model
coefficients fit p < 0.0001). The skew and kurtosis of CTAdd were
1.38 and 7.46, respectively, whereas the corresponding values
for CTSum were 0.80 and 3.40. The density distribution plot is
demonstrated in Figure 2.

Addition tasks, being the simpler of the two, were more likely
to yield an accurate result, and this difference compared to the
outcome of the summation task was statistically significant (χ2

= 9.33, df = 1, p < 0.002). There was an increasing trend of
total successful trials, as demonstrated in Figure 3. As expected,
there was an improved performance with training, there were
correct outcomes were recorded for 449/660 (68%) of trials in the

FIGURE 2 | Density plot of performance subset by task. The density plot uses

kernel smoothing to reduce noise in the data, which generates a more defined

distribution. The peaks of a density plot display represents values that are

concentrated over the test interval. Noted in the plot are the narrower range of

values and the shift to the left of the peak density for CTAdd compared to

CTSum.

first half compared to 598/750 (79.7%) in the second half of the
learning period. The outcome of all tests classified by task type
are summarized in Table 1.

Table 2 Summarizes the performance timing characteristics.
From this table it can be noted that the median CTAdd was
shorter compared to the median CTSum, this difference persisted
throughout the learning period duration. Trials that concluded
with an accurate calculated result (median time = 64 s, IQR
= 13, range 48–117 s) were quicker compared to those where
the result was incorrect (median time = 70 s, IQR = 15, range
51–127 s). These differences between addition, summation and
performance times at the mid-learning interval were statistically
significant (p < 0.0001). These results are shown in Figure 3.

3.1. Mathematical Models
3.1.1. Wright’s Model
The time for the first event for CTAdd was 76 s, the total time
54,302 s and the number of trials 847, whereas for CTSum the first
event was 74 s, the total time 40,297 s and the number of trials
was 563. The learning rate was 0.98 and 0.99 for the addition
and the summation tasks, respectively, this was calculated as a
ratio of learning time at each doubling of the event i.e., time to
event 1/time for event 2, time for event 2/time for event 4, time
for event 4/time for event 8......etc. The natural slope is calculated
by dividing the log of the learning rate by log2, this was further
refined by calculating the natural slope estimate when the total
number of trials, total time of all trials and the time for the first
trial is known. Substituting in Equation (5), the natural slope
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FIGURE 3 | Line graph of performance classified by task type and duration. Loess smoothed line graphs with 95% confidence intervals show the progress in test

performance classified by the calculation result accuracy over the test interval of 60 days. There was both (A) an increase in the number of correct calculations and (B)

a reduction of test time for addition and summation tasks over the learning period.
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TABLE 1 | Learning outcome performance.

Trial Correct Incorrect Total

LEARNING PERIOD (DAY 0–59)

Addition 654 (r = 77%, c = 62%) 193 (r = 23%, c = 53%) 847 (60%)

Summation 393 (r = 70%, c = 38%) 170(r = 30%, c = 47%) 563 (40%)

Total 1047 (74%) 363 (26%) 1410

TESTING PERIOD (DAY 0–7)

Addition 82 (r = 82%, c = 51.9%) 18 (r = 18.0%, c = 42.9%) 100 (50%)

Summation 76 (r = 76%, c = 48.1%) 24 (r = 24%, c = 57.1%) 100 (50%)

Total 158 (79%) 42 (21%)

A comparison of the outcome of the trials during the learning and test periods. The learning

period (60 days). The testing period (8 days) was to verify the accuracy of the model

predictions, r = percentage by row, c = percentage by column.

TABLE 2 | The time to complete the tasks showed an expected reduction with

learning.

Range

Median IQR Min Max

TOTAL LEARNING PERIOD

CTAdd 63 12 48 127

CTSum 70 14 53 108

INITIAL LEARNING PERIOD (DAY 0–29)

CTAdd 68 10 57 127

CTSum 78 14 59 108

LATE LEARNING PERIOD (DAY 30–59)

CTAdd 58 7 48 88

CTSum 64 9 53 87

TEST PERIOD

CTAdd 53 4 45 69

CTSum 58 6.25 47 75

The learning period was 60 days during which 1,410 trials were conducted, the

performance modeled, and forecasting equations were used to generated expected

timing data. The test period consisted of 100 additional trials.

estimate was−0.025 and−0.005 for the addition and summation
tasks, respectively. The learning rate was further refined by taking
into account the natural slope estimate by applying Equation (7),
therefore the learning rate was estimated at 0.983 for the addition
task and 0.996 for the summation task.

Substituting in Equation (1) where (x) is the forecasted
performance time at the end of the 100th trial, CTAdd would
be 62.24 s and CTSum would be 67.34 s. The plot of the model
parameters is outlined in Figure 4.

3.1.2. Univariate Linear Regression
In the simplest case, when the variance in performance was
disregarded, univariate linear regression was used to estimate the
correlation between the cumulative time to perform both tasks
and number of trials conducted. Consequently, the following
equations were derived, where (x) is a variable representing the

FIGURE 4 | Negative exponential curves for (A) addition and (B) summation

tasks. These learning curves were generated using Wright’s model. The natural

slope estimate is steeper for CTAdd (−0.025) compared to that of CTSum
(−0.005). This is a consequence of the simpler addition task reaching a

plateau quicker than the more complex summation task.

number of trials:

CTAdd = −0.027(±0.00085) · x+ 75.63(±0.41) (8)

CTSum = −0.051(±0.0021) · x+ 85.63(±0.64) (9)

The intercepts of Equations (8) and (9), +75.63(±0.41) and
+85.63(±0.64), respectively, indicate the values of CTAdd and
CTSum at baseline (day 0) when commencing the test, and
therefore represent the level of prior expertise with the task.
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Both the negative slope of the regression line (Figure 5) and
the negative (x) variable coefficient demonstrate a reduction of
performance time with learning. The summation task resulted
in a higher RSE (7.55, df = 561) compared to the addition task
(6.02, df = 845) due to the lower deviation from the regression
line as shown by the median of the residuals for summation
(−1.46) compared to (−0.6) for the addition task. The model’s
predictor (number of trials) explained about half of the variance
in the dependent variable (CTAdd and CTSum) as indicated by
an adjusted R2 of 0.55 and 0.54 for Equations (8) and (9),
respectively. Statistical significance was achieved for all model
coefficients (p < 0.0001). Substituting in these equations, the
forecast for the for the 100th additional forecasted trial yields a
mean time of CTAdd = 50.06 s and CTSum = 51.82 s.

3.1.3. Autoregressive Integrated Moving Average

Model (ARIMA)
The time series was of sub-daily frequency ranging from 10 to
70 trials (median 30) per day. There were three discontinuities
in testing: interval 2, intervals 5–10, and interval 53. The interval
was calculated from day 0 at the commencement of the test. As
shown in Figure 6 there was an overall declining average for both
the addition and the summation trials. The ADF test confirmed
stationarity of the series for both CTAdd (ADF value = −6.86, p
< 0.01) and CTSum (ADF value=−6.86, p< 0.01). However the
KPSS test was statistically significant for both CTAdd (KPSS value
= 10.23, p< 0.01) and CTSum (KPSS value= 6.81, p< 0.01), this
result indicated that the time series had stationary autoregressive
terms (ar) and non-stationary moving average terms (ma), which
was consistent with the declining trend in the performance time
for both tasks as shown in Figure 3, this analysis confirmed that
the series was weakly stationary and that differencing using the
ARIMA model was required to render the series stationary for
further analysis.

The correlograms in Figure 6 show, for both CTAdd and
CTSum that the acf is highly correlated at all lag values up to lag
30; therefore the suggested q would be of order 1. The pacf plot
is used to select the order of the p term. For the addition task the
highest significant value was at lag 6, whereas the value for the
summation task was at lag 5. Therefore, a custom ARIMAmodel
would be (6, 1, 1), AIC = 5409.09 for addition and (5, 1, 1), AIC
= 3863.65 for the summation task.

Software packages (like R) provide the option of an automated
ARIMA model order approximation, when this was trialed for
the series, an 18 and a 23-order permutation was tested for
addition and summation, from both these approaches the model
order (2, 1, 3) with drift for addition, where the AIC was 5403.13
and the order for summation was (5, 1, 4) with drift, where the
AIC was 3852.61. Hence the automated approximation provided
more favorable model parameters. The coefficients and accuracy
criterion of the model are listed in Table 3.

Autoregressive conditional heteroscedasticity (ARCH) among
the lags was considered, theMcleod-Li test for the additionmodel
ARCH effects are were absent, for the summation task, from a
total of 30 lags there wasminimal (13%) ARCH effects in lags 3–7.

FIGURE 5 | Univariate linear regression model. correlating the performance

time (seconds) with the number of trials for (A) the addition and (B) the

summation trials. The distribution of residuals from the regression line for (B) is

further from the regression line compared to (A) due to the wider variance in

performance time for the summation task.

The following equations can be used to describe the time series
fitted in Figure 6 derived in standard notation:

CTAdd(Yt) = −1.39Y(t−1)−0.86Y(t−2)+0.46e(t−1)−0.49e(t−2)

− 0.79e(t−3) − 0.032et (10)
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FIGURE 6 | Time series plot for (A) addition and (B) summation tasks with autocorrelation (acf) and partial autocorrelation (pacf) correlograms, which allow visual

interpretation of the correlation of present data points with past points in the series. The time series for both tasks is demonstrating a declining trend. The acf plots for

both tasks show a geometric pattern, with strong correlation of the sequential points up to lag 30. The pacf showed significant correlation at the 95% confidence

interval up to lag 6 for addition, and lag 5 for the summation task. These tests confirm a gradual improvement in performance over the test time with a <20%

correlation of test scores at each 6th trial in the series for addition and 5th trial for summation at the 95% confidence interval. A favorable model fit in the time series is

demonstrated as a blue line in each of the series plots.

CTSum(Yt) = −1.81Y(t−1) − 1.53Y(t−2) − 0.41Y(t−3)

+ 0.31Yt(t − 4)+ 0.092Y(t−5) + 0.97e(t−1)

− 0.01e(t−2) − 0.97e(t−3) − 0.87e(t−4) − 0.051et (11)

Where (Y) is the autoregressive term, (e) is the moving average
term, (et) is the error term and (t-n) is the lag (time interval
between two data points).

As shown in Figure 7. The mean forecasted performance for
the 100th trial for CTAdd was 51.50 ± 13.21 and for CTSum was
54.57 ± 15.37. From Table 3 using (MAPE) to measure forecast
accuracy, the model was able to forecast with an error of 6.42%
for the addition task and 8.02% for the summation task.

Independence of the residuals for both ARIMA models
was evaluated using the acf plot of the residuals, which
showed the absence of autocorrelation. This was confirmed
by the Ljung-Box test. Parameters for the addition task (χ2

= 759.99, df = 800, p-value = 0.84) and the summation

task (χ2 = 480.93, df = 500, p-value = 0.72) failed to
achieve statistical significance, therefore an absence of serial
autocorrelation in both series, thereby confirming an appropriate
model fit. The three model comparisons on predicting the
actual means on repeating the tests for a further 100 trials
for each of the addition and the summation tasks are listed
in Table 4.

The forecasted mean ARIMA model values offered a closer
match with actual test performance (p-value CTAdd = 1.0, CTSum

= 0.054), this in contrast to both Wright’s model and univariate
linear regression, for which mean values differed from these test
(p-value < 0.0001) for both tasks. Simulated data for the three
models for the forecasted period were compared using the paired
Wilcoxon rank sum test, which showed no difference for the
ARIMA model values from the actual test values (p-value CTAdd

1.0, CTSum=0.054), this is in contrast to both Wright’s and the
linear regression models which forecasted statistically significant
(<0.0001) values for both tasks.
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TABLE 3 | ARIMA model parameters.

ar1 ar2 ma1 ma2 ma3 Drift

ADDITION TRIALS ARIMA (2,1,3) MODEL PARAMETERS

Coefficients −1.3976 −0.864 0.4623 −0.4916 −0.7876 −0.0321

se 0.0922 0.0763 0.1077 0.0936 0.0766 0.0115

p-value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.005

RMSE 5.84

MAPE 6.32

AIC = 5403.13, AICc = 5403.27, BIC = 5436.32

ar1 ar2 ar3 ar4 ar5 ma1 ma2 ma3 ma4 Drift

SUMMATION TRIALS ARIMA (5,1,4) MODEL PARAMETERS

Coefficients −1.8077 −1.5259 −0.4061 0.2994 0.0916 0.9703 −0.0115 −0.9706 −0.8742 −0.0495

se 0.0859 0.1229 0.1278 0.099 0.0483 0.0749 0.0426 0.0518 0.0591 0.0089

p-value <0.0001 <0.0001 <0.001 <0.002 <0.06 <0.0001 <0.8 <0.0001 <0.0001 <0.0001

RMSE 7.28

MAPE 8.02

AIC = 3852.61, AICc = 3853.09, BIC = 3900.26

ARIMA model parameters for the addition and the summation tasks. ar, autoregressive coefficients; ma, moving average coefficients; se, standard error. RMSE, root mean square error;

MAPE, mean absolute percentage error; AIC, akaike information criterion; AICc, corrected akaike information criterion; BIC, Bayseian information criterion.

4. DISCUSSION

The ARIMA model provided a more accurate approximation to
actual performance after 100 additional trials, compared to both
univariate linear regression and Wright’s model. Considering
the model means, in their predictions, the former overestimated
and the latter underestimated the actual performance (Table 1).
Many formal models of learning generate smooth learning
curves, which are seldom observed except at the level of
average data (Glautier, 2013). In this example both Wright’s
model and simple linear regression hide important information
regarding performance variance. The ARIMA model predicted
CTAdd more accurately than that of CTSum, and this may be
accounted for by the larger number of addition trials of which
the test trials constituted 60% compared to the more complex
summation task, where the test trials constituted approximately
40% of the total learning dataset. As shown in Figure 2 the
distribution of calculation times for both tasks were non-linear.
In addition, the decline in both CTAdd and CTSum followed
a non-linear trajectory over time (Figure 3). These patterns
are consistent with the three phases of learning theory, which
predict a three phase life cycle: the incipient phase during which
a familiarization with the task occurs, which is characterized
by a slow improvement; the learning phase, is where most of
the improvement takes place; and the final phase, where the
performance levels off (Carlson and Rowe, 1976). Whereas, prior
knowledge of the task would have masked the incipient phase,
the limitations of the univariate linear model become apparent
by concealing the different performance phases altogether due to
the constant slope of its regression line.

The neurophysiological basis of the Soroban remains unclear,
however, it is known that computations using the Soroban
involves a higher level of visual imagery (Tanaka et al., 2012).

A longitudinal functional magnetic resonance imaging study of
a patient with abacus-based acalculia suggested an important
role in the parietal cortex and the dorsal premotor cortex in
arithmetic ability of abacus users (Tanaka et al., 2012). Several
cognitive processes required for mental arithmetic take place
in these regions including retrieval, computation, reasoning,
and decision making about arithmetic relations in addition
to resolving interference between multiple competing solutions
(interference resolution) (Menon, 2010). These factors may have
played a role in the differences in variance in the performance of
tasks as shown in Figures 4–6.

Calculation time for both addition and summation tasks as
shown in Figure 6 demonstrate a predictable downward trend
and a slightly higher learning rate. The slope in the univariate
linear regression was more negative for CTSum than CTAdd,
although the former was a more complex task. There may be
some influence of the difference in the scale of comparison, as
the number of trials for the summation tasks were less than
the addition tasks by about 20%. A comparison of the ARIMA
model pacf plot in Figure 6 also suggests a slightly higher
learning rate with summation compared to the addition task
as indicated by the loss of correlation over shorter lags with
the former task. In Wright’s model the steeper natural slope
estimate was approximately twice that for addition compared
to summation, perhaps reflecting the higher complexity of
the latter and a more gradual departure from the learning
phase. As multiple neural systems and pathways involved in
mathematical information processing mainly the parietal cortex,
prefrontal cortex with several functional dissociations between
brain regions differentially involved in specific operations such as
addition, subtraction, and multiplication have been suggested in
literature. Menon (2010), it is therefore difficult to speculate on
the underlying structural reason behind the detected difference
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FIGURE 7 | Forecasts for (A) CTAdd and (B) CTSum at the 95% confidence

interval for the next 100 trials. The point forecast for the 947th trial was

calculated at 51.51 ± 13.21 s, whereas that for CTSum at the 663rd trial was

calculated at 54.57 ± 15.36 s.

in learning speed. The other possibility behind the large variance
seen in summation tasks is the measured difference in the
number of complementary calculations per computation in each
trial which was not considered in this experiment.

Inherent to the mathematical property of a times series
analysis, is the capability of the model to capturing both linear
and nonlinear relationships of the variables in the model. This
property distinguishes it from other analysis methodologies
which are either linear or non-linear (Yanovitzky and VanLear,
2008). In addition to describing the learning process in rigorous

TABLE 4 | Mean point forecast.

CTAdd CTSum

POINT FORECAST COMPARISON (SEC)*

Wright’s model 62.24 (+9.38) 67.34 (+8.36)

Linear regression 50.06 (−2.74) 51.82 (−7.16)

ARIMA 51.50 (−1.36) 54.57 (−4.41)

Actual mean 52.86 58.98

Comparison of the mean point forecasted value at the 100th trial for CTAdd and CTSum.

*The number in brackets is the difference from the actual mean in seconds. The ARIMA

model provided the closest prediction to actual performance.

mathematical terms at an individual level, a psychological benefit
is conferred to the test subject through accurate feedback
of the improvement in performance. The limitations of this
technique include the amount of data required to perform the
analysis and the mathematical skill required to interpret the
results. The protracted nature of the data collection requires
a commitment in the testing process and may hinder some
practicality as a routine test of learning performance. Although
with the current experiment, the model fit was appropriate and
delivered a high level of forecasting accuracy, most time series
model predictions falter with extended forecast times due to
non-stationarity, cohort effects, time-in-sample bias, and other
challenges of longitudinal analyses (Taris, 2000; Yanovitzky and
VanLear, 2008). Therefore, it is not clear from the current analysis
how far into the future the forecast would be able to extend and
retain its predictive accuracy. While the Soroban is still widely
taught in Asian schools and therefore time series modeling may
be beneficial for a more directed approach to teaching this skill,
it may not apply to a wider population in other regions of the
world where the use of the Soroban is less common. Future
studies involving simultaneously recording an encephalogram
may uncover wave activity associated with performance and the
neurological basis of calculation errors in this task.

5. CONCLUSION

Time series analysis, by capturing the variance in performance
may offer a more accurate mathematical representation of the
learning process than classical learning theory models. The
additional advantage of the ARIMA model to accurately forecast
cognitive performance, with an accuracy exceeding that of both
Wright’s model and univariate linear regression, offers a potential
for a wider applications for evaluation of cognitive function.
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