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Enabling the ceasing of ongoing or prepotent responses and the controlling of
interference, motor inhibition facilitates the development of executive functions (EFs)
such as thought before action, decision-making, self-regulation of affect, motivation,
and arousal. In the current paper, a characterization is offered of the relationship
between motor inhibition and the executive functioning system, in the context of a
proposed division into predominantly affective (hot) and cognitive (cool) components
corresponding to neural trajectories originating in the prefrontal cortex. This division is
central to understanding the effects of a specifically-structured sensorimotor movement
training practice, known as Quadrato Motor Training (QMT), on hot and cool EFs. QMT’s
effects on crucial mechanisms of integrating different EF components are discussed.
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INTRODUCTION

Motor and cognitive development’s close relationship (Sibley and Etnier, 2003; Pesce et al., 2016;
Stein et al., 2017) is exemplified by the role of motor inhibition in the development of executive
functions (EFs) (Hammond et al., 2012). As high-order cognitive functions, EFs (e.g., working
memory, inhibition, planning, active monitoring, set shifting; Miyake et al., 2000; Diamond, 2013)
contribute to goal-directed behavior while helping limit impulsive responses and regulate emotions
(Riggs et al., 2013; Blair, 2016; Leshem, 2016; Leshem and Yefet, 2019). By inhibiting ongoing or
prepotent responses and controlling attentional interference (Bickel et al., 2012; Bari and Robbins,
2013; Leshem and Yefet, 2019), motor inhibition facilitates EF development: thought before action,
decision-making, and self-regulation of affect, motivation, and arousal (Barkley, 1997).

Therefore, motor inhibition, developed through experiences that involve body movements,
is supposed to integrate motor and cognitive development. Motor experiences elicit different
structural and functional changes, including physiological changes, such as enhanced cerebral
blood flow (Stein et al., 2017) and changes in neurotransmitter release (Goldstein, 2006; Miranda,
2007; Winter et al., 2007). The interrelationship between motor and cognitive functions is further
reflected by their simultaneous neuronal activation during complex or novel tasks requiring
fast reactions or changing conditions (Diamond, 2000; Koziol et al., 2014; Leisman et al., 2016;
Stein et al., 2017).
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This mini-review characterizes the relationship between
motor inhibition and EFs in the context of a proposed division
into predominantly affective and cognitive components. This
division is central to understanding the effects of structured
movement practices on EF-based abilities.

FUNCTIONALITY- AND
COGNITIVE-BASED DIVISIONS IN
EXECUTIVE FUNCTIONING

EFs are traditionally considered purely cognitive top-down
processes. They are typically categorized into either abstract
cognitive functions (e.g., general attention abilities, such as
switching attention; Heaton et al., 1993; Kenemans et al.,
2005) or those that operate in highly motivated or emotionally
salient contexts (Zelazo and Müller, 2002). Accordingly, a
distinction has been proposed between “cool EFs,” elicited by
abstract, decontextualized tasks lacking significant affective
or motivational components (Zelazo and Carlson, 2012;
Tsermentseli and Poland, 2016), and “hot EFs” (Zelazo and
Müller, 2002), involved in emotions, beliefs, or desires, such as
those associated with reward and punishment, social behavior,
and emotional components of decision-making (Leshem, 2016).

Neuroscientific studies suggest a distinction between cool and
hot EFs, reflected in how they are traditionally measured (Bechara
et al., 2000; Berlin et al., 2004; Anderson, 2010; De Luca and
Leventer, 2010; Zelazo and Carlson, 2012). Patients with specific
brain damage (e.g., orbitofrontal cortex) may show intact cool
EFs (assessed by classical tests such as the WCST) but impaired
hot EFs (assessed by tests like “the Iowa gambling task” (e.g.,
Bechara et al., 1994) or vice versa (Zelazo and Carlson, 2012).

This functional distinction may reflect a structural one, as
neural systems underlying EFs appear to vary as a function of
motivation. It is generally accepted that EFs are largely governed
by the pre-frontal cortex (PFC) and its reciprocal interactions
with other cortical and subcortical brain regions (Diamond,
2000; Miyake et al., 2000; Blair, 2016). Accordingly, hot and
cool EFs are theorized to be associated with differential neural
trajectories originating in ventral-medial and dorsolateral PFC
sections, respectively (Zelazo and Müller, 2002).

Hot EFs are generally associated with the paralimbic
cortex, comprised of the ventromedial PFC (VMPFC) and
caudal orbitofrontal cortex (OFC). Closely connected to
limbic structures (e.g., amygdala, hypothalamus) these areas
provide descending input to midbrain structures (Barbas,
2000) and are involved in inhibition, emotion, and reward
processing − suggesting a behavioral self-regulation role.
Numerous case studies illustrating the effects of damage to these
areas support this notion (Stuss and Levine, 2002; Fellows, 2004;
Bechara, 2005).

In contrast, cool EFs are thought to recruit the lateral
PFC, including the dorsolateral PFC (DLPFC), involved in
attentional control, planning, working memory, spatial and
conceptual reasoning, and learning (Stuss and Levine, 2002;
Fellows, 2004; Banfield et al., 2004; Toplak et al., 2005;
Crews and Boettiger, 2009).

Moreover, distinct EF components appear to demonstrate
different developmental trajectories. Age-related improvements
seem to emerge later and more gradually for hot EFs than
cold, suggesting varied development courses. EFs are known
to develop both linearly and nonlinearly during childhood
and early/late adulthood, associated with underlying neural
development and maturation (Best and Miller, 2010; Taylor et al.,
2015). Progressively less recruitment of PFC regions is normal
with increasing age (Somerville et al., 2011), presumably due
to more diffuse neural engagement and less specialization at
younger ages (Luna et al., 2013; Casey, 2015). As the brain
continually reorganizes, mainly during adolescence, necessary
neural connections are strengthened and unnecessary ones are
pruned, creating more efficient focal recruitment of PFC regions
(Shulman et al., 2016). According to the orthogenetic principle
(Werner, 1978), executive functioning may be an initially unified
construct (Wiebe et al., 2008; Hughes et al., 2009; Wiebe et al.,
2011) that differentiates and specializes over time (Miyake et al.,
2000; Johnson, 2011; Howard et al., 2015), producing distinct
hot and cool EFs.

Deficits in hot and cool EFs may engender different
psychopathologies and developmental outcomes (Anderson,
2002; Sonuga-Barke, 2005). When brain reorganization processes
do not progress normally, diffuse engagement of neural regions
may continue, resulting in insufficiently differentiated EFs
(Johnson, 2011; Zelazo and Carlson, 2012). Likewise, if neural
circuitry is damaged due to extrinsic injury, resulting behaviors
can reflect earlier stages of EF development; such clinical
expressions generally include disruption in both hot and
cool EFs, such as deficits in delay gratification, inability to
anticipate consequences, and verbal and behavioral disinhibition
(Zelazo and Carlson, 2012).

INTEGRATION BETWEEN HOT AND
COOL EFS IN ADAPTIVE FUNCTIONING

While distinct, hot and cool EFs also appear interdependent,
working together in a coordinated system (Zelazo and Carlson,
2012). Dysfunction in both hot and cool EFs is apparent in
a broad range of neurodevelopmental and psychopathological
conditions (Snyder et al., 2015; Malloy-Diniz et al., 2017) such
as autism (Gilotty et al., 2002; Luna et al., 2007; Johnston et al.,
2019), ADHD (Swanson, 2003; Tsal et al., 2005; Barkley, 2010;
Stern et al., 2017), PTSD (Aupperle et al., 2012; Olff et al., 2014)
and anti-social personality disorder (Morgan and Lilienfeld,
2000; Ogilvie et al., 2011).

Known to affect systems associated with either hot or cool
EFs at the neural level, these disorders nevertheless appear to
manifest both components at the clinical and behavioral level,
suggesting interdependency. For example, while cool EFs are
a focus of autism spectrum disorder research (Kouklari et al.,
2019), a crucial role for hot EFs has also been proposed (Kouklari
et al., 2019). Zelazo and Müller (2002) theorize that autism
is characterized by primary deficits in hot EFs with secondary
impairments in cool EFs. Conversely, anti-social personality
disorder and/or psychopathic traits are generally associated with
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hot EF deficits, such as response reversal, sensitivity to reward,
and affective decision-making (Mitchell et al., 2002; Blair, 2010;
Carré et al., 2013) despite mixed findings in both EF deficits
among individuals exhibiting anti-social behavior (see De Brito
et al., 2013; Delfin et al., 2018).

Interdependency between hot and cool EFs suggests that
impairments in one EF type may lead to impairments in the
other. Therefore, integration and balance between the two EF
components and their underlying neural systems may be essential
to adaptive functioning and well-being. A specific form of
structured sensorimotor training may play a significant role in
achieving this integration.

ENHANCING EXECUTIVE FUNCTIONING
THROUGH MOTOR INHIBITION:
QUADRATO MOTOR TRAINING AND THE
ABILITY TO WAIT

Quadrato Motor Training (QMT) is a non-aerobic,
coordination-demanding, and cognitively-engaging movement
practice developed by Patrizio Paoletti (Ben-Soussan et al.,
2015b). Practitioners are required to alternate between dynamic
movements and static postures, while focusing attention and
awareness on their bodies in the present moment and excluding
all the other thoughts. QMT is conducted on a 50 × 50 cm
square known as the Quadrato space. Its corners are labeled
with the numbers 1–4. Practitioners are required to either
produce or inhibit a motor response in the Quadrato space,
based on specific verbal instructions presented in an audio
recording. The motor responses are steps in one of three
possible directions: right or left; forward or backward; or
diagonally. For example, a verbal instruction can be “1–2,”
which directs the practitioner to take a step forward from corner
number 1 to corner number 2. When the two numbers of the
verbal instruction are the same (e.g., “1–1”), the practitioner
must inhibit the impulse to move upon hearing the voice
command and wait for the next instruction. The inhibitory
control (cognitive and motor) required to make a decision
based on cognitively processed information related to the
specific verbal instruction is one of the main features of the
QMT. Inhibitory control is also involved in continuing to the
next instruction rather than stopping when a mistake occurs
(De Fano et al., 2019).

Diamond and Ling (2016) claimed that practices aiming
to improve cognition in general, and EFs in particular, must
not only recruit cognitive resources, but challenge them
continually. It therefore stands to reason that QMT, which is
associated with continual cognitive challenges, would improve
cool EFs. Indeed, this was demonstrated in previous research
using abstract, decontextualized problem-solving tasks absent
significant affective or motivational components, such as the
Alternate Uses Test (AUT; Guilford, 1967; Ben-Soussan et al.,
2013, 2015a; Venditti et al., 2015; Piervincenzi et al., 2017).
Both single session and protracted QMT practice have produced
increased ideational flexibility (Ben-Soussan et al., 2013, 2015a;

Venditti et al., 2015) − the ability to produce creative ideas by
shifting from one meaningful category to another (Diamond,
2013). A prominent measurable dimension of divergent thinking
(Guilford, 1967), this ability to change perspectives relies on
inhibitory control; in order to effectively “think outside the box,”
other perspectives previously loaded in working memory must be
inhibited (Diamond, 2013).

QMT-induced gains in ideational flexibility likely result from
motor and cognitive inhibition acquired through the cognitively-
engaging motoric practice. Indeed, interventions involving
only the cognitive component of QMT practice (participants
responding verbally to QMT instructions rather than with
movement) did not significantly change ideational flexibility
(Ben-Soussan et al., 2013, 2015a). Conversely, practicing a motor
component similar to the QMT (i.e., taking steps) but without
cognitive effort (i.e., reduced reaction choices) also did not
change ideational flexibility (Ben-Soussan et al., 2013, 2015a;
Venditti et al., 2015). This suggests that neither motor experience,
nor cognitive challenge, alone is sufficient to enhance cool EFs.
Benefits appear to result from the combination, as evidenced
by physical activity research indicating that more effective
improvement in executive functioning resulted from combined
cognitive, physical, and emotional engagement, than on cognitive
stimulation or physical activity alone (Pesce, 2012; Tomporowski
and Pesce, 2019).

Moreover, cognitive benefits of QMT are not limited to
cool EFs. QMT also enhances self-efficacy (Paoletti et al., 2017;
Piervincenzi et al., 2017) and affect balance (Paoletti et al., 2017),
which are both closely related to higher-order cognitive functions
and self-regulation (Schunk and Zimmerman, 2007; Kessler and
Staudinger, 2009).

Research shows that one week of intense QMT combined
with a breathing meditation enhances general self-efficacy,
compared to the breathing meditation alone (Paoletti et al.,
2017). Moreover, the combination of QMT and breathing
meditation improved affect balance, shifting it toward more
positive emotions (Paoletti et al., 2017). These results support the
notion that cognitively-engaging movement-based experiences
can improve hot, as well as cool, EFs.

The impact of motor-cognitive-affective activity elicited by
QMT was explored using semi-structured oral interviews (Ben-
Soussan et al., 2017). Following QMT practice, participants
report increased experiences of attention, mindfulness, ability
to wait, positive emotions, and bodily harmony. They also
report experiences of spontaneous visualization, intuition, and
sense of wonder, which have been categorized as altered states
of consciousness and are similar to experiences commonly
elicited during meditation practices (Wallace, 1999). This further
supports QMT’s potential enhancement of hot EFs. QMT may
be considered an embodied cognitive training and “mindful
movement” (Ben-Soussan et al., 2014; De Fano et al., 2019).
Like other mindfulness-based practices, mindful movement
is mainly characterized by a focus on movement in the
present moment while excluding other thoughts, inclusion of
some form of body movement, and focus on breathing (De
Fano et al., 2019); nevertheless, the existing studies related to
QMT of which we are aware did not provide direct, explicit
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instructions related to these components. Yet, each participant
clearly had to be mindful of the location of their body in
the Quadrato space and, therefore, we cannot exclude the
importance of body awareness and interoception, which, in
turn, can affect hot EFs. Russell and Arcuri (2015) suggest
mindful movement practices involve key aspects of mindfulness
such as preparation and execution of movement, regulation of
attention, working memory, and their relationship to mind-
wandering, an opposite construct to mindfulness (Mrazek et al.,
2012). QMT involves each of these aspects: regulation of divided
attention, working memory updating (e.g., noting one’s current
location to know where to move to next), and prevention of
mind-wandering via a need to be “in the here and now” due
to constantly updating commands (Ben-Soussan et al., 2014;
De Fano et al., 2019). Mindful movement training engages
“higher-order” inhibition and response selection that underlie
attention and cognitive control) that requires moment-by-
moment sensorimotor updating (Clark et al., 2015; Kimmel and
Rogler, 2018). In line with this, QMT requires second-by-second
mindful awareness for attending the upcoming next command
(Ben-Soussan et al., 2014; De Fano et al., 2019).

QMT AS A MEANS OF INTEGRATING
COOL AND HOT EFS

QMT’s potential benefits for both cool and hot EFs are further
supported by research on functional and structural brain changes.
As noted above, cool and hot executive processes are, respectively,
associated with specific areas of the PFC. Those areas are
interconnected with numerous regions throughout the brain,
associated with changes in behavior and cognition that fall within
the broader area of EFs (Barbas and Zikopoulos, 2007). Goal-
directed, purposeful EFs support cognitive and affective states
with purported association with differential neural trajectories
originating in dorsolateral, and ventral and medial, PFC sections,
respectively (Zelazo and Müller, 2002; Blair, 2016).

Accurate execution of QMT involves concurrent motor
activation and response inhibition. In turn, response inhibition
is mediated both by the cool EF system responsible for planning,
control, and execution of voluntary movements, and the hot
EF system associated with processing and regulating behavior
involving emotional content (Bush et al., 2000; Etkin et al.,
2011). Executing specifically structured movements can lead
to integrated communication between brain areas associated
with cognition and emotion. Accordingly, QMT generates
changes in neural activities, such as frontal alpha activity and
contingent negative variation amplitude (Ben-Soussan et al.,
2013; Lasaponara et al., 2019), known to be closely related to
planning, decision making, and moral judgment (Harung et al.,
2009; Travis et al., 2011), all of which require both cool and
hot EFs; thus supporting the hypothesis that QMT can improve
cool and hot EFs.

Ben-Soussan et al. (2013) showed that improvements in
ideational flexibility were concurrent with enhanced intra-
and inter-hemispheric connectivity, expressed in increased
synchronization between brain regions located in the same

or different hemispheres, respectively. Increased neural
synchronicity was specifically related to bilateral fronto-temporal
networks and frontal areas in the alpha band (8–12 Hz), and
was confirmed in a later study by the same group (Lasaponara
et al., 2017). Accordingly, QMT may positively affect cool EFs
by increasing frontal alpha connectivity. One should keep in
mind that so far this line of studies examined changes in baseline
EEG activity rather than functional EEG activity during a
behavioral task. Future studies should examine this also during
task conditions.

These findings align with research showing enhanced
attention induced by an attentional training program and
mediated by increased functional connectivity in frontal regions
(Liu et al., 2019). Similarly, Basharpoor et al. (2019) found
a positive association between high executive functioning,
including inhibitory control, and increased alpha activity in
frontal regions of right and left hemispheres. Increased functional
synchronicity in the alpha band was found not only in relation
to frontal areas; following QMT, the limbic network was also
found more synchronized with both hemispheres’ frontal areas,
compared to pre-training (Lasaponara et al., 2017).

As noted above, the limbic system is involved in emotional
experience, motivation, learning, and memory formation
(Isaacson, 1982; LeDoux, 2000). In this regard, there is a line
of research within the theories of consciousness and high-
order cognition that argue that emotions are not built-in but
are higher-order states instantiated in cortical circuits. They
are not triggered but created. Because the limbic cortices
are strongly interconnected and position in hierarchical
cortical information flow, they can contribute to the neural
basis of conscious access and may be a source of emotional
experience and influence the coordination and regulation
of cognitive-emotional processes (Chanes and Barrett, 2016;
Kovner et al., 2019; for extensive reading see Barrett, 2017;
LeDoux and Brown, 2017). The QMT-associated increase
in limbic-frontal functional connectivity may reflect its
effectiveness in integrating the “coolest” of cognitive functions
with the “hottest.” Possibly promoting adaptive behavioral
responses, this could underlie the QMT-induced increase in
general self-efficacy and affective balance (Paoletti et al., 2017;
Piervincenzi et al., 2017).

Notably, QMT has been found to increase white matter
integrity in several tracts [e.g., superior longitudinal fasciculi
(SLF) and uncinate fasciculi (UF); Piervincenzi et al., 2017]
that connect the PFC with the medial temporal lobe (Kovner
et al., 2019), which is associated with numerous disorders of
maladaptive behavior and low emotional control, including
obsessive-compulsive disorder and PTSD (Jenkins et al., 2016).
Further, enhanced SLF white matter integrity was positively
associated with improvements in ideational flexibility (Ben-
Soussan et al., 2015a) and general self-efficacy (Piervincenzi
et al., 2017). QMT-induced improvement in UF white matter
integrity was also positively correlated with first-person reports
of experiencing reduced mind-wandering (Ben-Soussan, 2019).
These findings support the possibility that QMT facilitates
integration between cool and hot EFs. Future studies should
examine whether QMT-induced enhanced ideational flexibility
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and self-efficacy, as well as reduced mind-wandering, in healthy
adults could potentially ameliorate maladaptive pathologies such
as in PTSD or OCD.

CONCLUDING REMARKS

This mini-review presented a proposed division for
predominantly cool and hot EFs and introduced QMT, a
sensorimotor training paradigm, as a means of enhancing
healthy development (Levit-Binnun et al., 2013) by integrating
these EF components.

QMT’s requirement of smoothly executed goal-directed
behaviors in response to predetermined verbal instructions
separated by interstimulus intervals (ISIs), which are known
to increase the duration of attention (Leckart et al., 1970),

differentiates it from other mindful movement practices
(Ben-Soussan et al., 2019).

QMT requires second-by-second response inhibition (Ben-
Soussan et al., 2014; De Fano et al., 2019), and thus requires
high order cognitive function, which is more related to cool
EFs. Notwithstanding, evidence suggests training that requires
attentional abilities also leads to enhancement of hot EFs. As hot
EFs may benefit from physical activity, especially when executed
in emotionally evocative settings, future research is encouraged to
uncover the effects of physical activity on a broader range of EFs.
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