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An automatic item generator for figural memory test items called figumem was
developed. It is available in R. A cognitive model allowed the generation of hypothetically
parallel items within three difficulty levels determined by visual information load. In a
pilot study, participants solved three items for each level of visual load. Within an item
response theory approach, the Rasch Poisson counts model and modifications of it
were fitted to the data. Results showed overall satisfying fit. Visual information load
explained most of the variance in item difficulty. Differences in difficulty between items of
the same family were comparatively low, displaying the utility of the item generator for
the creation of parallel test forms. Implications, limitations, and suggestions for the use
and extensions of figumem are discussed.

Keywords: figural memory, short-term memory, visual information load, parallel test forms, automatic item
generation, item response theory, Rasch Poisson counts model

INTRODUCTION

Automatic item generation (AIG) is a modern approach for developing items and tasks, especially
for tests measuring cognitive abilities. It is usually based on theoretically and empirically validated
quality control mechanisms. Thus, it avoids misinterpretations in item writing by human item
writers and facilitates an enhanced interpretation of test scores (Lai et al., 2009). If the generating
rules are known, AIG can be used to automatically produce large numbers of high-quality
items. AIG is the computer algorithm–controlled creation of tasks/items under a predefined item
prototype called item model (Gierl and Lai, 2012). This means that computer algorithms are used
instead of conscious decisions to generate families of items from a smaller set of parent items
(Glas et al., 2010).

The construction of an item model can be enriched if it is based on a theory that predetermines
the level of item difficulty, among other measurement properties (Irvine, 2002). Radicals (Irvine,
2002) are structural elements that significantly affect item parameters (such as item difficulty) and
provide the item with certain cognitive requirements. One or more radicals of the item model
can be manipulated in order to produce parent items with different difficulty levels. Each parent
can then grow its own item family by manipulating other elements that Irvine called incidentals.
Incidentals are surface features that vary randomly from item to item within the same family. Items
that have the same structure of radicals and only differ in incidentals are usually labeled isomorphs
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(Bejar, 2002) or clones (Arendasy and Sommer, 2012). The
variation of items’ surface characteristics should not significantly
influence the testee’s responses, which is the reason why it is
believed that incidentals produce only slight differences among
the item parameters of the isomorphs.

Automatic item generation so far has mostly been used for
the construction of reasoning tests with figural (e.g., Bejar, 1990;
Embretson, 2002; Arendasy and Sommer, 2005, 2010; Gierl et al.,
2008; Zeuch et al., 2011; Bertling, 2012; Blum et al., 2016; Loe,
2019), numerical (e.g., Arendasy et al., 2006; Gierl et al., 2008;
Holling et al., 2009; Arendasy and Sommer, 2012; Bertling, 2012;
Loe et al., 2018; Loe, 2019) and verbal (e.g., Gierl et al., 2008;
Loe, 2019) material but was also employed for the measurement
of other cognitive abilities, comprehensively described in the
Berlin intelligence structure model (BIS; Jäger et al., 2006).
In this model, the four cognitive traits of reasoning, mental
speed, creativity, and memory are conceptualized to operate with
figural, numerical, and verbal contents for a measurement of
general intelligence (or psychometric g). Doebler and Holling
(2016) presented test generators for mental speed with all of
these contents of stimulus material. Generators for creativity and
memory have received less attention. Regarding the former, the
measurement of creativity per se is problematic, as it is difficult
to clearly define the cognitive operations at hand when new
ideas are produced. Moreover, the response format is usually
open, and the determination of test scores requires trained raters
(see Forthmann et al., 2019c). Regarding the latter, the lack
of AIG-based item generators for short-term and long-term
memory items presents a void in the scientific literature that
demands to be filled.

Automatic item generation has a number of benefits, especially
compared to traditional test creation (see Bertling, 2012). If the
item model and its cognitive basis are properly articulated and
the stimulus material carefully selected, then items are created
quickly, efficiently, and with comparatively low cost. A test of the
item model can simultaneously be considered a quality control
for the item generator and a check for construct validity of the
proposed cognitive ability. One major drawback of fixed sets
of traditionally created items is that they cannot be used once
they have been exposed to the public. People then have the
opportunity to learn the correct solutions prior to the assessment
instead of actually engaging in the test tasks during the test
session. This problem is obviously magnified in an increasingly
interconnected world. One example for this from the memory
domain is given with the Rey–Osterrieth complex figure test (Rey,
1941). The figure has been depicted in various textbooks (e.g.,
Banich and Compton, 2018, p. 210; Kolb and Whishaw, 2015,
p. 419; Schellig et al., 2009, p. 527) and can be looked up with
an online search engine.

One particularly important advantage of AIG is that if an
item model for the creation of test items can be properly
defined, a multitude of parallel items, which differ in their
presentational features but are identical (or at least very
similar) in their psychometrical properties (such as difficulty),
can be created. Parallel test versions are often required in
longitudinal studies and diagnostic assessments to separate actual
temporal improvements of the cognitive ability from mere

retest effects emerging from repeated exposure to the same
test items (see Reeve and Lam, 2005; Jendryczko et al., 2019).
Alternative versions for short-term memory (STM) items are
essential, as repeatedly presenting the same items to testees
will confound their STM performance with effects of long-term
memory retrieval. This is especially relevant for various clinical
populations, as an ongoing decay in memory functions due to a
disease or disorder must be validly measured and documented.
The same applies to improvements of memory functions due
to an intervention. In this regard, a multitude of automatically
generated items can also effectively be used for training purposes.
Examples from clinical neuropsychology, where some or all of
these benefits apply, are given with syndromes, disorders, or
diseases in which learning of new information is impaired, such
as Korsakoff syndrome (Lloyd et al., 2019), Alzheimer’s disease
(Liang et al., 2016), Huntington disease (Clemensson et al.,
2017), Parkinson’s disease (Rolinski et al., 2015), anterograde
amnesia (Stöllberger et al., 2019), and post-traumatic amnesia
(De Simoni et al., 2016).

Many of the commonly used STM tests have few or no
parallel test forms. For example, the internationally most often-
used memory test battery (Thöne-Otto, 2009), the Wechsler
Memory Scale—Revised (WMS-R; Bornstein and Chelune,
1988), currently holds no alternative test version. Similarly,
commonly applied visual STM tests as the Benton-test (Benton
et al., 1996), the Rey–Osterrieth complex figure test (Rey,
1941), the non-verbaler Lerntest (Eng.: non-verbal learning test;
NVLT; Sturm and Willmes, 1999), the recognition memory test
(Warrington, 1984), and the doors test (Baddeley et al., 1994)
either have no parallel versions at all, or their true psychometrical
equivalence is questionable, as respective studies are missing
(Thöne-Otto and Markowitsch, 2004; Schellig et al., 2009; Thöne-
Otto, 2009). This might not be surprising, given that alternatives
to complex, figural materials are more difficult to create and
implement digitally compared to alternative words or numbers.
Two positive examples for visual memory tests delivering
alternative test forms are the Lern- und Gedaechtnistest-3 (Eng.:
learning and memory test-3; LGT-3; Bäumler, 1974), which has
a total of three equivalent test versions, and the Visueller und
Varbaler Merkfaehigkeitstest (Eng.: visual and verbal memorizing
ability test; VVM; Schellig and Schächtele, 2001), that offers four
parallel forms. For an overview of commonly applied memory
testing procedures, see Schellig et al. (2009).

Research Purpose
The purpose of the current work is to introduce “figumem,” a new
computerized test for figural memory based on AIG that is readily
available to researchers and practitioners in the free software “R”
(R Core Team, 2018). The test itself and a user’s manual are
available as online Supplementary Material to this article.

We focused on figural STM (although the test may be useful
for the assessment of long-term memory as well, as explained
in the section “Discussion”), because the lack of parallel visual
memory tests is particularly prominent and because the use of
figural test material is less dependent on the testee’s language
skills and mathematical knowledge. We display a theoretical
item model based on the visual information load phenomenon
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(Alvarez and Cavanagh, 2004) to introduce figural memory tests
into the AIG approach. We report the results of a study in
which the item model was probed in the frameworks of item
response theory. In that context, we explain the utility of the
Rasch Poisson counts model (RPCM; Rasch, 1960/1980) for a
statistical representation of our item model.

The rest of the paper is structured as follows: We introduce the
item-generation model specified for figumem. We then proceed
to illustrate the RPCM. Finally, we present an empirical study that
incorporates the RPCM to examine the statistical properties of
the item generator.

A Cognitive Model for the Automatic
Generation of Figural Short-Term
Memory Items
The distinction between a visual and an auditory STM remains
a largely undisputed concept across various memory models.
The Baddeley model of working memory (WM; Baddeley and
Hitch, 1974; Baddeley, 1978, 1992) was among the first models to
present a clearly articulated relation of these sensory modalities to
memory functions. While the details of the underlying processes
are still subject to current research, the model still serves as a
general framework (see, for example, Kosslyn, 2005; Baddeley
et al., 2011; Logie, 2011; Baddeley, 2012; Slana Ozimič and
Repovš, 2020). In order to avoid confusion, it should be stressed
that “the memory system or systems responsible for STM form
part of the working memory system” (Baddeley et al., 2015, p. 41).
This means that the assessment of STM differs from that of
WM only in the type of the presented task. Whereas the former
merely requires learning of stimulus material for immediate
or only slightly delayed recall, the latter additionally requires
manipulation of the learned material. Consequences of the type
of stimulus material and the modality it is processed with apply
to both memory systems.

The model contrasts a visuospatial sketchpad of memory
responsible for the maintenance and manipulation of visual
information from the phonological loop that coordinates
processing of audible information. Research showed that,
generally, human beings are able to phonologically hold numbers
and verbal material in their STM without affecting the processing
of visual material and vice versa (e.g., Sanders and Schroots,
1969; Logie et al., 1990; Duncan et al., 1997; Cocchini et al.,
2002). Figural memory tests are used to assess the visuospatial
sketchpad, specifically.

Fundamental research on the functionality of STM has focused
on memory capacity (e.g., Luck and Vogel, 1997; Vogel et al.,
2001; Wheeler and Treisman, 2002; Alvarez and Cavanagh, 2004;
Allen et al., 2006). In other words, researchers investigated the
number of units of information human beings can hold in
their STM. It became clear that the term “units of information”
is difficult to unambiguously define in general and for visual
material in particular. Alvarez and Cavanagh (2004) found that
the capacity of visual STM is determined by not only the number
of visual objects but also the visual information load (or just
“visual load”) each individual object holds. In their conception,
visual information load is given by the amount of visual detail

in a stimulus and is operationalized with a visual search task.
The more the objects load visually, the longer it takes to identify
these objects among other similar objects, and the less objects
can be stored in visual STM. Importantly, Ueno et al. (2010) and
Ueno et al. (2011) later demonstrated that visual information load
of an object can at least partially be determined by bindings of
stimulus features (e.g., shape and colors), as long as this increases
the similarity of the objects (see also Jiang et al., 2009). To give
an example from Alvarez and Cavanagh’s experiment: A square
with a certain color in an array of differently colored squares
of the same size can be found relatively quickly because these
stimuli are all distinctively defined by the single feature of color.
In contrast, finding a three-dimensional cube with a certain
orientation and a certain pattern of shadings along its visible
surfaces among several differently oriented and shaded cubes
takes comparatively longer. These stimuli contain more visual
detail and less salient differences, as orientation and shading
must be considered simultaneously for detection in the search
task. The authors measured the search rate for different kinds
of visual stimuli such as these and investigated the relationship
between the average search rate and the average visual STM
capacity for the respective objects. They found that STM capacity
decreases for visually more loaded objects. Visual information
load (operationalized as visual search rate) explained 99.2% of the
variance in visual STM capacity.

This finding represents the base for the radical of our
implemented item model. Its translation into the item format is
explained in the next two sections.

Item Format of Choice
Generally, tests that measure visual STM can be distinguished
into tests that require the memorization of the spatial layout of
a scene, such as a marked way through a maze (e.g., Schellig
and Schächtele, 2001), and tests that require the memorization
of specific figures or the association between specific figures
(e.g., Bäumler, 1974). We refer to the former as spatial memory
tests and to the latter as figural memory tests. Whereas both
item formats require visual STM performance, it is debatable
whether or not both formats actually measure the same trait.
Findings from neuropsychological research converge into the
separation of visual memory into a spatial and an object domain
(Funahashi et al., 2004; Todd and Marois, 2004, 2005; Logie
and Van der Meulen, 2008; see Wager and Smith, 2003, for a
meta-analysis). We decided to design our item generator based
on figural memory tests that incorporate figural associations. In
such tests, testees have to memorize which figure from a pool A
was presented alongside which figure from a pool B. We made
this decision for various reasons. The most obvious one is that
our cognitive framework specifically stresses the importance of
visual load of figures instead of spatial layouts. A transfer to
spatial layouts is not straightforward. Moreover, attempts at AIG
of spatial memory items have already been made (Hornke, 2002;
Arendasy et al., 2008), rendering the demand for an automatically
item-generating figural memory test more contemporary. Finally,
tests that require the memorization of figural associations offer
a certain flexibility regarding the answer format. The tester can
demand a reproduction (that is, a drawing) of a figure that
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was associated with a different figure during the memorization
phase (open response format). This is, however, more difficult
to implement into online surveys and hence unpractical if one
aims at an efficient and fast recruitment of study participants.
Alternatively, researchers can use a closed recall format in which
the testee has to choose the correct figure from a selection
of figures. This is convenient for online testing procedures
but increases the probability of guessing the correct answers.
Figumem was constructed with the latter format in mind, but
alternatives corresponding to a free answer format are already
implemented and elaborated on in the section “Discussion” and
in the test manual.

The following concrete format for figumem items was
determined: In every item, 20 emblems are presented to the testee
in a 5 × 4 matrix. Each emblem is surrounded by a frame (see
Figure 1 for examples). The testee has 1 min to learn which frame
surrounds which emblem. After the time elapses, the emblems are
presented again in a new screen in a 5× 4 matrix but in a different
order. Under each emblem, four frames are presented, of which
one resembles the frame the emblem was surrounded by in the
previous screen. The other three are distractors. The testee’s task
is it to mark the correct frame for each emblem. The score for this
task is given by the sum of correctly marked frames and can range
between 0 and 20.

Designing the Item Generator
We created 20 original emblems and 20 original frames as
PNG data files. Additional stimulus material was produced by
modifying some of the emblems and some of the frames. A radical
with three different levels and incidentals were determined
that govern the rules for combining the various stimuli for
the creation of three different figumem parent items and their
respective families. Figure 1 presents three example figumem
items for every radical level (i.e., for every item family). This
figure can ease the understanding of the following explanations.

The radical levels correspond to three different levels of
visual load. Visual load itself increases with increasing similarity
between the visual stimuli within an item by adding additional
visual features. This in turn implies an increase in item difficulty.
For items with low visual load, all 20 original emblems and all 20
original frames are used. They are all distinctively defined by the
feature of figural shape. Hence, visual load is comparatively low,
as only the feature of shape needs to be remembered to correctly
replicate the associations between emblems and frames (examples
in the first column of Figure 1).

For items with medium visual load, the use of the 20 original
emblems is maintained. However, only four of the original frames
are still present in items from this family: the rectangle, the
trapeze, the pentagon, and the hexagon. For each of these,
four additional variants were created by erasing one line of
the respective frame, which results in 20 different frames in
total again. The frames of items from this item family have
more similarities to one another, as some frames have the same
shape and can only be differentiated from each other by also
considering the feature of the missing line (or completeness of
lines). This increases visual load (examples in the second column
of Figure 1).

For items with high visual load, the frames from the second
item family are maintained. Only four of the original emblems
are still used: the right triangle, the black circle with the missing
quadrant in the top right, the black circle with the prong
in the top right, and the “L”-shape. For each of these, three
additional variants were created by rotating the emblem 90◦,
180◦, and 270◦. This results in 16 emblems. Four additional
emblems were created by taking the black ring from the original
20 emblems and editing out a piece at the top, at the right,
at the bottom, and at the left. In items from this family, the
increased similarities between the frames from the second item
family are still present, but similarities between the emblems are
additionally increased. To differentiate the emblems from each
other, one has to simultaneously consider the features of shape
and direction. This increases visual load even further compared
to the first two item families (examples in the third column
of Figure 1).

Three item presentation features were considered incidentals
that can occur randomly: (1) the assignment of an emblem to
a frame; (2) the order of the 20 emblem–frame units along the
cells of the 5 × 4 matrix; and (3) the three frames that are used
as distractors for each emblem in the closed answer format (not
depicted in Figure 1). An important constraint was made so that
each frame appeared equally often as a distractor in the closed
answer format, since otherwise, test-specific strategies (exclusion
of specific distractors) could determine the outcome of an item
(see, for example, Millman et al., 1965; Tarrant et al., 2009).

Note that between the items within each row of Figure 1,
the families and thus the radical levels, the employed stimulus
material, and the hypothesized item difficulties differ. In contrast,
within each column of Figure 1, all three items consist of the
same stimulus material because they stem from the same item
family. Only the incidentals of concrete emblem–frame units and
presentation order are different1. The nine items from Figure 1
represent those that were incorporated into the current study.
The Supplementary Material to this article contains a script
for the replication of these items with figumem. Each item is
uniquely identified by its radical level (or family; 1, low visual
load; 2, medium visual load; 3, high visual load) and its level
on a categorical index variable (incidental-ID) that encapsulates
the item’s random realizations on the incidentals. The actual
production of the visual material within figumem is accomplished
by reading in the PNG data files containing the emblems and
frames and then editing them with the “magick” software package
(Ooms, 2018) in R.

In a nutshell, the difficulty of an item is determined by
the radical of visual load. At the easiest difficulty level, all
frames are identified by their shape, and the same applies to
the emblems (low visual load). At an intermediate difficulty
level, a different subset of frames is used, and these frames
are only identifiable by simultaneously considering their shape
and the completeness of lines or position of a missing line
(medium visual load). At the highest difficulty level, a different

1Due to the random sampling, a specific emblem–frame combination can occur
across different items by chance, and the position of a specific emblem or a specific
frame can remain unchanged across different items by chance.
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FIGURE 1 | The nine figumem items that were incorporated into the current study. The Supplementary Material to this article contains a script for the replication of
these items with figumem. The radical of visual load determines item difficulty (increasing item difficulty with increasing magnitude of visual load). For each condition
of visual load, three items were produced. They are differentiated by different (randomly occurring) assignments of emblems to frames and by presentation order of
the emblem–frame units along the 5 × 4 matrix. These different realizations on the incidentals are encapsulated by one index variable (incidental-ID). Understanding
this figure as a 3 × 3 table of figumem items, item difficulty is expected to vary within the rows and to be constant within the columns.

subset of emblems is additionally used. These emblems are
only identifiable by simultaneously considering their shape and
direction (high visual load). For each item family, the particular
emblem–frame combinations and their presentation order are
considered incidentals. A constraint is made so that every frame
appears equally often as a distractor in the closed answer format.

At this point, the item difficulty dependence on the radical and
the statistical equivalence of isomorphs were only given on the
hypothetical level. For an actual test of these hypotheses, the item
model needed to be translated into a statistical model.

A Statistical Representation of the Item
Model
Based on the Poisson distribution, Rasch (1960/1980) proposed
a model that predicts an item score (the sum of correctly

remembered associations for an item in this case) with item and
person parameters. This model is known as the Rasch Poisson
counts model (RPCM). In this model, it is assumed that the
probability for a score Yνi of person ν on item i follows a Poisson
distribution:

P
(
Yνi = yνi

)
=

e−µνiµ
yνi
νi

yνi!
(1)

Here µνi reflects the expected score for person ν on item i. The
crucial assumption within the RPCM is that this expected score is
given with the product of a person’s ability parameter θν and an
item’s easiness parameter σi:

µνi = θνσi (2)
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The RPCM can be understood as a generalized linear model
(GLM) with a log-link that contains persons and items as
predictors:

log (µνi) = θ̃ν + σ̃i (3)

with θ̃ν = log (θν) and σ̃i = log (σi ).
Because of the person parameters, the model holds the

property of an increasing amount of parameter estimations with
increasing sample size. In most cases (such as the current study)
the item parameters are of primary interest, as the model is
usually used to investigate the psychometric characteristics of
a test. This property is, thus, disadvantageous because it also
implies enlarged standard errors for item parameters when the
joint maximum likelihood estimation method is used. For this
reason, the model is usually estimated as a generalized linear
mixed model (GLMM) using marginal maximum likelihood.
Within this approach, person parameters (on the log-scale) can
be conceptualized as realizations of a random intercept variable
following a normal distribution (Doebler and Holling, 2016):

θ̃ν ∼ N(0, ζ ).

The mean of this distribution can be fixed to zero for model
identification, and only the variance (ζ) of the distribution needs
to be estimated. Within this approach, σi holds the convenient
interpretation of the expected score on item i given average
(cognitive) ability.

Item models in the AIG framework assert that the radicals
determine item difficulty. In order to verify this claim, the item
parameters themselves can be explained with a combination
of radicals (Fischer, 1973; Zeuch, 2010). In figumem, only one
categorical radical (visual load) with three possible outcomes
is given that can be cell-mean coded for convenient parameter
interpretations. Let xil represent the condition l (with l = 1, 2, 3)
of visual load (1, low; 2, medium; 3, high) that is active (xil = 1) or
inactive (xil = 0) in item i. It follows that

σ̃i = η1xi1 + η2xi2 + η3xi3 (4)

and
log (µνi) = θ̃ν + η1xi1 + η2xi2 + η3xi3. (5)

Here eηl represents the expected item score on items with radical
level l given average ability.

If the RPCM (regardless whether the items themselves or the
radicals are used as predictors) fits, it should be used because
it holds some of the same statistical properties as the widely
recognized Rasch 1PL model for dichotomous data (see De
Ayala, 2009; Eid and Schmidt, 2014). The sum of the item raw
scores serves as a sufficient test statistic, and specific objective
comparisons between persons and between items can be made.
In the following, we describe an empirical study in which we
investigate the fit of the RPCM for tests created with figumem.
We determine whether the radical sufficiently explains item
difficulty and evaluate the variability of item difficulty within item
families. In the section “Analytic Strategy,” we describe how we
make use of the models listed here for these purposes.

MATERIALS AND METHODS

Sample
Participants were recruited via social network services that reach
out to university students with scholarships and members of
the academic club CdE e.V. and via flyers at the university
of Münster and at the university of Konstanz. A total of 234
examinees completed the online survey. 26 participants had to be
excluded because they reported that their screen did not always
display the complete item. The final sample consisted of N = 208
participants (146 reported to be female, 61 reported to be male,
1 person did not state his or her gender). The mean age was
22.51 years (SD = 6.18). One hundred eighty-one examinees were
university students, among which 123 studied psychology. 11
participants were secondary school students, and 16 participants
already worked in their professions. The psychology students had
the opportunity to gain course credit for their participation. The
remaining examinees participated as a favor to the second author.

Material
In order to evaluate an automatic item generator, as many
items as possible from each item family should be presented to
participants. This number will, however, always be constrained
by reasonability considerations. Figural memory items exhaust
concentration and cognitive resources rather rapidly. During
the pre-study testing phase, we came to the conclusion that
participants should not be required to work on more than nine
figumem items in one session.

A total of 12 figumem items (4 for every difficulty level) were
generated. These items were implemented into the online-survey
software Questback. One item of each difficulty level served as a
mere example item for illustration purposes; the other nine (see
Figure 1) were used for data collection. It was not possible to
implement our original answering format for the retrieval phase
into Questback. Instead of being displayed in a 5 × 4 matrix,
emblems were presented one below the other with four options
for frames arranged underneath each of them (see Figure 2). The
order of emblems was random. Testees had to click on the frame
of choice for one emblem and scroll down to make the decision
for the next emblem. Both the original answering format and
this format are available in figumem (see the manual from the
Supplementary Material).

The link to the study was distributed to the participants. It
was ensured that the survey runs smoothly in every mainstream
internet browser.

Procedure
Upon clicking on the study link, participants were directed to the
first site of the survey. Here they were greeted and informed about
the length of the test and the opportunity for psychology students
to gain course credit. Furthermore, participants were informed
about anonymity, voluntariness of participation, and their right
to cancel participation at any time. Informed consent was asked
for. Next, participants were requested to concentrate during the
test and to abstain from the usage of supporting devices like paper
and pencil. The survey went on to present participants a black
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FIGURE 2 | Example of the answering format for figumem items implemented
in the current study. In contrast to the originally conceptualized format, the
emblems and their respective option pools for frames are not presented in a
5 × 4 matrix but one below the other in a random order. The three dots at the
top and at the bottom indicate the rest of the 20 emblems and their pools of
frames of a figumem item that are not depicted. The item generator can
produce both this and the original format (see the manual from the
Supplementary Material).

rectangle in the size of a figumem item. Participants were asked
only to proceed with their monitor fully displaying this rectangle.
They were given the chance to switch to a different device if this
condition was not fulfilled.

Afterward, the procedure of the figural memory test was
explained, and one example item for every difficulty level was
shown. Practice material with only two emblems and two frames
was presented. On the next page, the two emblems with a
selection of four frames each were given for familiarization with
the answering format. Participants had to click on the correct
frames to select them as their answers.

After these introductions, the remaining nine figumem items
were successively presented to each participant. To control for
sequence effects, the order of these nine items was varied across
examinees. Instead of completely randomizing the order of
items, their difficulty should be controlled for in the sequences.
Presenting several difficult items at the beginning, for example,
can have detrimental effects on participant motivation and
performance. We therefore decided to restrict the possible
presentation orders, systematically assign participants to groups
defined by presentation order, and empirically check sequence
effects via group comparisons. We oriented the design for this
on Latin squares (e.g., Jacobson and Matthews, 1996): One
item of each family was assigned to a block, resulting in three
different blocks with three different items each. All participants
went through all the blocks in the same order. However, we
varied the order in which the three items of varying difficulty
of a single block were presented between participants. At the
beginning of the survey, participants were assigned to one of
three conditions. In all conditions, the three items of the first
block were presented in order of increasing difficulty to create

FIGURE 3 | Experimental sequence design of the study. The nine study items
were distributed across three different blocks. Each block contains one item
with low visual load (L), one item with medium visual load (M), and one item
with high visual load (H). The numbers after the letters represent the
incidental-ID of the respective item (see Figure 1). All participants passed the
three blocks in the same order. Participants were pseudo-randomly assigned
to one of three conditions, meaning that the random number generator
targeted an equal distribution of participants across the conditions. The
condition determined the order of items within each block. For block 1, the
order of items was the same for all conditions (from easiest to most difficult).
For blocks 2 and 3 the order of items was varied. Within blocks 2 and 3, every
magnitude of visual load appeared once in every order-position (from 1 to 3)
across the conditions.

a warm-up phase for all participants. In blocks 2 and 3, the
order of item difficulties was rotated so that in each block, each
item difficulty level appeared once at every position (first, second,
third) across the conditions (see Figure 3). The algorithm of the
survey tool aimed at a randomized assignment of participants to
the conditions while simultaneously maintaining roughly equal
sizes of condition groups. Since the algorithm could not consider
the cancelation of participation of some examinees and could
(obviously) not predict the exclusion of some participants (see
the section “Sample”), group sizes were not equal in the end but
still fairly balanced. 63 participants were in condition group 1, 76
in condition group 2, and 69 in condition group 3.

At the end of the survey, participants were asked for
their socio-demographic information. Psychology students were
informed about the procedure they had to undertake to gain
their course credit.

Analytic Strategy
We first fitted the general RPCM containing the items themselves
as predictors (Eq. 3) as a GLMM to the data. Model fit was
evaluated by several measures.

Firstly, we compared the model to a “person-only” model
via a likelihood-ratio test. In this person-only model, person
parameters are modeled as a random intercept, but item
easiness parameters are not included, thereby assuming equal
difficulty for every item. Secondly, we computed the dispersion
index. If the expectation and variance of the outcome are
identical (equidispersion), as the Poisson distribution requires
(see Baghaei and Doebler, 2018), the dispersion index equals
1. Overdispersion (variance is greater than the expectation) is
given by values greater than 1. Underdispersion (variance is
lower than the expectation) is given by values smaller than
1. While overdispersion in the data leads to underestimation
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of standard errors, underdispersion leads to overestimation
thereof. Hence, underdispersion may be considered less of a
problem because it generally makes the scientific approach more
conservative. Thirdly, we examined the Pearson residual plot
for the complete model and Pearson residual boxplots for the
single items. Additionally, the covariate adjusted frequency plot
(Holling et al., 2013) was employed for a graphical model check.
Fourthly, we checked item fit by χ2-tests as suggested by Baghaei
and Doebler (2018). Here, we ordered participants by their
total scores and placed them into five groups corresponding
to the 0.20, 0.40, 0.60, 0.80, and 1.00 quantiles of total score
distribution. For every item, a test statistic was computed that
is based on a comparison of expected and observed item scores
across the different groups. If the model holds, then this test
statistic asymptotically follows a χ2-distribution with the degrees
of freedom equal to the number of groups (= 5 in this case).
A non-significant test result suggests good fit of the item. Fifthly,
a differential item functioning analysis was utilized to compare
the three different condition groups (that encountered the items
in different orders). For this approach, the RPCM is enhanced
by including group variables and their interactions with the
items. Non-significant interaction terms signal identical item
difficulty across groups. If that can be assumed for the complete
test, another extended RPCM is estimated and interpreted that
contains the group variables without interactions. An absence
of significant group effects in this model suggests equal mean
ability of the persons across the condition groups. The RPCM and
these two extended versions of it were compared via likelihood-
ratio tests (see Baghaei and Doebler, 2018, for details). Lastly, the
reliability of the test grounded in the RPCM for the estimation
of the person parameters was examined. In the RPCM, test
reliability increases for increasing person parameter values. It is
defined as

s2
θ̃
/(s2

θ̃
+ s2

v)

where s2
θ̃

gives the estimated variance of the person parameters
(on log-level) and s2

v represents the squared standard error for
the ability parameter for person v (Baghaei and Doebler, 2018).

We then estimated a new model in which the item parameters
of the RPCM are replaced with the radical levels of the
item model (Eq. 5). We refer to this model as the RPCM-r.
A likelihood-ratio test between the RPCM and RPCM-r revealed
whether implementing the assumption that item parameters
can be completely explained by the radical decreased model fit
significantly. Based on the RPCM, we investigated the differences
in expected item score between items from the same family with
different incidental-IDs.

The correlation of the item parameters from the RPCM and
predicted item parameters from the RPCM-r was investigated.
We examined the correlation between the person parameters of
the RPCM and the person parameters of the RPCM-r, as well.
Finally, we judged overall fit of the RPCM-r via graphical model
checks and investigated the reliability of its produced person
parameter estimates.

For further information on the procedures, we refer to Baghaei
and Doebler (2018) and Holling et al. (2013). All models were
estimated with the “lme4” software package (Bates et al., 2015).

A data set and an R-script containing all analyses are available as
online Supplementary Material.

RESULTS

Table 1 shows descriptive statistics of all test items. Mean scores
decreased with increasing visual load as determined by the
radical, and so did item score standard deviations. The easiest
item (radical level 1, incidental-ID 3) had a mean score of
11.46 (SD = 4.18) correctly remembered associations. The most
difficult item (radical level 3, incidental-ID 3) had a mean score
of 7.12 correctly remembered associations (SD = 2.90). No part–
whole corrected discrimination parameter of any item fell below
0.40. Cronbach’s alpha for the complete test was α = 0.85 (95%
confidence interval = [0.82; 0.88]). Table 2 displays the Pearson
correlations of the items.

Rasch Poisson Counts Model With Items
as Predictors
The RPCM fitted the data significantly better as a person-only
model that omits the item parameters [χ2(8) = 512.93, p< 0.001].
The standard deviation of the ability parameters from the RPCM
was estimated to be 0.229 (95% confidence interval = [0.203;
0.258]). The third column of Table 3 displays item parameters
of the RPCM on the counts level. The expected item score
decreased with increasing visual load, yet parameters also differed
within item families. The dispersion index was ϕ = 0.72. Thus,
data were underdispersed. Underdispersion should be considered
for diagnostic purposes, as it also underestimates the reliability
of person parameter estimates. We investigate the problem
of underdispersion for the current case at the end of the
“Results” section.

The top graph of Figure 4 shows the Pearson residual plot.
Residuals roughly ranged from -2 to 2 with a few outliers. They
are fairly symmetrical against the zero-axis. The residual variance
was reduced for higher predicted scores, again displaying
the underdispersion in the data. Overall, the plot displays a
satisfactory model fit.

Figure 5 shows Pearson residual boxplots for item-specific
predicted scores. Generally, the same conclusions can be derived
from this graph as from Figure 4. Mean residuals were
around zero for every item. As expected, most residuals settled
between -2 and 2.

The blue dashed line in Figure 6 shows the expected frequency
of item scores as predicted by the RPCM. As can be seen, the line
approaches the observed scores closely.

The last two columns of Table 1 deliver the results of the
item-based χ2-tests. All p-values were above 0.20, suggesting
satisfactory fit for every item.

The differential item functioning approach revealed a
significant difference for the difficulty of the item with radical
level 3 and incidental-ID 1 between the first and the second
group (β = −0.17, z = −2.06, p = 0.039). However, the
multiple-testing issue due to several groups and items must
be considered in this approach (see Baghaei and Doebler,
2018). Some significant differences were expected to occur by
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TABLE 1 | Descriptive statistics and χ2-tests of item fit.

Item Statistic

R I Median Mean SD Minimum Maximum Discrimination χ 2 (df = 5) p-value

1 1 11.00 10.70 3.58 2 18 0.48 4.23 0.517

1 2 11.00 11.09 3.82 1 19 0.65 6.32 0.277

1 3 11.50 11.46 4.18 2 20 0.64 4.66 0.458

2 1 9.00 9.48 3.26 2 19 0.58 1.09 0.955

2 2 10.00 9.80 3.60 2 20 0.67 1.08 0.956

2 3 8.00 8.66 3.72 1 18 0.66 0.83 0.975

3 1 7.00 7.22 3.02 2 18 0.49 2.31 0.804

3 2 7.00 7.58 2.86 0 19 0.53 6.33 0.276

3 3 7.00 7.12 2.90 1 17 0.49 4.37 0.498

N = 208; R = radical level; I = incidental-ID; SD = standard deviation; discrimination = part–whole corrected discrimination parameter. Radical determined visual load (1,
low; 2, medium; 3, high).

TABLE 2 | Pearson correlations of study items.

R1 I1 R1 I2 R1 I3 R2 I1 R2 I2 R2 I3 R3 I1 R3 I2

R1 I2 0.400*** – – – – – – –

R1 I3 0.396*** 0.608*** – – – – – –

R2 I1 0.370*** 0.427*** 0.378*** – – – – –

R2 I2 0.456*** 0.519*** 0.527*** 0.447*** – – – –

R2 I3 0.346*** 0.496*** 0.536*** 0.442*** 0.515*** – – –

R3 I1 0.243*** 0.325*** 0.296*** 0.409*** 0.381*** 0.351*** – –

R3 I2 0.214** 0.388*** 0.352*** 0.376*** 0.355*** 0.482*** 0.319*** –

R3 I3 0.196** 0.312*** 0.311*** 0.337*** 0.359*** 0.379*** 0.432*** 0.454***

N = 208. **p < 0.01, ***p < 0.001.

TABLE 3 | Item easiness parameters (counts level) for various models (95% confidence interval bounds in rectangular brackets).

Item Model

R I RPCM CMP-gd CMP-sd RPCM-r CMP-r-gd CMP-r-sd

1 1 10.43 [9.90; 10.98] 10.41 [9.91; 10.94] 10.41 [9.90; 10.96] – – –

1 2 10.81 [10.26; 11.37] 10.79 [10.28; 11.33] 10.79 [10.29; 11.32] 10.80 [10.38; 11.23] 10.79 [10.38; 11.21] 10.79 [10.38; 11.21]

1 3 11.16 [10.60; 11.74] 11.15 [10.62; 11.70] 11.15 [10.61; 11.72] – – –

2 1 9.24 [8.74; 9.75] 9.23 [8.77; 9.71] 9.23 [8.79; 9.69] – – –

2 2 9.55 [9.05; 10.07] 9.54 [9.07; 10.03] 9.54 [9.08; 10.02] 9.08 [8.71; 9.45] 9.07 [8.71; 9.43] 9.07 [8.72; 9.43]

2 3 8.44 [7.98; 8.92] 8.43 [8.00; 8.89] 8.43 [7.99; 8.90] – – –

3 1 7.04 [6.63; 7.46] 7.03 [6.65; 7.43] 7.03 [6.64; 7.44] – – –

3 2 7.38 [6.96; 7.82] 7.37 [6.98; 7.79] 7.37 [6.99; 7.77] 7.12 [6.82; 7.43] 7.11 [6.82; 7.41] 7.11 [6.82; 7.41]

3 3 6.93 [6.53; 7.36] 6.92 [6.55; 7.32] 6.92 [6.54; 7.33] – – –

N = 208. RPCM = Rasch Poisson counts model with items as predictors; CMP-gd = Conway–Maxwell–Poisson model with items as predictors and a global dispersion
parameter; CMP-sd = Conway–Maxwell–Poisson model with items as predictors and item-specific dispersion parameters; RPCM-r = Rasch Poisson counts model with
the radical as a predictor; CMP-r-gd = Conway–Maxwell–Poisson model with the radical as a predictor and a global dispersion parameter; CMP-r-sd = Conway–Maxwell–
Poisson model with the radical as a predictor and radical level–specific dispersion parameters. Parameters reflect expected item scores given average ability.

chance. No other interaction effect was significant (range of
p-values = 0.058–0.919). A likelihood-ratio test revealed no
significant decline in model fit when interactions between items
and group variables were restricted to zero and only additive
effects of the group variables were maintained in the model
[χ2(16) = 16.93, p = 0.390]. When the group variables were
added into the RPCM without any interaction terms, they had
no significant effect on the item score (β2 = −0.02, z = −0.58,

p = 0.564, 95% confidence interval = [−0.11; 0.06]; β3 = −0.03,
z = −0.59, p = 0.559, 95% confidence interval = [−0.11; 0.06]).
A likelihood-ratio test revealed no significant difference in fit
between this model and the RPCM [χ2(2) = 0.44, p = 0.803],
suggesting equal mean ability across groups.

The red dashed line in the top graph of Figure 7 plots
the estimated reliability of ability estimation against the person
parameters as estimated within the RPCM. The smallest
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FIGURE 4 | Pearson residual plots for the RPCM (Rasch Poisson counts
model with items as predictors; upper graph) and for the RPCM-r (Rasch
Poisson counts model with the radical as a predictor; lower graph).

FIGURE 5 | Item-specific Pearson residuals boxplots for the RPCM.
R = radical level; I = incidental-ID.

conditional reliability was α = 0.78. As already mentioned, this
reflects an underestimation due to underdispersion, and a better
estimate will be given at the end of the “Results” section.

During the revision of this article, one of the reviewers pointed
out that a motivational bias might have impacted the results since

FIGURE 6 | Covariate adjusted frequency plot (Holling et al., 2013) for various
models. The person-only model contains only person parameters as a
random intercept for score prediction.

the non-psychology students did not receive any reimbursement
for participation and should therefore do worse on the tasks. We
refitted the RPCM to the data and included a binary variable that
indicated whether a participant was a psychology student or not.
The model predicted the psychology students to remember 2.24%
less figural associations than the non-psychology students, but
this difference was not significant (p = 0.528). Hence, no evidence
for this type of motivational bias was present in the data.

Influence of the Radical and the
Incidentals
The person parameter standard deviation and its 95% confidence
interval bounds within the RPCM-r were identical to the
respective statistics from the RPCM when rounded to the third
decimal. The sixth column in Table 3 presents estimates and
95% confidence intervals of item easiness for every level of
the radical variable on the counts level. The non-overlapping
confidence intervals reveal that the expected item score decreased
significantly with increased visual load. In other words, items
with higher visual load were significantly more difficult. The
dispersion index for the model was ϕ = 0.74.

A likelihood-ratio test between the RPCM and the RPCM-r
revealed a significant decline in model fit when item parameters
were assumed to be fully explained by the radical [χ2(6) = 24.21,
p < 0.001]. Table 4 contains differences in expected item
scores between items with the same radical level (i.e., from
the same family) but with different incidental-IDs. Incidentals
did not impact the expected score on items with high visual
load. Within the family of low visual load, two items had a
significantly different difficulty. Within the family of medium
visual load, one item difficulty was significantly different from
the others. The practical implications will be evaluated in the
section “Discussion.”

Frontiers in Psychology | www.frontiersin.org 10 June 2020 | Volume 11 | Article 945

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-11-00945 June 8, 2020 Time: 20:20 # 11

Jendryczko et al. AIG for Figural Memory

FIGURE 7 | Conditional reliabilities of person parameters for models with
items as predictors (upper graph) and for models with the radical as a
predictor (lower graph). CMP-gd = Conway–Maxwell–Poisson model with
items as predictors and a global dispersion parameter;
CMP-sd = Conway–Maxwell–Poisson model with items as predictors and
item-specific dispersion parameters; CMP-r-gd = Conway–Maxwell–Poisson
model with the radical as a predictor and a global dispersion parameter;
CMP-r-sd = Conway–Maxwell–Poisson model with the radical as a predictor
and radical level–specific dispersion parameters.

The correlation between item parameter estimates of the
RPCM and predicted item parameters of the RPCM-r was
r = 0.977 (p < 0.001). Hence, the radical explained 95.41% of
the variance in item difficulty in the general RPCM (adjusted
R2 = 0.939). The correlation between the person parameters of
the two models was r = 1.

The bottom graph of Figure 4 displays the residual plot for the
RPCM-r. It is very similar to the residual plot for the RPCM and
suggests satisfying model fit. The green line in Figure 6 shows
the expected frequency of item scores based on the RPCM-r. It

is nearly identical to the predictions of the RPCM indicating no
decline in the accuracy of the expected scores when the radical
is used as a predictor of item easiness instead of estimating item
parameters directly. The red line in Figure 6 shows the fit of the
person-only model in which items were not assumed to differ in
difficulty. As our cognitive model is rather simple and implies a
uni-dimensionality of visual load, this model fitted the data rather
well, too. However, it substantially underestimated the frequency
of lower item scores and overestimated the frequency of medium
item scores by not taking the difficulty of items into account.

The red dashed line in the bottom graph of Figure 7 displays
reliability estimates of person parameters for the RPCM-r.
A comparison with the top graph of Figure 7 reveals no cutbacks
on reliability when the RPCM-r was used instead of the RPCM.

Post hoc Analyses for the
Underdispersion
Underdispersion violates a core assumption of the RPCM.
However, even for underdispersed data, the RPCM (or the
RPCM-r in the current case) may still be a useful and valid
approximation of the true model with regard to the estimation
of person and item parameters. It depends on the robustness of
parameter estimates against the violation of equidispersion.

Brooks et al. (2017) published the R package “glmmTMB,”
which allows the estimation of Conway–Maxwell–Poisson
(CMP) counts models. These models can be considered
generalized Poisson counts models that relax the assumption of
equidispersion by either estimating a global dispersion parameter
or several item (or, more generally, predictor) specific dispersion
parameters (Forthmann et al., 2019a,b). We modified the RPCM
into a CMP model containing a global dispersion parameter
(referred to as the CMP-gd) and into a CMP model with
item-specific dispersion parameters (referred to as the CMP-
sd). Similarly, we modified the RPCM-r into a CMP model
containing a global dispersion parameter (CMP-r-gd) and into
a model containing radical level–specific dispersion parameters
(CMP-r-sd). Table 5 shows comparisons of nested models with
likelihood-ratio tests and Akaike information criteria (AICs) and
Bayesian information criteria (BICs).

As can be seen, for both the RPCM and the RPCM-r, the
modification with the inclusion of a global dispersion parameter
improved model fit significantly. This is to be expected when
underdispersion was found in a Poisson model. Modeling item
or radical level–specific dispersion parameters, however, had no
significant incremental effect on model fit. The fourth and fifth
columns of Table 3 reveal that item parameter estimates within

TABLE 4 | Differences in expected item scores between items with different incidental-IDs for each level of the test radical.

Difference Radical level = 1 Radical level = 2 Radical level = 3

ID 2 - ID 1 +3.57% (+0.38) +3.34% (+0.31) +4.81% (+0.35)

ID 3 - ID 1 +6.82% (+0.74)* −9.01% (−0.80)** −1.48% (−0.10)

ID 3 - ID 2 +3.24% (+0.36) −12.36% (−1.11)*** −6.29% (−0.45)

N = 208. Radical level determined visual load (1, low; 2, medium; 3, high). Numbers in parentheses give the expected difference in item score for a person with average
cognitive ability. Significant differences are printed in bold. *p < 0.05, **p < 0.01, ***p < 0.001.
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TABLE 5 | Model comparisons between Rasch Poisson models and Conway–Maxwell–Poisson models.

Model 1χ 2(df) p-value AIC BIC

RPCM – – 9,422.10 9,477.50

CMP-gd 34.18 (1) <0.001 9,389.90 9,450.80

CMP-sd 8.85 (8) 0.355 9,397.10 9,502.30

RPCM-r – – 9,434.30 9,456.50

CMP-r-gd 28.88 (1) <0.001 9,407.50 9,435.10

CMP-r-sd 0.77 (2) 0.680 9,410.70 9,449.40

N = 208. AIC = Akaike information criterion; BIC = Bayesian information criterion.

the CMP-gd and CMP-sd are almost identical to the ones derived
from the RPCM. The confidence interval bandwidths become
smaller. The seventh and eighth column of Table 3 display
radical parameters for the CMP-r-gd and the CMP-r-sd. Again,
only marginal and non-substantial changes in comparison to the
RPCM-r were observed.

Person parameters from the RPCM correlated with r = 1 with
the person parameters from the CMP-gd and with r = 0.999
with the person parameters from the CMP-sd, respectively.
Person parameters from the RPCM-r correlated with r = 1
with the person parameters from the CMP-r-gd and with the
person parameters from the CMP-r-sd. Taken together, these
results justify staying with the more parsimonious Rasch Poisson
models, as the robustness of person and item parameters against
the violation of equidispersion is demonstrated for this case.

The upper graph of Figure 7 displays conditional reliabilities
of the RPCM, the CMP-gd, and the CMP-sd; the lower graph
of Figure 7 displays conditional reliabilities of the RPCM-r, the
CMP-r-gd, and the CMP-r-sd. As can be seen, reliabilities were
substantially underestimated within the RPCM and the RPCM-r
due to underdispersion. For the CMP-gd and the CMP-r-gd, the
smallest reliability was α = 0.80.

DISCUSSION

The current work introduced figumem, a figural memory test
based on AIG readily available for researchers and practitioners
in R. The cognitive model implemented in the item generator
relates to the phenomenon of visual information load. Three
different item difficulties determined by the magnitude of visual
load can be differentiated. Psychometrically similar items for each
magnitude of visual load can be created by randomly determining
the concrete figural associations that are to be memorized and
their presentation order. An empirical study mostly confirmed
the qualities of the item generator. Various analyses with
different modifications of the RPCM justified specific objective
comparisons via raw scores. The item generator radical (visual
load) determined the item difficulty. Variance in item difficulty
due to the item generator incidentals was small in comparison
yet not negligible (see below). Figumem holds the potential for
an efficient, reliable, and repeatable assessment of figural memory
in various non-clinical and clinical populations. It should be
stressed that the test so far is not normed and should only be
used for research purposes. Nevertheless, the test’s potential for

diagnostic use should be considered. In the following, we discuss
the implications of certain results, practical implications for the
use of figumem, and limitations of the pilot study.

Implications of the Results
Since some items from the same item family with different
incidentals differed significantly in difficulty, true psychometrical
equivalence of isomorphs cannot be assumed. However, the
variation in item difficulty within an item family can be dealt with
effectively in practice. For example, in the group of items with
low visual load, the item with incidental-ID 3 was significantly
easier than the item with incidental-ID 1. The RPCM predicts an
increase of 6.82% of the score on the item with incidental-ID 1
for the score on the item with incidental-ID 3 (see Table 4). For
the average person, this equals 0.74 additional expected correctly
remembered associations that can be traced back to variation
in item surface features. This is actually not much given that
the average person was able to memorize around 10–11 figure
associations of items with low visual load (see Table 3). It is
around a fifth of the standard deviation for the item with radical
level 1 and incidental-ID 1 (see Table 1). When using items
with low visual load but different incidentals for a longitudinal
assessment, it is then recommended to take a conservative stance
in the diagnostic procedure and interpret a change in item score
of plus or minus 1 with caution. Note that in a clinical context,
when the STM capacity of a patient is severely impaired, lower
item scores are expected, and variation of the item score due
to item incidentals is reduced accordingly. In these cases, the
variation can be so small that the precision of the instrument is
no longer able to capture it. It follows that a significant increase
in test score over time can then be validly traced back to changes
within the testee, and the use of several items from the same item
family is valuable for the obviation of retest effects.

Regarding items with medium visual load, the variation within
the item family is more severe. For example, the RPCM predicted
a decrease of 12.36% of the score on the item with incidental-ID
2 for the score on the item with incidental-ID 3. Thus, the latter
mentioned item was significantly more difficult. This might still
not be substantial, especially in clinical scenarios, but items with
medium visual load should be used with more caution. For a mere
measurement of visual STM, it is recommended to rely on the use
of low-visual-load items. The RPCM has the convenient property
that the easiest items can effectively differentiate between persons
from the complete ability spectrum as long as floor and ceiling
effects are not present (Holling and Schwabe, 2016). While three
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participants reached the maximum score of 20 for the item
with radical level 1 and incidental-ID 3, It is important to
keep in mind that our sample consisted mainly of students and
academics, who are expected to be well above average on the
ability spectrum.

The item families with more visual load should be considered
with regard to construct validity, as they present potential for
further studies on memory. In this study, visual information load
predicted most of the variance in item easiness (95.41%). This
can be seen as a strong confirmation of our cognitive model
(Arendasy et al., 2008). Moreover, our results thereby fall in
line with the findings of Alvarez and Cavanagh (2004), although
we used different stimulus material, different measurement
techniques, and an overall different experimental design. While
this might also hint toward high construct validity, future studies
are required to explore the correlations of test performances
on figumem items and already established testing procedures
and experimental assessment techniques. In that context, a
broader framework that extends STM to the multiple facets of
WM should be established. While STM can be differentiated
from WM by the given task (memorization vs. manipulation;
see above), it is not obvious that the memorization of more
complex (i.e., more visually loaded) stimulus material does not
occupy the same cognitive processes such as attention, imagery,
and executive functions that are debated to be central to WM
(Kosslyn, 2005; Baddeley et al., 2011; Logie, 2011; Baddeley,
2012; Slana Ozimič and Repovš, 2020). For example, in order to
memorize figural associations from figumem items with medium
and high visual load, it might be necessary to not only rehearse
the associations in an inner scribe (the rehearsal mechanism
of the visuospatial sketchpad; see Baddeley, 2012, p. 13) but
also actively compare two similar frames with regard to the
emblems they contain. From this perspective, one would expect
higher correlations between more demanding WM tasks and
visually more loaded figumem items compared to visually less
loaded figumem items.

Practical Implications and Additional
Features of Figumem
Within every item created by figumem, all 20 emblems and all
20 frames available for the respective item family are used. This
raises the question of how many items that substantially differ
in their presentation features can be truly created. Participants
of our study were mainly recruited among academics, and the
field test revealed restricted variance of test outcomes not to be
an issue (Table 1 and Figure 6). When using figumem for the
diagnosis of people from the average of the ability spectrum or
from clinical populations, the amount of presented emblem–
frame units can be reduced, which in turn increases the amount
of concrete figural associations that can appear in an item. This
feature is already implemented in figumem. Alternatively, more
figures can be created to enhance the item generator. This would
demand a repeated empirical evaluation of the item model.

Although the implemented cognitive model of figumem
relates to visual STM, the test should not be regarded as a distinct
measure of STM alone. Various models of memory functions

in general coexist and differ in their degrees of psychometrical
and neuropsychological grounding. Different working definitions
for memory are used in order to achieve specific aims, like
the explanation of certain memory phenomena or the precise
diagnosis of a neurological condition (Murdock, 1962; Glanzer
and Cunitz, 1966; Baddeley, 1992; Frankland and Bontempi,
2005; Purves et al., 2013; Goldstein, 2014). The use of specific
test material can be adjusted in accordance with the working
definition. For a simple example, the Rey–Osterrieth complex
figure test (Rey, 1941) is often used to assess visual STM, as the
testees must reproduce (i.e., draw) a figure in an open response
format immediately after visually inspecting it. Then, after some
time has elapsed and the testees have worked on different tasks,
they must draw it again from memory. This is then considered a
performance of visual long-term memory retrieval because the
different tasks during the delay period should have occupied
STM and WM. Figumem can be used in the same way. An open
response format is implemented in the software. It can be used
to produce a matrix of emblem–frame units. Templates only
containing the emblems can be generated alongside. The testee’s
task is to draw the frames around the emblems of this template.

With respect to different models of memory, extensions of
the cognitive model of the item generator should be considered.
Unlike fluid reasoning, in which inductive and deductive
cognitive processes are rather precisely defined (Cattell, 1987;
McGrew, 2009), the scientific definition of basic STM relates
to mere capacity, not processes. As previously discussed, the
concept of WM goes beyond that of STM because elements
must be not only remembered but manipulated as well. This
implies specific forms of conscious cognitive processing. In that
context, the actual differences between WM and fluid reasoning
are debated (e.g., Kyllonen and Christal, 1990; Kane et al., 2004).
Extending figumem for the measurement of WM is possible
as item formats in which testees must manipulate the placing
of missing lines of the frames and orientation of the emblems
themselves are feasible. The number of radicals can be increased
to contain, for example, colors for the emblems and dashed and
dotted presentations of frame lines. This would further require an
extension of the cognitive model and its statistical representation
(see Freund et al., 2008).

Limitations
We drew a sample of nine figumem items for the empirical
investigation of the item generator. This is obviously a very
small sample size, and our results should be generalized with
caution. Replications of the test of figumem should include
a larger number of incidental realizations for every radical
level. This can be problematic from a practical viewpoint,
as visual memory tests are perceived as rather cumbersome
by participants. An expedient alternative in study design
is to randomly sample the incidentals for every individual
participant instead of using a fixed set of items across all
examinees. This requires the production of test items “on
the fly.” If one aims at conducting the inquiry online, then
this approach is bound to advanced survey tools that are
not readily available to any researcher. However, such a
study design is especially useful for better estimating the
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variance of item difficulty within an item family. Alternatively,
the level of analysis can be altered when the influence of
incidentals on item difficulty is investigated. Instead of looking
at the sum of correctly remembered associations for every item
as the smallest bit of information, as it is done in the RPCM, one
can also model the probability for correctly remembering every
specific emblem–frame association directly. The advantage of
this approach is that specific emblem–frame associations that are
hypothesized to be easily remembered due to the employment of
other cognitive processes or test-specific strategies can be assessed
directly. However, it is not a straightforward task to generate
such hypotheses in an efficient way. The authors experienced
this in a post-study briefing. For example, an argument was
made that the emblem that looks like a plus sign should not
be presented inside the square-shaped frame, because such a
constellation bears resemblance to the Swiss flag and will be
remembered with this mnemonic instead of visual memory.
This hypothesis, however, can only be potentially confirmed for
testees with a certain minimal knowledge about national flags.
For a rather specific subset of participants, it might be more
crucial to avoid combining the emblem with the four arrows
and the square-shaped frame because this reminds them of a
movable platform in a specific action-adventure video game. The
important point is that, while mnemonic strategies for some
figure combinations might be more common than others, they
can probably not be fully controlled for. One should bear in
mind that, in an AIG context, the practical implications of
observed variance in difficulty within an item family are often
more meaningful than its statistical significance (see section
“Implications of the Results”).

CONCLUSION

Figumem is a promising tool for the measurement of figural
memory capacity and readily available in R. It is based on
a cognitive model related to the visual information load
phenomenon. Due to the AIG, it theoretically allows for the
production of a very large number of items with similar
psychometric properties. An empirical study displayed the fit
of the test to the RPCM and the item generator’s capability for
the creation of psychometrically similar items within an item
family defined by visual load. Extensions of the visual material
are feasible. Future research with larger samples of automatically
generated items is needed to further generalize the qualities of

the item generator with regard to construct validity, different
populations, different item formats, and the assessment of long-
term memory.
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