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Missing data are hard to avoid, or even inevitable, in longitudinal learning diagnosis
and other longitudinal studies. Sample attrition is one of the most common missing
patterns in practice, which refers to students dropping out before the end of the study
and not returning. This brief research aims to examine the impact of a common type
of sample attrition, namely, individual-level random attrition, on longitudinal learning
diagnosis through a simulation study. The results indicate that (1) the recovery of
all model parameters decreases with the increase of attrition rate; (2) comparatively
speaking, the attrition rate has the greatest influence on diagnostic accuracy, and the
least influence on general ability; and (3) a sufficient number of items is one of the
necessary conditions to counteract the negative impact of sample attrition.
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INTRODUCTION

During the last few decades, to promote student learning, learning diagnosis (Zhan, 2020) or
cognitive diagnosis (Leighton and Gierl, 2007) through objectively quantifying the learning status
of fine-grained attributes (e.g., knowledge, skills, and cognitive processes) and providing diagnostic
feedback has been increasingly valued. Longitudinal learning diagnosis identifies students’ strengths
and weaknesses of various attributes throughout a period of time, which also can be seen as
an application of learning diagnosis through longitudinal assessments. Longitudinal learning
diagnosis not only can be used to diagnose and track students’ growth over time but also can be used
to evaluate the effectiveness of diagnostic feedback and corresponding remedial teaching (Tang and
Zhan, under review; Wang et al., 2020).

In recent years, to provide theoretical support for longitudinal learning diagnosis, several
longitudinal learning diagnosis models (LDMs) have been proposed, which can be divided into two
primary categories: the higher-order latent structure-based models (e.g., Huang, 2017; Lee, 2017;
Zhan et al., 2019a) and the latent transition analysis-based models (e.g., Li et al., 2016; Kaya and
Leite, 2017; Wang et al., 2018; Madison and Bradshaw, 2018). The former estimates the changes
in higher-order latent ability over time, and from this, it infers the changes in the lower-order
latent attributes. The latter estimates the transition probabilities from one latent class or attribute
to another or to the same latent class or attribute. The diagnostic results of these two model types
have a high consistency (Lee, 2017). Although the utility of these models has been evaluated by
some simulation studies and a few applications, the harm of ubiquitous missing data in longitudinal
designs has not yet been considered and studied.
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In practice, missing data are hard to avoid, or even inevitable,
in longitudinal learning diagnosis and other longitudinal studies.
In this current study, we focused on a type of missing data that
is common to longitudinal studies, namely, attrition (Little and
Rubin, 2020, p. 10). Attrition refers to students dropping out
prior to the end of the study and do not return. For instance,
in school-level longitudinal learning diagnosis projects, some
students may individually drop out before the end of the study
because they move to other schools that are inaccessible to the
researchers; all students in the class may even drop out altogether
because of some unforeseen classroom instructional reasons (see
the empirical example in Zhan et al., 2019a).

A higher percentage of attrition at each point in time means
the remaining data at subsequent time points provide less
diagnostic information, which may also challenge the robustness
of measurement models. Some studies have previously employed
a complete case analysis that deletes any students who dropped
out (e.g., Zhan et al., 2019a). However, this is unfair to those
students who were deleted in analysis, because they did not
receive any diagnostic feedback. Secondly, it may produce biased
results when students with complete data are systematically
different from those with missing data. Longitudinal studies are
particularly susceptible to such bias, as missing data accumulate
over time due to attrition. Therefore, it is necessary to explore
the impact of missing data caused by attrition on longitudinal
learning diagnosis. This not only helps practitioners better
understand the performance of existing longitudinal LDMs in
specific test situations with missing data but also provides a
reference to psychometricians for future research on the necessity
of imputation methods for missing data in longitudinal learning
diagnosis. However, as aforementioned, to our knowledge,
the harm of ubiquitous missing data in longitudinal designs
has not yet been considered and studied in the field of
learning diagnosis.

As a prolog, this brief research report aims to explore the
impact of various proportions of a common type of attrition
(i.e., individual-level random attrition) on longitudinal learning
diagnosis through a simulation study. For simplicity and without
loss of generality, a simple version of the longitudinal higher-
order deterministic-inputs, the noisy “and” gate (sLong-DINA)
model (Zhan et al., 2019a) is used in this study. The rest of the
paper starts with a brief review of the sLong-DINA model and
different types of sample attrition. Subsequently, a simulation
study was conducted to mimic the operational scenarios of
attrition that may be considered by the sLong-DINA model.
Finally, the authors summarize the findings and discuss potential
directions for future research.

BACKGROUND

sLong-DINA Model
The sLong-DINA model is one of the representative models of the
higher-order latent structural model-based longitudinal LDMs.
Compared with the complete version, the special dimensions
used to account for local item dependence among anchor items
at different time points (see Paek et al., 2014) are ignored

in the sLong-DINA model to reduce model complexity and
computational burden.

Let ynit be the response of person n (n = 1,..., N) to item i
(i = 1,..., I) at time point t (t = 1,..., T). The sLong-DINA model
can be expressed as follows:

First order:

logit(P(ynit = 1|αnt, γnm,λ0it,λ1it)) = λ0it + λ1it

K∏
k=1

α
qikt
nkt (1)

Second order:

logit(P(αnkt = 1|θnt, ξk, βk)) = ξkθnt − βk (2)

Third order:

θn = (θn1, . . . , θnT)
′
∼ MVNT(µ, 6) (3)

where αnt = (αn1t ,..., αnKt)′ denotes person n’s attribute profile
at time point t, αnkt∈{0, 1}, and αnkt = 1 if person n masters
attribute k (k = 1,..., K) at time point t and αnkt = 0 if not; λ0it
and λ1it are the intercept and interaction parameter for item i at
time point t, respectively; qikt∈{0, 1} is the element in an I-by-
K Qt-matrix at time point t, where qikt = 1 if item i requires
attribute k at time point t and qikt = 0 if not; θnt is person
n’s general ability at time point t; ξ k and βk are the slope and
difficulty parameters of attribute k at all time points, respectively,
because the same latent structure is assumed to be measured at
different time points; µ = (µ1,..., µT)′ is the mean vector and6 is
a variance–covariance matrix:

6 =

 σ2
1
...

. . .

σ1T · · · σ2
T


where σ1T is the covariance of the first and Tth general abilities.
As a starting and reference point for subsequent time points, θn1
is constrained to follow a standard normal distribution.

There are two reasons why we did not consider using a
general or saturated model (e.g., Huang, 2017; Madison and
Bradshaw, 2018). First, general models always need a large
sample size to obtain a robust parameter estimate (Jiang and
Ma, 2018; Ravand and Robitzsch, 2018). Thus, it is difficult for
small-scale educational projects (e.g., school- and classroom-level
assessments) to meet this requirement. Second, the parameters in
general models are often hard to interpret in practice. Adequate
parameter constraints are essential for obtaining interpretable
and meaningful insights from the model, which are particularly
important in educational and psychological applications to fulfill
the need for accountability.

Sample Attrition
Sample attrition is one of the common sources of missing
data in longitudinal studies (Little and Rubin, 2020) and refers
to when students drop out prior to the end of the study
and do not return. In practice, there are four typical types
of sample attrition: individual-level random attrition, class-
level random attrition, individual-level nonrandom attrition,
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and class-level nonrandom attrition. More specifically, (a) the
individual-level random attrition reflects the common scenario
in which sample size decreased monotonically over time for
individual reasons, such as illness, transferring to another
school, and reluctance to participate; (b) the class-level random
attrition can be seen as an extreme case of individual-level
random attrition, where the whole class students drop out
for some unpredictable reasons; for example, the testing time
may conflict with other course time due to adjusting the
curriculum schedule; (c) individual-level nonrandom attrition
typically occurs when an individual has achieved a predetermined
learning goal, such as mastering the target attributes; thus,
some students may feel that there is no need to waste
time on follow-up remediation and then quit the follow-up
section(s); and (d) class-level nonrandom attrition may occur
when the teacher finds that the vast majority of students
(e.g., 80%) in the class have mastered the target attributes,
then she/he may decide to quit the follow-up section(s)
to ensure normal teaching progress. More discussions about
sample attrition can be found in Goodman and Blum (1996)
and Little and Rubin (2020).

This brief research aims to explore the impact of the
individual-level random attrition, which is the simplest type of
sample attrition, on longitudinal learning diagnosis. As this is a
prolog or preliminary study, we hope that more researchers could
continue to study the effects of different types of sample attrition
and different types of missing data on longitudinal learning
diagnosis (cf., Muthén et al., 2011; Zheng, 2017).

SIMULATION STUDY

Design and Data Generation
In the simulation study, three factors were manipulated. First,
the sample size at the starting time point was varied to be either
N = 200 or 400 students. According to the national situation
in the authors’ country, sample sizes of 200 and 400 translate
to approximately 5 and 10 classes with 40 students in each. In
real school-level longitudinal learning diagnosis projects, more
classes and more students per class are rare. Second, the random
attrition rate at each time point (from time point 2) equaled
M1 = 0% (baseline), 5, 10, 20, 40, and 60% (all the decimal points
that might occur in proportional sampling are deleted). The third
manipulated variable was test length at each time point at two
levels of relatively short (It = 15) and relatively long (It = 30).

According to the authors’ practical experience in longitudinal
learning diagnosis (e.g., Tang and Zhan, under review), two or
three test times (i.e., one or two sessions of diagnostic feedback
and/or remedial teaching) are sufficient for almost all students
to master the target fine-grained attributes. Thus, three time
points were considered (T = 3) in this brief study. In addition,
four attributes (K = 4) were measured. The first four items for
It = 15 and the first eight items for It = 30, respectively, were
used as anchor items. The simulated Q-matrices were presented
in Figure 1. In practice, it is common to use high-quality items
as anchor items, and thus the anchor item parameters were
fixed as λ0it = −2.197 and λ1it = 4.394. In such a case, the

aberrant response (i.e., guessing and slipping) probabilities are
approximately equal to 0.1. In addition, the results of Zhan et al.
(2019b) indicate that assuming guessing and slipping parameters
to follow a negative correlation is more realistic. Thus, non-
anchor item parameters were generated from a bivariate normal
distribution with a negative correlation coefficient as follows:(

λ0it
λ1it

)
∼ MVN2

((
−2.197
4.394

)
,

(
1.0 −0.6
−0.6 1.0

))
This setting leads the guessing and slipping probabilities for
all items to follow a positively skewed distribution (mean
≈ 0.1, minimum ≈ 0.01, and maximum ≈ 0.6). Attribute slope
parameters were fixed at ξ k = 1.5 for all attributes, and attribute
difficulty parameters were fixed at β = (−1, −0.5, 0.5, 1). For the
general abilities on different time points, the correlations among
them were set as 0.9. Between two consecutive time points, the
overall mean growths were set at 1, and the overall scale changes
were set at

√
1.25.

Furthermore, the response data without attrition (i.e.,
M1 = 0%) were generated from the sLong-DINA model based
on the above-generated parameters. For the response data with
attrition, a different proportion of students were randomly
sampled as attrition from time point 2. Then, these selected
students’ responses were modified as missing (i.e., NA), and
students who had been drawn out did not appear in the
subsequent section(s). In other words, some students were
dropped out from time point 2, while some others were
dropped out until time point 3. The data were generated by
using R software, and the data generation code is available
from the authors.

Analysis
In this brief study, the parameters of the sLong-DINA model
are estimated using the Bayesian Markov chain Monte Carlo
method via Just Another Gibbs Sampler (JAGS) software. The
prior distribution of the model parameters and the corresponding
JAGS code are displayed in Supplementary Table S1 in the
online supporting materials. More details about how to use the
JAGS code for Bayesian CDM estimation can be found in a
tutorial by Zhan et al. (2019c).

Thirty replications were implemented in each condition. For
each replication, two Markov chains with random starting points
were used and 15,000 iterations were run for each chain. The
first 10,000 iterations in each chain were discarded as burn-
in. Finally, the remaining 10,000 iterations were used for the
model parameter inferences. The potential scale reduction factor
(PSRF; Brooks and Gelman, 1998) was computed to assess the
convergence of each parameter. Values of PSRF less than 1.1 or
1.2 indicate convergence. The results indicated that PSRF was
generally less than 1.1, suggesting acceptable convergence for the
setting specified.

To evaluate parameter recovery, the bias and the root mean
square error (RMSE) were computed as bias(v̂) =

∑R
r=1

v̂r−v
R

and RMSE(v̂) =
√∑R

r=1
(v̂r−v)2

R , where v̂ and v are the estimated
and true values of the model parameters, respectively; R is
the total number of replications. In addition, the correlation
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between the true values and estimated values (Cor) for some
parameters (e.g., general abilities) were computed to evaluate
the recovery. For attribute recovery, the attribute and pattern
correct classification rate (i.e., ACCR and PCCR) were computed
to evaluate the classification accuracy of individual attributes
and profiles: ACCR =

∑R
r=1

∑N
n=1

I(α̂nkr=αnkr)/NR and PCCR =∑R
r=1

∑N
n=1

I(α̂nr=αnr)/NR, where I(·) is an indicator function.
In reference to Zhan et al. (2019a), two kinds of PCCR were
considered in this brief research, namely, the PCCR and the
Longitudinal PCCR. The former focuses on whether K attributes
can be correctly recovered at a given time point, while the latter

focuses on whether all TK attributes can be correctly recovered
(e.g., if T = 3, the pattern contains 12 attributes).

RESULTS

Figure 2 presents the recovery of item parameters. First,
one of the most important results is that, with the increase
of the attrition rate, the recovery of item parameters
decreases, which manifests as larger bias, higher RMSE,
and lower Cor. Second, increasing the number of classes

1* 2* 3* 4* 5 6 7 8 9* 10* 11* 12* 13* 14* 15 16 17 18 19 20 21 22 23 24 25* 26* 27* 28* 29* 30
α1(1)
α2(1)
α3(1)
α4(1)

α1(2)
α2(2)
α3(2)
α4(2)

α1(3)
α2(3)
α3(3)
α4(3)

FIGURE 1 | Simulated K-by-I Q′-matrices in simulation study. “*” Denotes items used in the I = 15 conditions; gray means “1” and blank means “0”; time point is in
parentheses.

FIGURE 2 | The recovery of item parameters in simulation study. M1, attrition rate; N, sample size; I, test length; Bias, mean bias across all items; RMSE, mean root
mean square error across all items; Intercept, item intercept parameter; Interaction, item interaction.
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FIGURE 3 | The recovery of attributes in simulation study. M1, attrition rate; N, sample size; I, test length; ACCR, attribute correct classification rate; PCCR, pattern
correct classification rate; time point is in parentheses.

FIGURE 4 | The recovery of general ability parameters in simulation study. M1, attrition rate; N, sample size; I, test length; Bias, mean bias across all persons; RMSE,
mean root mean square error across all persons; Cor, correlation between generated and estimated values; time point is in parentheses.

(i.e., sample size) and test length yields better recovery of
item parameters, and the former is more influential. Third,
intercept parameters were generally estimated more accurately
than interaction parameters, mainly because the number of
individuals who mastered all required attributes is typically

less than the number of individuals who do not master all
required attributes.

Figure 3 presents the recovery of attributes. With the increase
of the attrition rate, the classification accuracy quickly decreases,
particularly for the Longitudinal PCCR. Since there is no attrition
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at time point 1, the PCCR of time point 1 is primarily affected
by test length. Then, for the PCCR of time points 2 and 3,
their downward trend is almost consistent with that of the
Longitudinal PCCR. Therefore, if the PCCR is maintained above
80% and the Longitudinal PCCR is maintained above 60%, an
attrition rate of less than or equal to around 20% and around
40% is acceptable for short tests and long tests, respectively.
In addition, there is a significant result that deserves attention,
which is that the classification accuracy of time point 3 is better
than that of time point 2; this was also found in the study
of Zhan et al. (2019a). Although we currently do not know
how to interpret this phenomenon, it is at least not negative
for longitudinal learning diagnosis. Furthermore, increasing the
number of classes and test length yields higher classification
accuracy, but the former has a limited effect.

Figure 4 presents the recovery of general ability parameters.
Similarly, with the increase of the attrition rate, the recovery
of general ability parameters gradually decreases, which is
manifested as higher RMSE and lower Cor (bias is less affected).
Compared with item parameters and attributes, the attrition rate
has less impact on general ability parameters.

CONCLUSION AND DISCUSSION

This brief research examined the impact of individual-level
random attrition on longitudinal learning diagnosis. The results
indicate that (1) the recovery of all model parameters decreases
with the increase of attrition rate; (2) comparatively speaking,
the attrition rate has the greatest influence on the diagnostic
accuracy, and the least influence on general ability; and (3) a
sufficient number of items is one of the necessary conditions to
withstand the negative impact of sample attrition. For relatively
short tests (e.g., 15 items), a random attrition rate of 20% or
less is necessary to achieve an acceptable longitudinal diagnostic
accuracy (i.e., longitudinal PCCR> 0.6); conversely, for relatively
long tests (e.g., 30 items), a random attrition rate of 40% or
less is necessary.

In summation, the results of this brief study have
demonstrated that sample attrition or missing data have a
significant impact on diagnostic accuracy of longitudinal
learning diagnosis. Therefore, the topics of sample attrition
and missing data are worth studying in longitudinal learning
diagnosis. As a prolog to future research, the current study only
considered some simple cases and left many issues for further
discussion. First, this brief research only explores the impact
of sample attrition on the sLong-DINA model. Whether the
conclusions apply to other longitudinal LDMs is still worth
further study in the future. Second, in a different manner from
attrition that was focused on this brief research (i.e., monotone
missing pattern), a student can be missing at one follow-up
time and then measured again at one of the next, resulting in
a non-monotone missing pattern. Students’ returning indicates
that more information is contained in the data. Thus, it can be
inferred that the negative influence of the non-monotone missing
pattern on longitudinal learning diagnosis is less than that of
attrition. However, the specific degree of its impact remains

to be determined. Third, the number of simulation conditions
in this brief study is still limited. More independent variables
(e.g., the number of attributes and the attribute hierarchies)
and more complex test situations (e.g., more time points) can
be considered in future studies to provide more reference
information for practitioners.

Fourth, in practice, students are nested in classes, and classes
are further nested in schools. Such a multilevel data structure is
not considered in the current study. By utilizing multilevel LDMs
(e.g., Huang, 2017; Wang and Qiu, 2019) in future research,
the multilevel data structure can be considered and the impact
of class-level attrition can also be studied. Fifth, similar to
the Andersen’s longitudinal Rasch model (Andersen, 1985), for
general ability, the sLong-DINA model focuses on the estimates
at different time points rather than a specific growth trend (i.e.,
linear or non-linear). If practitioners focus on the latter, the
growth curve LDMs (Huang, 2017; Lee, 2017) can be used. Sixth,
only the individual-level random attrition was considered in this
brief study, while the impact of other three types of attrition (i.e.,
class-level random attrition, individual non-random attrition,
and class-level non-random attrition) on longitudinal learning
diagnosis still remains to be further studied.

Seventh, in further studies, it would be much more interesting
to explore the impact of different missing mechanisms upon
the parameter recovery of longitudinal LDMs, instead of just
generating data based on the missing completely at random
scenario (i.e., random attrition), such as the missing at random
with respect to both observed outcomes and covariates and the
missing at random with respect to covariates only (Muthén
et al., 2011; Zheng, 2017). Eighth, in longitudinal assessments, for
meaningful comparisons, it is necessary to ensure that the same
construct is measured across time points. In the presence of item
parameter drift, a special case of differential item functioning, the
interpretation of scores across time points or change scores would
not be valid. Thus, the consequences of ignoring item parameter
drift in longitudinal learning diagnosis is worthy of further
attention (cf., Meade and Wright, 2012; Lee and Cho, 2017).
Ninth, in Bayesian estimation, the prior distribution reflects the
beliefs of the data analyst. The posterior distribution of model
parameters will be affected by their prior distribution, particularly
for a small sample size or a limited number of items. The choice
of prior distribution is also worthy of attention (da Silva et al.,
2018; Jiang and Carter, 2019). In practice, we recommend that
the data analyst selects appropriate prior distributions based
on the actual situation rather than copy those given in the
Supplementary Table S1.

Last but most important, this brief research is only a superficial
study of the missing data in longitudinal learning diagnosis. In
the broader field of longitudinal studies, methodologists have
been studying missing data for decades and have proposed
many methods and techniques to address this issue (see, Daniels
and Hogan, 2008; Enders, 2010; Young and Johnson, 2015;
Little and Rubin, 2020), such as the traditional imputation
methods (e.g., arithmetic mean imputation, regression
imputation, and similar response pattern imputation),
likelihood-based methods, Bayesian iterative simulation
methods, and multiple imputation methods. The performance
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of these methods in longitudinal learning diagnosis is well
worth further study.
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