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US intelligence analysts must weigh up relevant evidence to assess the probability of their

conclusions, and express this reasoning clearly in written reports for decision-makers.

Typically, they work alone with no special analytic tools, and sometimes succumb to

common probabilistic and causal reasoning errors. So, the US government funded

a major research program (CREATE) for four large academic teams to develop new

structured, collaborative, software-based methods that might achieve better results.

Our team’s method (BARD) is the first to combine two key techniques: constructing

causal Bayesian network models (BNs) to represent analyst knowledge, and small-group

collaboration via the Delphi technique. BARD also incorporates compressed, high-quality

online training allowing novices to use it, and checklist-inspired report templates with

a rudimentary AI tool for generating text explanations from analysts’ BNs. In two prior

experiments, our team showed BARD’s BN-building assists probabilistic reasoning when

used by individuals, with a large effect (Glass’ 1 0.8) (Cruz et al., 2020), and even minimal

Delphi-style interactions improve the BN structures individuals produce, with medium to

very large effects (Glass’ 1 0.5–1.3) (Bolger et al., 2020). This experiment is the critical

test of BARD as an integrated system and possible alternative to business-as-usual

for intelligence analysis. Participants were asked to solve three probabilistic reasoning

problems spread over 5 weeks, developed by our team to test both quantitative accuracy

and susceptibility to tempting qualitative fallacies. Our 256 participants were randomly

assigned to form 25 teams of 6–9 using BARD and 58 individuals using Google Suite and

(if desired) the best pen-and-paper techniques. For each problem, BARD outperformed

this control with very large to huge effects (Glass’1 1.4–2.2), greatly exceeding CREATE’s

initial target. We conclude that, for suitable problems, BARD already offers significant

advantages over both business-as-usual and existing BN software. Our effect sizes also

suggest BARD’s BN-building and collaboration combined beneficially and cumulatively,

although implementation differences decreased performances compared to Cruz et al.

(2020), so interaction may have contributed. BARD has enormous potential for further

development and testing of specific components and on more complex problems, and

many potential applications beyond intelligence analysis.
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1. INTRODUCTION

1.1. IARPA, CREATE, and BARD
Intelligence analysts are prone to the same reasoning mistakes
as everyone else: groupthink, confirmation bias, overconfidence,
etc. But when they produce bad assessments it can have
disastrous results, such as the Weapons of Mass Destruction
(WMD) reports used to justify the 2003 invasion of Iraq,
which were later condemned by both sides of politics as
analytically inadequate (United States Select Senate Committee
on Intelligence, 2004; Silberman and Robb, 2005). So, the US
intelligence community’s research body, IARPA (Intelligence
Advanced Research Projects Activity)1 has sought “structured
analytic techniques” that would methodically produce better
reasoned intelligence reports. Their latest, multi-million-
dollar program was CREATE (CRowdsourcing Evidence,
Argumentation, Thinking, and Evaluation)2, which specifically
sought software-based approaches to enable crowdsourced
structured techniques, and funded four large academic teams to
pursue contrasting approaches to this end.

Our BARD team (Bayesian ARgumentation via Delphi)3

included computer scientists at Monash (led by Kevin Korb,
Ann Nicholson, Erik Nyberg, and Ingrid Zukerman) and
psychologists at UCL and Birkbeck (led by David Lagnado and
Ulrike Hahn) who are experts in encoding people’s knowledge
of the world in maps of probabilistic causal influence: causal
Bayesian Networks (BNs). A good map can provide the logical
skeleton of a good intelligence report, including the probabilities
of competing hypotheses, the impact of supporting evidence,
relevant lines of argument, and key uncertainties. Two well-
known difficulties here are eliciting sufficient analyst knowledge
and amalgamating diverse opinions. So, our team also included
psychologists from Strathclyde (led by Fergus Bolger, Gene Rowe,
and George Wright) who are experts in the Delphi method,
in which a facilitator methodically leads an anonymous group
discussion toward a reasoned consensus.

The outcome of our research is the BARD system: an
application and methodology whose two defining features are
the construction of causal BNs and a Delphi-style collaborative
process, with the aim of producing better reasoning under
uncertainty and expressing it clearly in written reports. In
addition, we incorporated several other features likely to improve
performance, most notably: an anytime audiovisual training
package, a guided incremental and iterative workflow, report
templates to encourage analysts to include items often neglected,
and the auto-generation of natural language text expressing some
of the BN’s key features.We provide a brief sketch of the system in
section 3; for a more detailed picture see Nicholson et al. (2020)4.

1IARPA is an organization within the Office of the Director of National Intelligence

responsible for leading research to overcome difficult challenges relevant to the

United States Intelligence Community. For more details see https://www.iarpa.

gov/.
2CREATE webpage: https://www.iarpa.gov/index.php/research-programs/create.
3BARD webpage: http://bard.monash.edu/.
4To view and interact with BARD (including solved demonstration problems),

to view the BARD training e-course, or to use BARD for academic research

purposes (including refereeing and replications), please email Prof. AnnNicholson

at ann.nicholson@monash.edu.

1.2. CREATE Experiments on BARD
A key feature of IARPA’s approach is the use of external testing,
so their independent testing team designed amajor experiment to
test the effectiveness of the four CREATE approaches, including
BARD. We developed, tested, and contributed some new
reasoning problems that captured key elements of intelligence
analysis in a simpler form, which were reviewed and included in
the IARPA suite of test problems. IARPA deemed the appropriate
control condition to be individuals using the Google Office Suite,
since this mirrored “business as usual” for intelligence analysis.
Unfortunately, IARPA’s testing team relied upon retaining a large
number of volunteer participants who were not significantly
compensated, and attrition was so high (regardless of which
of the four systems participants used) that the experiment was
terminated early without obtaining any statistically useful data.

Anticipating this outcome, we designed and carried out the
present study, relying on a smaller number of participants who
received significant compensation. To date, it constitutes the
only significant and critical experimental test of the entire BARD
system used end-to-end on reasoning problems developed for
CREATE. The study methodology is described in section 4, with
results and discussion presented in sections 5 and 6.

Since BARD is multifaceted, and our small study is necessarily
limited in the variables manipulated, it does not show how
much each facet contributed to the total result. None of them
are statistical confounds for this experiment, since the aim
always was to test BARD as a whole. However, the contribution
of each facet—and how to polish them further so they shine
better together—are further research questions of great interest.
In section 2, we briefly review the most relevant theory and
previous experimental results, including two experiments our
team performed to separate BARD’s BN construction from its
Delphi collaboration. This review supports the view that each of
BARD’s facets most likely contributes positively and cumulatively
to total BARD performance. We hope that future research will
improve, validate, and measure each contribution.

2. BACKGROUND

2.1. Intelligence Analysis Problems
Intelligence analysis typically requires assessing the probability
of some conclusion based on available pieces of evidence, and
writing reports for decision-makers to explain that assessment.
To express those probabilities, US analysts are expected to
use a standard verbal terminology corresponding to defined
numerical ranges (e.g., “very likely” means 80–95%) as specified
in ICD-203, which “establishes the Intelligence Community (IC)
Analytic Standards that govern the production and evaluation of
analytic products” [Office of the Director of National Intelligence
(ODNI), 2015]. The same conclusions are often reassessed
periodically as new evidence arises. This sort of intelligence
analysis requires a type of reasoning under uncertainty that is not
unusual: similar reasoning is required in many other domains,
and we hope that BARD’s success with our test problems will
ultimately be transferable to many real-world problems.

To test the BARD system, our team needed to develop new
reasoning problems that captured the key elements of intelligence
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analysis in a simpler form. Basic scenarios and evidence are
presented in written form, and answers must ultimately be given
in written form, but participants can use other means (e.g., BNs,
pen-and-paper calculations) in between. In each of our short
reasoning problems, we incorporated amajor reasoning difficulty
likely to lead to some qualitatively incorrect conclusions and
explanations, and we also tested the accuracy of quantitative
estimates. Our reasoning problems were developed and tested by
our London-based cognitive psychologists.

We used two of these problems in this experiment. The
Kernel Error problem involves the cognitive difficulty known as
“explaining away.” For example, if my wet lawn must be caused
by either a sprinkler or rain (or both), and these two causes are
each sufficient and otherwise independent, then seeing the wet
lawn raises the probability of both possible causes. However, if I
discover that it rained, this entirely “explains away” the wet lawn,
and the probability of the sprinkler should be lowered to its initial
value. Our team’s psychology experiments with Kernel Error
formally confirmed what computer scientists have informally
observed: people have difficulty readjusting their probabilities
appropriately (Liefgreen et al., 2018).

The Cyberattack problem involves the cognitive difficulty
known as dependent evidence. For example, how much
additional weight should we give to a second medical test result
if we know that the second test was of the same type as the
first? This depends on how the results are correlated, e.g., how
often errors in the first test will be caused by factors that
will also cause errors in the second test. Even if people have
precise figures for this, our team’s psychology experiments with
Cyberattack formally confirmed that people find it difficult to
combine dependent evidence accurately (Pilditch et al., 2018).

2.2. Probabilistic and Causal Reasoning
Errors
Psychological research has revealed many difficulties people have
with both probabilistic and causal reasoning (Kahneman et al.,
1982; Hahn and Harris, 2014; Newell et al., 2015). To summarize
a very large literature:

• One general factor that increases the probability of such
errors is simply complexity. Facing a mass of interconnecting
evidence and long lines of argument, it is easier to make an
error somewhere along the line in assessing the impact of
evidence on a conclusion.

• Another general factor is specific dependence patterns that
people find surprisingly difficult. Besides explaining away
and dependent evidence, these include “screening off,” i.e.,
when knowledge of the state of a common cause renders two
dependent effects independent of each other, and mistaking
correlation for direct causation when a hidden common cause
is far more likely (Gopnik et al., 2001; Lagnado and Sloman,
2004; Kushnir et al., 2010; Pearl and Mackenzie, 2018).

• A third general factor is the common biases in the way
people express and update their probabilities, such as
overconfidence, i.e., exaggerating the probability of likely
events and the improbability of unlikely events (Moore
and Healy, 2008); conservative updating, i.e., inadequately

weighting new evidence when revising beliefs (Kahneman
et al., 1982; Matsumori et al., 2018); base-rate neglect, i.e.,
inadequately weighting the priors (Welsh and Navarro, 2012);
and anchoring, i.e., depending too much on an initial piece of
information (the anchor) (Kahneman et al., 1982).

2.3. BNs to Reduce Reasoning Errors
A key reason for IARPA’s interest in structured representations
is to reduce such cognitive difficulties when analyzing problems
(Heuer, 1999). Causal BNs are particularly well-suited for the
task, since they explicitly represent and accurately combine both
probabilistic and causal information.

Formally, a BN is a directed, acyclic graph whose nodes
represent random variables, and whose arrows represent direct
probabilistic dependencies, often quantified by conditional
probability tables (CPTs) associated with each node. In causal
BNs, each of these arrows also represents direct causal
influence—hence, they can also predict the effects of decisions
to intervene. Users can enter exact or uncertain evidence about
any variables, which is then efficiently propagated, updating
the probability distributions for all variables. Thus, causal BNs
can support and perform predictive, diagnostic (retrodictive),
explanatory, and decision-oriented probabilistic reasoning. For
more technical details, see Pearl (1998), Spirtes et al. (2000),
and Korb and Nicholson (2011).

But how does constructing a BN help people avoid reasoning
errors, rather than merely reproducing them? Reasoning errors
aren’t bad beliefs; they are bad ways to develop or combine
beliefs. So, BN assistance doesn’t depend on all the analysts’
beliefs being true, it just enables analysts to accurately draw the
conclusions that are implied by their own beliefs. It’s analogous
to using a calculator to help avoid arithmetical errors: provided
that people enter the numbers and operations they believe are
correct, the calculator can be relied upon to combine them
accurately. In constructing BNs, analysts must explicitly think
about and identify the causal structure (rather thanmake implicit
assumptions about it). The model then requires all the relevant
probabilities to be entered (so none of these can be neglected).
The BN calculations then automatically avoid almost all the
errors discussed above. The way modeling with BNs helps
avoid errors has been explained and/or empirically verified for
multiple specific reasoning difficulties: base-rate neglect (Korb
and Nyberg, 2016); confusion of the inverse, i.e., interpreting the
likelihood as a posterior (Villejoubert and Mandel, 2002); the
conjunction fallacy, i.e., assigning a lower probability to a more
general outcome than to one of the specific outcomes it includes
(Jarvstad and Hahn, 2011); the jury observation fallacy, i.e.,
automatically losing confidence in a “not guilty” verdict when a
previous similar conviction by the defendant is revealed (Fenton
and Neil, 2000); and most recently, the zero-sum fallacy, i.e., not
recognizing when a piece of evidence increases the probability of
both a hypothesis and its most salient rival (Pilditch et al., 2019).
Exceptions to this rule might be reasoning errors that arise from
mistaken ways to express individual beliefs, e.g., ambiguities in
variable definitions, or overconfidence in the initial probabilities
assigned. For such issues, the critical discussion engendered by
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structured social processes may be more useful, per sections 2.4
and 2.5.

More generally, given their ability to embody normatively
correct reasoning, causal BNs have been used to analyze common
fallacies in informal logic (Korb, 2004), analyze and assess a
variety of arguments in criminal law—where they have exposed
some common errors in evidential reasoning (e.g., Fenton et al.,
2013; Lagnado et al., 2013), analyze human difficulties with
reasoning under uncertainty (e.g., Hahn and Oaksford, 2006;
Hahn, 2014), model human knowledge acquisition while solving
complex problems (e.g., Holt and Osman, 2017), and as a
proposed method for argument analysis (Korb and Nyberg,
2016). In practical contexts, they have been deployed to support
human reasoning and decision making under uncertainty in
such diverse domains as medicine (e.g., Flores et al., 2011; Sesen
et al., 2013), education (e.g., Stacey et al., 2003), engineering
(e.g., Choi et al., 2007; Bayraktar and Hastak, 2009; Misirli and
Bener, 2014), surveillance (e.g., Mascaro et al., 2014), the law
(e.g., Fenton et al., 2013; Lagnado and Gerstenberg, 2017), and
the environment (e.g., Chee et al., 2016; Ropero et al., 2018).

Many BN software tools have been developed to assist
in building, editing, evaluating, and deploying BNs. These
includeHugin5, GeNie6, Netica,7 AgenaRisk8, BayesiaLab9, and a
plethora of research software tools, e.g., Elvira10, R BN libraries11,
BNT12, SamIam13, and BayesPy14. However, all of these tools
assume that the user understands BN technology (or they offer
only rudimentary help), and they assume the user knows how
to translate their knowledge of a causal process or argument
into a Bayesian network. In the BARD system, we improved on
this first generation of BN tools by providing far better training
and guidance (see section 3.2), and by providing a structured
workflow that draws on new BN “knowledge engineering”
concepts and best practices (see section 3.3).

2.4. Delphi Groups to Improve Reasoning
There is considerable evidence that decision making by groups,
either by reaching consensus or by amalgamation, can produce
better outcomes than decision making by individuals (e.g.,
Salerno et al., 2017; Kugler et al., 2012; Charness and Sutter, 2012;
Straus et al., 2011). However, there are also well-known problems
that arise with group interactions, e.g., anchoring, groupthink,
and psycho-social influences (for more details, see Kahneman
et al., 1982; Mumford et al., 2006; Packer, 2009; Stettinger et al.,
2015). Groups also have potential logistical advantages in that
subtasks can be divided among members and/or performed by
the most competent.

5Hugin website: https://www.hugin.com/.
6GeNie website: https://www.bayesfusion.com/.
7Netica website: https://www.norsys.com/index.html.
8Agena Risk website: https://www.agenarisk.com/.
9BayesiaLab website: http://www.bayesia.com/.
10 Elvira website: http://leo.ugr.es/elvira/.
11R BN website: http://www.bnlearn.com/.
12BNT website: https://github.com/bayesnet/bnt.
13SamIam website: http://reasoning.cs.ucla.edu/samiam/.
14BayesPy website: https://pypi.org/project/bayespy/.

A number of methods have been developed over the years
that attempt to harness the positives of groups while pre-
empting or ameliorating the negatives. One of the best-known
is the Delphi technique (e.g., Linstone and Turoff, 1975), an
example of a “nominal group” technique: the group members
never actually meet, but rather, interact “remotely.” The defining
characteristics of a Delphi process (e.g., Rowe et al., 1991)
are: anonymity to reduce the influence that powerful or
dogmatic individuals can have on group judgments; iteration
with feedback, which allows participants the chance to reconsider
and improve their responses in the light of information from
other group members; and aggregation (or collation, if responses
are qualitative in nature) of group responses, often done by
a facilitator—who can also assist by reducing unproductive
exchanges and encouraging task completion (but avoids making
original contributions). At least for short-term forecasting
problems and tasks involving judgements of quantities, Delphi
has generally shown improved performance compared to freely
interacting groups or a statistically aggregated response based on
the first-round responses of individual participants (Rowe et al.,
1991).

2.5. Delphi for Constructing BNs
Recently, one study used a form of Delphi for point-estimate
CPT elicitation (Etminani et al., 2013), while for BN structure
elicitation Serwylo (2015) pioneered online crowdsourcing and
automated aggregation (albeit non-Delphi). Some of the present
authors proposed a Delphi-style elicitation of BN structure in
an epidemiological case study (Nicholson et al., 2016). However,
BARD is the first system to use Delphi for developing and
exploring an entire BN model, including variables, structure and
parameters, and also for more complex reasoning problems.

The major difficulty in using Delphi here is that both the
workflow and the output are complex: the workflow necessarily
involves multiple, logically dependent steps, and users should
be encouraged to improve their complex answers iteratively by
repeating steps. One approach would be for each participant
to complete the entire process before discussing their work
with others, but this means they would learn nothing from
others during the process and have complicated outputs to
assess and discuss at the end. Another approach would be to
use a traditional Delphi process at each step and make the
workflow strictly linear, but this loses all the advantages of
iterative development, and requires synchronized participation.
BARD resolved this dilemma by using a compromise: “Real-
Time Delphi” (see section 3.3). One crucial achievement of this
experiment is to demonstrate the feasibility of combining Delphi
with BN construction in this way.

In real-world applications, the relevant probabilities may
come from either data, such as available studies on the false
positive and false negative rates for a medical test, or expert
opinion, such as the relative risks of new medical treatments
where there is little data available. In either case, there may
be disagreement and uncertainty. Instead of a single point
probability, the available information is then better summarized
as some sort of probability distribution or interval, which may
be interpreted as meta-uncertainty about the appropriate point
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probability, and called a “vague” probability. There have been
various protocols proposed for eliciting and combining such
probabilities from multiple experts, such as 3-point methods
(e.g., Malcolm et al., 1959; Soll and Klayman, 2004), a 4-point
method (Speirs-Bridge et al., 2010), and the IDEA protocol
(Hemming et al., 2018a); however, these have not been integrated
into any of the commercial or research BN software tools. Instead,
these protocols are applied externally to the BN software and
then incorporated by the BNmodel builder (e.g., Nicholson et al.,
2011; van der Gaag et al., 2012; Pollino et al., 2007; Hemming
et al., 2018b). Uniquely, BARD integrates elicitation tools of
this kind with BN construction. However, the test problems
in this experiment specify appropriate point probabilities in
the problem statements, in order to simplify the task and
yield uncontroversial, normatively correct solutions. So, assessing
the effectiveness of BARD for vague probabilities must await
future research.

2.6. Checklists for Improving Reasoning
One of the simplest structured techniques is the checklist—
yet, it has proven highly effective in reducing errors in such
challenging expert tasks as piloting aircraft and, more recently,
in performing medical surgery (Russ et al., 2013). Effective
checklists are carefully designed to provide timely and concise
reminders of those important items that are most often forgotten.
For CREATE, IARPA had already identified important general
elements of good reasoning that are frequently omitted, e.g.,
articulating competing hypotheses, and noting key assumptions
(Intelligence Advanced Research Projects Activity, 2016). This
suggested that something like a reasoning checklist could be
useful, if added to the BARD system.

For BN-building, the functions of a checklist are implicitly
fulfilled by our stepwise workflow with step-specific tips,
and associated automated reminders. For report-writing, we
implemented the checklist idea more explicitly in the form
of a report template with section-specific tips, and associated
automatic text generation (see section 3.4).

2.7. Experiments Separating BN
Construction From Delphi Collaboration
The BARD team performed two other critical experiments on
the BARD system, reported in detail in the references below,
which provide some evidence that its two principal features—BN
construction and Delphi groups—both contribute positively and
cumulatively to BARD’s total performance.

In the SoloBARD experiment (Cruz et al., 2020), individual
participants used a version of BARD without any social
interaction to solve three of the reasoning problems our team
developed, including the Kernel Error and Cyberattack problems
used in this experiment. The control condition consisted of
individuals provided only with Microsoft Word and IARPA’s
generic critical thinking advice. The results showed much
better performance from the individuals using SoloBARD. This
provides some evidence for the feasibility and effectiveness of
BN construction (supported by BARD’s other non-social features,
such as templates) to analyze probabilistic reasoning problems
and produce written reports.

In the Structure Delphi experiment (Bolger et al., 2020),
individual participants who had previously used BARD were
asked to analyze some of our other reasoning problems they
had not previously seen, but only for the critical and most
distinctive subtask in BN construction: selecting the right
variables and causal structure. All other subtasks in solving our
reasoning problems are similar to tasks for which Delphi has
already been shown to be effective in prior literature. Individual
participants were shown the structures purportedly proposed
by other members of their Delphi group (although, in fact,
generated earlier by similar participants and curated prior to the
experiment) and invited to rate these structures and revise their
own. The results showed they made substantial improvements
over their initial responses, both in the top-rated structures
and in the revised structures. This provides some evidence that
BARD’s Real-Time Delphi social process is an additional positive
contributor to performance in analyzing probabilistic problems.

We did not perform any experiment directly comparing
groups using BARD to groups using Google Docs. This was
partly due to our resource limitations, and also to its lower
prioritization by IARPA. Given our combined experimental
results, we think it highly unlikely that groups with Google
Docs could have outperformed groups with BARD on these
particular probabilistic reasoning problems. Nevertheless, sorting
out the exact independent and combined contributions of
BARD’s BN-building and structured social processes vs. unaided,
unstructured group processes remains an interesting research
task for the future.

3. THE BARD APPLICATION

3.1. Overview
BARD (Nicholson et al., 2020) supports the collaborative
construction and validation of BN-based analyses in a web
application, in a Delphi-style workflow. Analysts in small
groups, optionally assisted by a facilitator, are guided through
a structured Delphi-like elicitation protocol to consider and
represent their relevant knowledge in a causal BN augmented
by descriptive annotations. BARD provides tools to assist the
elicitation of a causal BN structure and its parameters, review and
build consensus within the group and explore the BN’s reasoning
in specific scenarios. BARD encourages analysts to incrementally
and iteratively build their individual BNs and seek regular
feedback through communication with other group members
and the facilitator. The group may decide to adopt the highest-
rated individual BN or a facilitator can assist in the production of
a consensusmodel. From an individual or group BN, BARD auto-
generates an outline of a structured verbal report explaining the
analysis and identifying key factors (including the diagnosticity of
evidence and critical uncertainties). Analysts and the facilitator
can revise this into an intuitive narrative explanation of
the solution, using a structured template prompting users to
incorporate elements of good reasoning.

3.2. Better Training for Building BNs
Our experience is that substantial training is required to model
effectively with BNs. For example, the standard BayesiaLab
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training is conducted in a 3-day course15, while Bayesian
Intelligence Pty Ltd offers 2-day training as standard16. However,
the requirements of testing and evaluation in the IARPA
CREATE program limited upfront training to 4 h of online,
individual, self-paced training, without any input or assistance
from a human instructor.

BARD upfront training developed for CREATE is delivered
as condensed but high-quality audiovisual e-courses, with
corresponding practical exercises, example solutions, and
context-sensitive help and tips embedded in the software. They
cover the fundamentals of Bayesian network modeling, how
teams function in BARD, the differences in the responsibilities
of facilitators and analysts, and details on how to use the BARD
software itself17.

3.3. Better Workflow for Building BNs
The BARD workflow decomposes the task into a logical series of
six smaller steps (see Figure 1). Step 1 focuses on understanding
the problem for analysis, particularly identifying hypotheses as
well as the most relevant factors and evidence. In Steps 2 to 5,
participants build a BN model of the analytic problem, broken
down into variable selection (Step 2), adding arrows to define
the structure (Step 3), parameterizing the model to specify the
probabilities (Step 4), and then exploring and validating the BN’s
reasoning on specific scenarios (Step 5). Finally, the participants
individually and collectively construct a written report (Step 6).

At each of the steps, analysts are required to first work on
their solution in isolation (blinded to other responses) and then
“Publish” their work (which makes it available to other analysts),
before they can view other analysts’ work or the current group
solution (produced by the facilitator), and discuss them via the
step-specific discussion forum (see Figure 2). Publishing also
allows analysts to move forward to the next step. When present, a
facilitator’s role is to: support the team’s progression through the
steps in terms of timeliness and focus; optionally synthesize the
team’s work in the “group” solution (both BN and report) with
minimal original contributions of their own; encourage review,
feedback, and discussion; and submit the final analytic report.

Thus, apart from the initial response requirement, at each
step group members are free to progress to subsequent steps at
their own pace and can move flexibly backwards and forwards
between steps. This BARD workflow is based on a “roundless”
Delphi variant called “Real-Time Delphi” (Gordon and Pease,
2006), where the sub-steps of providing individual responses,
viewing information from other participants, and improving
responses are not controlled by the facilitator, but rather, where
the transitions occur immediately, i.e., in “real time.” This allows
far more flexibility about when the participants can make their
contributions and speeds up the Delphi process, since analysts
do not have to wait for the facilitator to amalgamate or collate
responses, as well as reducing the need for facilitation. It also
allows users to return to earlier steps to expand on their answers,

15BayesiaLab website: http://www.bayesia.com/events.
16Bayesian Intelligence website: https://bayesian-intelligence.com/training/.
17For a glimpse of this upfront training, see “BARD Screenshots” at https://tinyurl.

com/bard-publications.

since BNs are best built iteratively and incrementally (Laskey and
Mahoney, 1997, 2000; Boneh, 2010; Korb and Nyberg, 2016).
The trade-off is that, since the participants can see each other’s
responses directly, rather than after amalgamation or collation,
some of the biases deriving from direct interaction that Delphi is
designed to eliminate may re-emerge.

At Step 6, analysts can also rate their own and other analysts’
reports on a 10-point scale; after rating a report, they can see
their own rating and the current average rating. This feature was
introduced as a quantitative high-level assessment to help focus
discussion, as well as providing guidance to the facilitator on
which report(s) to use as the basis for the team solution. However,
in the absence of a facilitator, these ratings can also be used as
input to an algorithm to automatically select an individual report
as the team solution (see section 4.3.2).

Using this workflow, a team can methodically produce an
analytic report explaining the members’ collective answer to the
problem and their reasoning behind it.

3.4. Report Templates and Automated BN
Explanations
BARD pre-populates the written report workspace with a few
generic headings, along with explanatory tips for each heading.
These function as checklist-style reminders and placeholders
for these general elements, e.g., the relevant hypotheses and
their prior probabilities, and they also clarify the presentation
for the reader. Participants are encouraged to include tables or
figures, such as an image of the BN structure, if these enhance
clarity further. We note that TRACE, one of the other four
CREATE projects, also experimented successfully with flexible
report templates (Stromer-Galley et al., 2018), which supports the
view that they make some positive contribution.

In conjunction, we developed a rudimentary AI tool for
generating text explanations of the relevant BN features, and
organized this text under the same template headings so that
it could readily be copied or imitated in the written reports.
The reason for providing such assistance is that, especially when
BNs become more complex, it can be difficult to understand the
interaction between evidence items and their ultimate impacts
on the conclusion. Although the BN will have calculated this
accurately, well-reasoned reports demand that the impact be
explained verbally, and it helps if the BN can explain itself18.

4. METHODOLOGY

This study was approved by the Monash University Human
Research Ethics Committee, with the plan19 lodged with the

18 This “explainable AI” (XAI) feature is now undergoing further development

as part of a spinoff project involving several BARD researchers. “Improving

human reasoning with causal Bayes networks: a multimodal approach”is a major

3-year project at Monash University and the University of London funded by

the Australian Research Council. See https://dataportal.arc.gov.au/NCGP/Web/

Grant/Grant/DP200100040.
19 “Experiment Design” available at: https://bit.ly/2OBVBCc.
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FIGURE 1 | BARD’s workflow consists of six steps. Analysts and the facilitator can move flexibly backwards and forwards between steps.

FIGURE 2 | High level representation of the BARD workflow within a step for analysts and the facilitator.

Open Science Framework (OSF)20 and approved by them and by
the IARPA CREATE program.

4.1. Participants
Power Analyses: We conducted separate power analyses for
our t-tests and repeated measures ANOVAs, both assessed for

20 The Open Science Framework is an open source software project that facilitates

open collaboration in science research. See for more information: https://osf.io/.

a statistical power of 0.8. We chose large effect sizes to reflect
that only substantial improvements over the control would be
sufficient to justify adopting the BARD system. For the t-test of
the difference between two independent means at the 5% level of
significance (one-sided), with equal sample sizes and a very large
effect size (Cohen’s d = 1.33, equivalent to a 20% improvement
of BARD over a control mean score of µk = 20 with equal σ = 3
across conditions), we calculated an indicative sample size of 16
score observations split evenly between BARD and the control.
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Assuming 8 individuals were recruited into each BARD team to
form a single test score, this would require 72 individuals in total.
Assuming a larger standard deviation (σ = 5), a large effect
size (d = 0.8) and retaining other assumptions, we calculated
21 observations per condition requiring 189 individuals in total.
For a repeated measures within-factors ANOVA at the 5% level
of significance (one-sided), with equal sample sizes, across two
periods, with two factors and a very large effect size (partial
η2 = 0.735, equivalent to Cohen’s d = 1.33), we calculated an
indicative sample size of 4 observations per condition requiring
36 individuals in total. For a large effect size (partial η2 = 0.39,
equivalent to Cohen’s d = 0.8) we calculated 8 observations per
condition or 72 individuals in total. To cater for the worst case
among these analyses, we set a minimum recruitment target of
189 individuals.
Recruitment Methods: We recruited participants via social
media (using Monash University’s Facebook, LinkedIn, and
Twitter pages to advertise for volunteers), Monash University
student organizations, and the Monash Psychology department’s
SONA system. All participation was voluntary, and participants
could withdraw at any time prior to completion of the study
while retaining any compensation earned. All responses were
fully anonymized (including all IP address information). A
short quiz21 including probabilistic reasoning questions and
personality questions was completed by all participants when
registering for the experiment. This was not used to select
applicants for the experiment or assign their condition, but was
used later to help allocate the facilitator role within BARD teams.
Sample Size, Conditions, and Demographics: We attempted
to over-recruit since the rate of attrition could not be known
in advance, and we succeeded in obtaining 295 registrations.
These potential participants were 18–57 years old with a mean
of 29.7 and a standard deviation of 7.2 years. By optional
self-identification, there were 139 females, 141 males, and 15
others. The target population was English-speaking adults with
some undergraduate experience, so individuals who had not
yet completed high school education or were younger than 18
were excluded.

Following the randomized control trial (RCT) standard,
these potential participants were selected randomly into two
conditions for between-condition comparisons. After asking
them to confirm their availability for the respective time
commitments required, we began the experiment with 256
participants. 58 control (K) participants were asked to work
individually at any time to produce reports, using the Google
Suite tools and (if desired) some pen-and-paper techniques (see
section 4.3.3). The remaining 198 experimental (X) participants
were asked to work collaboratively and synchronously in teams
of 6–9 using the BARD tool. By self-identification, K contained
20 females, 37 males, and 1 other, while X contained 98 females,
86 males, and 14 others.

Participants were kept blind of their condition in the sense that
they were not informed about the nature of any other conditions.
However, blinding was necessarily imperfect, in that many
participants would have heard of the IARPA CREATE program

21 “Short Quiz” available at: https://bit.ly/2K6Nj6N.

and/or BARD independently of the experiment itself, and may
have been aware that the BARD project utilizes BN technology.
In particular, some K participants may have been aware that
they were not using the technology under development and
performing as controls. Of course, every participant was trained
explicitly only in the tools actually required for their condition.
Compensation: Participants were compensated for adequate
participation in each session in the form of a GiftPay22 voucher,
and those who participated in all sessions received a bonus. All
participants (X and K) were required to complete the upfront
training to receive compensation. In each of the 5 problem-
solving weeks, X participants were required to attend joint
problem solving sessions and actively work on their reports to
receive compensation, while K participants were only required to
complete their report. For the optional webinars (see section 4.3),
attendance was sufficient.

4.2. Materials
Three analytic problems were selected for the study; all were
probabilistic in nature and ideally suited to being solved using
Bayesian networks: (A) Smoking and Cancer23; (B) Kernel Error
(Liefgreen et al., 2018); and (C) Cyberattack (Pilditch et al., 2018).

All problems had corresponding marking rubrics, with those
for B and C developed previously by our team’s cognitive
psychologists, and a similar format used here for A24. Participants
were explicitly asked to provide some specified probabilities, but
also asked to justify those answers. In the rubrics, assessors were
provided with both the correct answers and a short list of specific
observations which ought to feature in any sound and thorough
justification, e.g., that one evidence source is more reliable than
another. Assessors awarded one point for each answer and each
observation that participants fully included, and a half point for
each observation that was only partially included. The final rubric
score was simply the sum of these points.

The nature of these rubrics entails that there are a large
number of available points (13, 38, and 34 respectively), but
the mean proportion of these points obtained by participants
tends to be low. It is less clear to participants which items
to include in their justifications than in their answers, and in
ordinary life people frequently give shorter, partial justifications
that leave some relevant facts unstated. Hence, even participants
with correct answers obtained by correct reasoning are likely to
omit some point-scoring observations from their justifications.
Conversely, even participants who give incorrect answers or
use incorrect reasoning are likely to score some points in their
justifications. To avoid this “random noise” inherent to scoring
justifications, the SoloBARD experiment (Cruz et al., 2020) also
compared points scored only from the answers to the explicit
questions, and found a much greater effect size (Glass’ 1 = 1.4)
in favor of SoloBARD—but we did not propose or perform this
analysis for our BARD experiment.

Unlike the SoloBARD experiment, we split Problems B and C
into two parts. Part 1 introduced a new scenario with relevant

22 GiftPay website: https://www.giftpay.com/.
23 “Smoking and Cancer - Problem Statement” available at: https://bit.ly/2V2rwl4.
24 “Smoking and Cancer - Rubric” available at: https://bit.ly/2v92emU.
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TABLE 1 | Experiment schedule by week: for webinars, training, and

problem-solving.

Week Webinar Task

0 Welcome Training

1 Q&A on Training (A) Smoking and Cancer

2 Solution and Q&A for (A) (B) Kernel Error, Part 1

3 – (B) Kernel Error, Part 2

4 Solution and Q&A for (B) (C) Cyberattack, Part 1

5 – (C) Cyberattack, Part 2

evidence and questions that needed to be answered. Part 2 of
each problem was presented in the following week, building on
the first by adding new evidence to the problem descriptions and
then asking additional questions about its impact. BN models
readily allow for such “phased” problems, and BARD takes
advantage of that in allowing “scenarios” to be built incrementally
along with the models used to analyze them. So, both K
individuals and X teams were able to build on their analyses for
Part 1, even though those questions were not repeated and their
rubric scores did not carry over to Part 2.

In Part 2 of both problems, participants must cope with
more variables and more dependencies between them—which
makes the problems computationally more difficult than in
Part 1. Furthermore, these additional elements introduce the
major cognitive difficulties designed into these problems. For
both reasons, the Part 2 questions should be more difficult
for participants, and we expected them to achieve a lower
proportion of the available marks. Furthermore, we expected
the advantage of using BARD to become more pronounced.
To test this secondary hypothesis, we used a separate ANOVA
for each of these problems to detect any significant interaction,
despite the small loss of statistical power in detecting the
main effect.

In the SoloBARD experiment, Problems B and C (not
divided into parts) seemed to present roughly the same
difficulty for participants: controls obtained roughly
the same proportion of the available points in both
problems, and so did participants using SoloBARD. Our
Problem A was structurally comparable to the first part
of the other two problems, and hence not particularly
difficult nor divided into parts. It is similar to example
BN problems common in introductory undergraduate
Artificial Intelligence courses, and partly intended
to provide additional training for both X and K in
conjunction with the associated webinar on how it can
be accurately solved, before they proceeded to the more
difficult problems.

The problem-solving was conducted over 5 consecutive weeks,
with the webinars, training, and problems being presented in the
sequence shown in Table 1.

4.3. Design and Procedure
4.3.1. The Variables
The variable under manipulation was the tool and associated
training used for analyzing problems and writing solutions;

the dependent variable assessed was performance in producing
these solutions. X and K membership was assigned uniformly
randomly, using random.org to select a sufficient number
of participants for K. This implicitly controlled for other
independent variables; those measured, via the registration quiz
and BARD’s usage monitoring, were: Education level (high
school, some college, BA, MS, PhD); Probability/Stats education;
Sex; Nationality; Age (≥ 18); Total login time.

Very high attrition rates were observed in all preliminary
studies by CREATE teams, including pilot studies for this
experiment in both X and K: up to 50% per week, which would
have been unsustainable over the course of the experiment. We
made several adjustments to minimize and cater for attrition,
most notably by encouraging frequent social engagement. X team
members were required to work synchronously; and for both X
and K we introduced “webinars” (i.e., online seminars) presented
by a member of the experimental team that provided additional
training and Q&A; these were voluntary, but (apart from the
initial Welcome) participants received additional compensation
for attendance.

4.3.2. Experimental Condition (X)
Training: For this study, compulsory upfront X training

consisted of only 2 h of the BARD e-courses for analysts,
delivered individually using a Learning Management System
(Moodle). Participants were then asked if they were willing
to take on the facilitator role. Those who answered “yes”
and completed the short, optional facilitator e-course were
subsequently considered as prospective facilitators. All e-
courses remained accessible via the BARD platform throughout
the experiment.

The four different webinars were held according to the
week-by-week schedule in Table 1, and within each week, the
scheduled X webinar was presented four times on weekday
evenings to cater for participant availability and keep the
numbers in each session manageable. Their respective aims were:
to welcome and introduce participants to the experiment and
encourage them to do the training; to answer any questions
that arose from the training; to review the BARD gold-
standard solution for Problem A and answer any questions;
and to conduct a similar review for Problem B. These “gold-
standard solutions"” were simply plausible example solutions
we constructed, including the associated BNs, that would have
achieved the maximum possible rubric score. PowerPoint slides
and BARDwalkthroughs were used to explain these solutions and
how to use BARD to develop them25. No webinar was conducted
after Problem C, as there were no subsequent problems where
participant performance could benefit from further retention
or training; however, participants were sent the gold-standard
solution via email.
Assignment to teams and roles: X participants were

permanently assigned to one of six timeslots spread over
three weekday evenings, consistent with their stated availability
and our capacity, and asked to keep this timeslot free for
participation throughout the experiment. They were then

25 “Training Presentation - Group X” available at: https://bit.ly/2VnjW1d.
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randomly assigned to BARD teams within this timeslot before
each problem cycle. Reassignment was another modification
to cope with attrition, by maintaining participant numbers
within each team. Initially, there were 25 teams made up from
198 people selected for the X condition, but attrition reduced
the number of teams across the experiment (see section 5.1).
Teams were assigned 6–9 members (except for one team of 5
during the final problem) with an average of 7.3 members for
the experiment. We expected some attrition within teams during
each problem, i.e., that not all assigned members would actively
participate, so the numbers assigned were slightly generous.

As described in section 3, each BARD team had one facilitator
and the remainder were analysts. The prospective facilitators
were assigned to teams first and distributed as evenly as possible,
since BARD includes functionality for facilitators to be replaced.
Within each team, the participant with the highest score on the
quiz done at registration was selected as the facilitator.
Workflow: BARD’s workflow was designed to allow

asynchronous problem solving, i.e., with no real-time
communication. However, to increase social engagement,
team members in this experiment were required to work
synchronously online during their allocated 2-h sessions, which
was feasible because almost all participants were within the local
AEST timezone. While lab-based experimentation would have
been even better for combating attrition, as used in Cruz et al.
(2020), here our resources were insufficient. Once a problem
was “opened” at the start of the team’s scheduled session, the
participants still had access to BARD and the problem for the
remainder of the week until it was “closed” at midnight on
Sundays, and so could continue to work on it after the scheduled
session time, albeit without additional compensation. In practice,
while some participants continued to work on the solution the
same night, no participants came back on subsequent days.
Report submission:When the problem was closed, the rules for
report submission were:

1. If the facilitator has already submitted a final report, that
report will be assessed. The facilitator was trained and
instructed to produce the report by either:

(a) incorporating elements from any or all of the individual
reports, or

(b) choosing what appears to be the best analyst report,
based on team consensus via the discussion forum
and/or ratings26.

2. If the facilitator does not submit a report, then among those
reports given a rating by at least two analysts, BARD auto-
submits the one with the highest mean rating.

3. If there is no report rated by at least two analysts, then BARD
auto-submits the longest non-blank analyst report27.

26 Admittedly, there was no activemonitoring or intervention in this experiment to

prevent facilitators from flouting this training by industriously building their own

independent BN solution and writing a report based solely on it—but we received

no complaints from analysts that such dictatorial behavior occurred.
27 For the IARPA experiment, we defined a similar set of rules to classify and

submit a report as “non-deficient,” and slightly stricter rules requiring participation

4.3.3. Control Condition (K)
Training: K individuals received webinars and upfront training
for their own tools that were as similar to X as practical28.
Nevertheless, the content between the X and K webinars differed
significantly. K used Google Suite, and their upfront training
consisted of an e-course developed by IARPA called the “Guide
to Good Reasoning”29, which provided generic training on how
to reason and solve problems, including avoiding the common
analytic errors IARPA had already identified.

Webinars followed the same week-by week schedule described

in Table 1 and had similar aims. Each webinar was presented
three times within each week, and individuals nominated the

timeslot they preferred at the beginning of the experiment.

In the webinars following Problems A and B, we presented
versions of the gold-standard solutions with almost identical
text to those for X, but stripped of any allusion to the
BARD tool. We used PowerPoint slides30 to introduce and
explain how “frequency formats” and “chain event graphs”
could be used to accurately calculate the answers (see
Gigerenzer and Hoffrage, 1995), and also how the elementary

probability calculus could be used as a supplement or alternative
method, albeit more mathematical and less intuitive. These

are the best available pen-and-paper techniques for probability
calculation, and were sufficient, in principle, for solving all our
problems precisely.

The main motivation for presenting these techniques was to

encourage continued participation. As discussed in section 2,

the more “ecologically valid” and favorable comparator would
have been individual analysts working on problems without

any special training in probability calculation, as used in Cruz
et al. (2020). For intelligence analysis, these pen-and-paper
techniques aren’t part of business as usual, and moreover,

are not a viable alternative to BNs: although a feasible
low-tech alternative for these simplified test problems that

require computing a few explicit and precise probabilities,
they rapidly become too unwieldy and difficult as problems

become more complex or vague. Nevertheless, although we
expected this training to improve the performance of K,
we reasoned that if X could still outperform K here, then
it would outperform an untrained K by at least as great
a margin.
Workflow: For ecological validity, K participants worked on
each problem individually. A welcome side effect was that it
allowed us to maintain the study’s statistical power despite
limited funding for participant compensation. Analysts in K
were provided with individual Google Drive folders containing
the Good Reasoning Guide, and for each week the relevant
problem statement and blank “Answer Document.” K had 58
participants initially, with 51 completing training, and further

from several analysts (per the intended social process) to classify it as “Ready-to-

Rate.” The latter would have been a better basis for assessment if the sample sizes

had been sufficient. “BARD Report Flags” available at: https://bit.ly/2CTk3u7.
28 “Control Group Plan” available at: https://bit.ly/2YOkEXo.
29 “Guide to Good Reasoning” available at: https://bit.ly/2WJtpQJ.
30 “Training Presentation - Group K” available at: https://bit.ly/2IduCMo.
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attrition leading to smaller numbers for problem-solving (see
section 5.1).

Report submission: For K, problems were “opened” on
Monday simply by releasing the problem description, and
participants had the entire week to work on their report at their
convenience. They were free to enter their solution in the Google
Drive anytime between the opening and the close on Sunday at
midnight, and any non-blank Answer Document was assessed.

4.3.4. Marking
Six markers were engaged with provenmarking ability: fluency in
English and a background in academic marking. Marker training
included a review and discussion of an Assessment Guide31, as
well as a joint session marking example reports. Markers were
trained to adhere as closely as possible to a literal interpretation of
the problem rubrics and ignore redundant information. Markers
were obliged to work independently of each other and BARD
project members. Reports were anonymized and marking done
blind; in particular, markers were not informed whether they
were marking an X or K report.

Markers could not be kept completely blind, however, since
only the BARD reports were generated using a structured
template, with encouragement to include BARD graphics. As
discussed in section 3.4, these are beneficial features of BARD,
both because they remind users to provide some oft-neglected
content and because they help to present that content more
clearly. The potential problem here is not that markers might give
legitimate rubric points for providing such content, but rather,
that they might become biased in their interpretation of which
reports are providing it, and hence illegitimately award points
to X or not award points to K. Fortunately, the items awarded
rubric points are all very specific pieces of information and it
is difficult to misinterpret whether these are provided. However,
we endeavored to minimize any such bias by explicitly urging
markers to avoid it, and informing them that their performance
would be tested for it: some fully anonymized K reports would be
camouflaged to appear as X reports and vice versa.

4.4. Statistical Design
The design was pre-registered with The Open Science
Framework (OSF)32, and in accordance with our IARPA
contract, stated that inferences about our main hypothesis would
be primarily based on 80% and 95% confidence intervals (CIs)
for condition means, and standardized effect sizes. We proposed
to show that X had the higher mean rubric scores overall (across
all three problems), with favorable non-overlapping CIs taken as
confirmation of the hypothesis. We also present below the results
of some more usual null hypothesis significance tests.

We did not explicitly set a precise target effect size. CREATE,
however, had specified at the outset its own performance
goals for “Quality of Reasoning” to be achieved by the
end of each of its three Phases: Cohen’s d (pooled) of at
least 0.25 (small), 0.5 (medium), and 1.0 (large) respectively.
d ≥ 1.0 was an ambitious final target, since for structured

31 “Assessment Guide” available at: https://bit.ly/2G1YUjD.
32 “Experiment Design” available at: https://bit.ly/2OBVBCc.

analytic techniques, this is a major effect that has rarely been
robustly achieved. For example, “Argument Mapping” (AM) is
a well-known software-supported structured technique where
an analyst makes a non-causal, non-parameterized tree diagram
to illustrate the logical structure of an argument. A meta-
analysis by Alvarez Ortiz (2007) showed that, at best, a one-
semester university course using AM improved student critical
thinking scores by approximately 0.6 Cohen’s d compared to
other courses. If d ≥ 1.0 could be achieved (e.g., in Phase
3), it would undoubtedly be of practical importance. At this
stage of BARD’s development (Phase 1), IARPA considered
d ≥ 0.25 substantial enough to warrant further funding and
development (Phase 2).

There is no natural scale for measuring reasoning
performance, so the use of standardized effect size measures that
are relative to observed variability is appropriate. But IARPA’s
blanket specification of Cohen’s d as the standardized effect size
measure was not optimal, and we pointed out some beneficial
refinements. Cohen’s d measures effect size in units of observed
standard deviation (SD), and calculates this by pooling the SD
of K and X. Better is Hedges’ g, which also pools the SDs of K
and X but corrects for a bias in Cohen’s d where group sizes are
small and unequal. For CREATE’s purposes, better still is Glass’
1, which uses only the SD of K. That’s because, (i) “business
as usual” is the relevant norm, and (ii) each new structured
method is quite likely to have a different SD, and (iii) “business as
usual” is therefore the only common standard of comparison for
the four diverse methods. As Glass argued (Hedges and Olkin,
1985), if several treatments are compared to the control group,
it’s better just to use the control SD, so that effect sizes won’t
differ under equal means and different variances. Preserving the
validity of the comparison in this way outweighs the slightly
reduced accuracy of the estimation. An additional consideration
is that for ANOVA-based analyses, it is usual to use a proportion
of variance explained, e.g., by using partial eta-squared (η2)
rather than Cohen’s d. Accordingly, we report our effect sizes via
two alternative measures below, but our preferred measure is
Glass’ 1.

For the analysis of Problem A, an independent samples t-
test was selected to assess the mean difference in rubric scores
between K individuals and X teams, along with CIs for the two
condition means. Effect size was reported using both Hedges’ g
and Glass’ 1.

For the analysis of the repeated measures data in Problems B
and C, mixed-model ANOVA tests were selected to determine
whether any difference in rubric scores is the result of the
interaction between the “type of treatment” (i.e., membership
of K or X) and “experience” (i.e., solving Part 1 or Part 2)
alongside individual main effects for treatment and experience.
Where the interaction term was not significant, rubric score
differences between K and X were assessed through main effects
for the type of treatment, and where the interaction term was
significant, through the statistical significance of the simple main
effects. Differences were computed using 80 and 95% two-sided
Cousineau-Morey confidence intervals for condition means, and
the 95% intervals were illustrated graphically. Effect size was
reported using both partial η2 and Glass’ 1.
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TABLE 2 | Attendance by week: task completions and both week-on-week and end-to-end attrition, for K individuals, X individuals, all individuals, and X teams (along

with the mean attendance per team).

Condition Attendance Registration Training W1 W2 W3 W4 W5 Weekly End-to-end

K Completed 58 51 44 34 31 28 28 – –

K Attrition % – 12% 14% 23% 9% 10% 0% 11% 52%

X Completed 198 140 130 122 112 114 105 – –

X Attrition % – 29% 7% 6% 8% −2% 8% 9% 47%

K+X Completed 256 191 174 156 143 142 133 – –

K+X Attrition % – 25% 9% 10% 8% 1% 6% 10% 48%

X Teams Completed 25 25 25 23 23 22 21 – –

X Teams Attrition % – 0% 0% 8% 0% 4% 5% 3% 16%

per X Team Completed – 5.6 5.2 5.3 4.9 5.2 5.0 5.2 –

To explore potential marker bias due to report formatting, in
each of the 5 problem-solving weeks we took three X and three
K reports from participants and camouflaged them as reports
from the opposing condition. We then randomly presented
some blinded markers with the originals and others with the
camouflaged versions. To analyze these 30 matched pairs of
rubric scores, we used a mixed effects model with fixed effects
(for condition and camouflage) and participant level random
intercepts to test for any major bias.

5. RESULTS

5.1. Attrition, Missing Values, and Bias
Attendance statistics for individual participants are shown in
Table 2. To measure end-to-end attrition, the initial numbers
are all participants who completed registration and confirmed
their availability, and the final numbers are all participants who
completed the task in Week 5. End-to-end attrition was about
50% in both conditions, although it was slightly lower (i.e.,
attendance was slightly better) in X than in K.

Intermediate attendance numbers reveal that week-on-week
attrition averaged about 10% in both conditions, although slightly
lower in X than K, and tended to reduce as the experiment
progressed. A notable difference between conditions is that in K
the attrition during training was similar to subsequent problem-
solving weeks, whereas in X the attrition during their more
substantial training was much higher than K (more than double),
but in subsequent weeks was almost always lower than K. Since all
trained participants were allowed to resume participation even if
they missed a week of problem-solving, it was possible for week-
on-week attrition to be negative, which did occur when more X
participants completed their task in Week 4 than Week 3.

In terms of teams, the number of X individuals available at
each randomized allocation was sufficient to form 25 teams after
registration, 23 before Problem B, and 22 before Problem C,
with a mean size of 7.3 members for the experiment. Individual
attrition resulted in a mean size of 5.2 members actively
participating each week, which we expected would be sufficient
for the BARD social process to confer significant benefits. Every
team completed all of their weekly problem-solving tasks, except
for one team in the final week, so 25, 23, and 21 X teams

TABLE 3 | X report submission method by week.

Submitted by W1 W2 W3 W4 W5 All

Facilitator 25 16 15 18 17 91

Automation 0 7 8 4 4 23

Total 25 23 23 22 21 114

TABLE 4 | Individual attendance at optional feedback sessions.

Condition W1 W2 W4 All

K 32 29 31 92

X 129 115 106 350

Total 161 144 137 442

completed Problems A, B, and C, respectively. This equates to an
end-to-end attrition for teams of only 16%, and a mean week-on-
week attrition rate of only 3%. These are one third of the rates for
X individuals, because the rest of the individual attrition occurred
within teams33.

Since reports from Weeks 2 and 3 were analyzed collectively
as part of the phased Problem B, only matched pairs were
included: any report from either of these weeks was regarded as
an incomplete datum and discarded if the K individual or X team
did not also produce a report for the other week. Reports from
Weeks 4 and 5 were treated similarly. Fortunately, in K individual
attrition was noticeably reduced in the second week of a phased
problem. This was not true for individuals in X, but as noted, only
one such incomplete datum was produced by X teams. Missing
data fromX teamswas also reduced via our automatic submission
contingency: 20% of the X reports assessed were auto-submitted
by the BARD system after the facilitator failed to submit, as
shown in Table 3.

Attendance at the optional, compensated webinars was very
good for K and excellent for X, as shown in Table 4. Relative to
attendance the previous week for the associated upfront training
or problem, webinar attendance was 73% in K and 92% in X.

33 “Attrition Rates” available at: https://bit.ly/2K7wFnG.
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FIGURE 3 | Boxplot of score quartiles for each condition in each problem-solving week. Medians are represented by the thicker horizontal bars. Outliers are

represented by circles, and defined as further than 1.5 times the interquartile range from their condition median.

TABLE 5 | Mean scores with their 80% and 95% CIs for each condition in

Problem A.

Cond. Week N Mean SD SE 95% CI 80% CI Max

K 1 44 3.545 2.283 0.344 [2.851–4.240] [3.097–3.993] 13

X 1 25 7.370 2.775 0.555 [6.225–8.516] [6.639–8.101] 13

Comparing the 30 camouflaged reports to their original
counterparts, we did not detect any effect of the report format
on the rubric scores awarded by markers [χ2(1) = 0.143,
p = 0.706].

5.2. Test Assumptions
For each problem set, assumptions of normality and
homogeneity of variances were assessed using Shapiro-Wilk
and Levene tests respectively, applied across repeat-condition
subgroups and assessed at 95% confidence.

The Shapiro-Wilk test rejected the null of normality only for
K in Part 2 of Problem B (p < 0.001) and K in Part 1 of
Problem C (p = 0.049), so these were further assessed using
normal quantile-quantile (QQ) plots34. The QQ plot for K scores
in Part 2 of Problem B was approximately normal, but revealed
a single outlier individual performing well above the rest of K,
and its temporary removal resulted in an acceptable Shapiro-
Wilks outcome (p = 0.099). Anecdotal evidence from marked
reports suggested that, contrary to the experimental guidelines,
some of the highest performers in K used Bayesian analysis

34 “Quantile Quantile Plots” available at: https://bit.ly/2YMHYot.

methods or tools (other than BARD) to produce their solutions.
Such individuals will have increased the mean scores in K.
However, we are averse to permanently removing this particular
outlier and other unanticipated observations, especially given
that these observations favor K. Also, it is well-known that
ANOVA can tolerate data that is non-normal, and simulation
studies using a variety of non-normal distributions have shown
that the false positive rate is not affected substantially by violation
of this assumption under an approximately normal distribution
(Glass et al., 1972; Harwell et al., 1992; Lix et al., 1996). Visual
inspections of QQ plots for K scores in Part 1 of Problem C
indicate that, again, the distribution is sufficiently normal to allay
concerns about inflated false positive rates.

Levene’s test for homogeneity of variances was not significant
for week–condition sub-groups in Problem A [F(1, 69) = 1.319,
p = 0.255] or Problem B [F(3, 100) = 1.112, p = 0.348], but
was significant for Problem C [F(3, 84) = 5.406, p = 0.002].
Kim and Cribbie (2018) show that the impact of departures from
homogeneity on false positive error rates are limited when sample
sizes are close to equal. The sample sizes in Problem C were 23
for K and 21 for X, so we anticipate this departure from the
homogeneity assumption will also have limited impact on false
positive rates in final outcomes.

5.3. Analysis
Figure 3 is a set of box plots summarizing and exploring the
quartile distribution of rubric scores, after balancing data for
attrition by dropping observation pairs with missing values.
Median scores indicate that the “middle” team in X always
outperformed the “middle” individual in K in all weeks, providing
some initial support for our main hypothesis. While the higher

Frontiers in Psychology | www.frontiersin.org 13 June 2020 | Volume 11 | Article 1054

https://bit.ly/2YMHYot
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Korb et al. Individuals vs. BARD

FIGURE 4 | Mean scores with their 95% CIs for each condition in each problem-solving week.

quartiles of K predominantly overlap with the lower quartiles of
X, as noted, there are a few outliers in K that perform as well as
their high performing X counterparts. Median scores in K vary
little across weeks. The superiority of the medians in X is most
striking for Problems A and B, and somewhat less for Problem C.

5.3.1. Problem A: Smoking and Cancer
For Problem A, the difference in mean scores between X and K
was statistically significant [t(91.223) = 7.799, p < 0.001] using an
independent samples (Welsch) t-test. 80% and 95% confidence
intervals were calculated around each condition’s mean score
(see Table 5 and Figure 4) and do not overlap, further indicating
significantly higher mean scores in favor of BARD.

Given the unequal sample size (K= 44, X= 25), we computed
the adjusted Hedges’ g effect size of 1.44, while Glass’1= 1.6. On
either measure, this is considered a very large effect.

5.3.2. Problem B: Kernel Error
For Problem B, inspecting the Week × Condition mean rubric
scores for Weeks 2 and 3 depicted in Figure 4, we can see that
the difference between the control and experimental conditions
increases, which suggests a Week × Condition interaction.
Indeed, our 2×2mixed ANOVA showed a statistically significant
interaction between experimental condition and problem week
[F(1, 50) = 8.93, p < 0.001]. The main effect of experimental
condition was significant [F(1, 50) = 86.46, p < 0.05], while the
mean effect of exposure week was not [F(1, 50) = 0.06, p = 0.81].

Adjusted confidence intervals as described by Morey (2008)
were calculated around each Week× Condition mean score (see
Table 6 and Figure 4), and do not overlap for K and X in either

Week 2 or Week 3, further indicating significantly higher mean
scores in favor of BARD.

The size of the main effect of condition as measured by the
generalized η2 is 0.53, which is considered very large (Bakeman,
2005), while Glass’ 1 = 2.2, which is considered huge. The
generalized η2 effect size for the Week × Condition interaction,
0.06, is considered small35.

5.3.3. Problem C: Cyberattack
For Problem C, inspecting the Week × Condition mean
rubric scores for Weeks 4 and 5 depicted in Figure 4, we can
see that the difference between the control and experimental
conditions is similar, which suggests no Week × Condition
interaction. Indeed, our 2 × 2 mixed ANOVA showed there
was no statistically significant interaction between experimental
condition and problem week [F(1, 42) = 0.35, p < 0.56]. The
main effect of experimental condition was significant [F(1, 42) =
17.68, p < 0.05], while the main effect of exposure week was not
[F(1, 42) = 2.58, p = 0.12].

Again, adjusted confidence intervals were calculated around
each Week × Condition mean score (see Table 7 and Figure 4),
and do not overlap for K and X in either Week 4 or Week 5,
further indicating significantly higher mean scores in favor
of BARD.

The size of the main effect of condition as measured by the
generalized η2 is 0.24, which is considered large (Bakeman, 2005),
while Glass’ 1 = 1.4, which is considered very large.

35 “ANOVA Tables and Main Effects” available at: https://bit.ly/2YPRDec.
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TABLE 6 | Mean scores with their 80% and 95% CIs for each condition in

Problem B.

Cond. Week N Mean SD SE 95% CI 80% CI Max

K 2 29 4.069 2.437 0.320 [3.428–4.710] [3.654–4.484] 18

X 2 23 8.402 3.575 0.527 [7.341–9.464] [7.717–9.088] 18

K 3 29 2.845 2.721 0.357 [2.129–3.560] [2.382–3.308] 16

X 3 23 9.848 3.591 0.529 [8.781–10.914] [9.159–10.536] 16

TABLE 7 | Mean scores with their 80% and 95% CIs for each condition in

Problem C.

Cond. Week N Mean SD SE 95% CI 80% CI Max

K 4 23 2.208 1.751 0.253 [1.700–2.717] [1.880–2.537] 22

X 4 21 5.012 3.070 0.474 [4.055–5.968] [4.395–5.629] 22

K 5 23 3.022 1.972 0.291 [2.436–3.607] [2.643–3.400] 16

X 5 21 5.369 3.009 0.464 [4.431–6.307] [4.764–5.974] 16

6. DISCUSSION

6.1. Likely Causes and Effects of Attrition
For Delphi studies, which necessarily require participants to
respond for two or more rounds on the same test problem,
attrition rates per round can be high, accumulate to extremely
high levels, and threaten to bias the results (Toma and
Picioreanu, 2016). Some typical initial attrition rates (i.e., at the
second round) reported in the literature are approximately 15%
(Elwyn et al., 2006), 30% (Bradley and Stewart, 2002), and 50%
(Moreno-Casbas et al., 2001; Goluchowicz and Blind, 2011). In
comparison, the 10% weekly attrition rates we achieved were
very low, and our end-to-end rate of 50% after six rounds
was, although high, about equal to the attrition rate seen after
one round in the latter studies and our piloting. Consequently,
unlike the larger IARPA study, we managed to cater for and
reduce individual attrition sufficiently to obtain statistically
significant results, assisted by our participant compensation,
social engagement, team sizes, and auto-submission.

In the aborted IARPA study, in which four contrasting systems
were being tested along with a control condition similar to our
own, the length of upfront training varied between systems, and
attrition rates during this training were roughly proportional to
its duration. Since upfront training was at least twice as long in
X as in K, the doubled attrition in X compared to K is consistent
with the IARPA study, and does not imply that our training was
particularly difficult.

In the problem-solving weeks, two possible causes for the
slightly lower individual attrition in X compared to K are benefits
of working as a group: the mean task burden per individual can
be reduced by distributing it (often not evenly!) amongst team
members, and the social interactions involved in the task can
make it more attractive. Another possible cause is a benefit of
using BNs: the tool may have seemed better suited to the task,
encouraging participants to persist with it.

We expect the main introduced bias due to attrition was that
participants who felt more competent at the task were more likely

to show up for subsequent rounds, potentially improving average
performance in the condition. Performance in both K and X
may have progressively benefited from this, but the principal
concern here is that they may not have benefited equally, thus
contributing to our effect sizes one way or the other. Both K
and X involved using techniques (mathematical and modeling
respectively) that some individuals would have been able to
use better than others, so in this respect it isn’t clear which
condition’s individuals would have benefited more. There are,
however, two social factors that clearly should have reduced the
benefit to X teams. First, participants who felt less competent
should already have had less impact than their team members
on the team report, so their absence probably didn’t improve the
team responses as much per report as attrition in K. Second, in
a group social process like Delphi, less capable participants may
still make a positive net contribution to a group report, so it is
possible that their absence actually made X reports worse. Finally,
although it may have been obscured by the variation in problem-
solving tasks, there was no observable trend of increasing effect
sizes over the 5 weeks as the level of attrition increased. For all
these reasons, it seems very unlikely that attrition made a major
positive contribution to our headline result: that X consistently
outperformed K.

There is one other, important reason why IARPA, at least, was
sanguine about possible attrition bias. The intended use of any
CREATE system was not to make it a compulsory tool, replacing
business as usual for all analysts. Rather, it was tomake it available
as an optional alternative for any analysts who are attracted to
it and voluntarily persist with it. This was, similarly, expected
to select those who feel more competent using the system, and
create a self-selection and attrition bias far greater than any in our
experiment. Hence, although we strived to minimize attrition,
any attrition bias there may have been in our experiment will
only have made our results a more accurate indicator of likely
performance for IARPA’s intended use.

6.2. Effects of Problem Difficulty
We know that much more complex problems of a similar kind
can be solved accurately by BN experts using the tools in X, and
aren’t tractable for anyone using the tools in K. So, we expected
that the increase in complexity in the second phase of Problems
B and C would translate into a bigger advantage for X over K.
However, the advantage detected in B was small, and not detected
at all in C. It may be that the increases in complexity and/or the
ability of our participants to use BN models to overcome it was
not as great as we supposed.

Since the second phase of Problem B involves the “explaining
away” cognitive difficulty, whereas the second phase of
Problem C involves the “dependent evidence” cognitive
difficulty, this may suggest that explaining away is more
difficult to understand than dependent evidence. However,
this interpretation would be unwarranted. We used only one
example of each difficulty, so there are numerous confounds;
and this effect-size ordering was not observed in the SoloBARD
experiment. Measuring the relative difficulty of various
cognitive difficulties would require many further, more
careful comparisons.
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6.3. Robustness and Size of Effect
The superior performance of X over K was a robust effect across
our three problems, since it was confirmed independently for
each. On our preferred measure, the effect sizes were all very
large to huge (Glass’ 1 1.4–2.2), and their 95% CIs are shown
graphically by week in Figure 5. On any standard measure, they
greatly exceeded CREATE’s initial target of a small effect size, and
indeed, achieved in Phase 1 for simple problems the large effect
size desired in Phase 3 for more complex Problems.

It is interesting to compare the performance of our
participants to those in the SoloBARD experiment, which used
a similar set of three problems (a different problem instead
of our Problem A, but exactly the same Problems B and C).
Unexpectedly, SoloBARD participants performed better than
ours. However, this was mainly in the control condition—
so, as expected, our BARD users beat our controls by a
greater margin than the SoloBARD users beat their controls.
Specifically, SoloBARD control individuals performed much
better (obtaining 32% of the available points) than our control
individuals (obtaining only 17%), while SoloBARD experimental
individuals performed only slightly better (obtaining 48%) than
our BARD experimental teams (obtaining 41%). Consequently,
BARD achieved double the mean effect size (Glass’ 1 = 1.7) of
SoloBARD (Glass’ 1 = 0.8).

There were multiple differences between the two experiments
that may have affected performances, so we must be cautious in
attributing specific causes to the differences in results. However,
we see no factor likely to have benefited only the SoloBARD
controls compared to our K. On the contrary, while in both
experiments control individuals received IARPA’s Guide to Good
Reasoning, our K individuals also received some training in
pen-and-paper probability calculation techniques, which should
have improved their relative performance—yet this effect is not
evident, perhaps because it is swamped by other factors. In
contrast, there are several plausible causes for better performance
in both the control and experimental conditions of SoloBARD
compared to our K and X: (i) superior ability of participants,
who were drawn solely from the University College London
experimental participant pool rather than recruited on the more
ad-hoc basis described in section 4, (ii) in-lab testing rather
than online, which tends to improve motivation and compliance,
and (iii) offering substantial and extensive financial bonuses for
good performance (to supplement a modest hourly rate), rather
than just offering a generous hourly rate. It is possible that
these factors made more difference to the relative performance
of the control conditions than to the experimental conditions.
However, there is a more obvious explanation for the greater
outperformance of the experimental over the control condition
in our BARD experiment: our X participants benefited from
working in small groups. This is consistent with the general
prior literature on Delphi and our specific prior experiment
with Delphi in BARD, as summarized in sections 2.4, 2.5,
and 2.7.

In summary, there were clearly significant factors driving
down performance in our experiment compared to the
SoloBARD experiment, and there may have been an interaction
effect that contributed one way or the other to our effect sizes.

Nevertheless, with that caveat, the doubled effect size achieved
by BARD in comparison to SoloBARD suggests, and provides
some cumulative evidence, that our social processes make a
substantial positive contribution in addition to the substantial
positive contribution made by BN construction.

6.4. Quality of Reports, Causal Models, and
Training
As expected, the mean proportions of the available rubric points
obtained by participants were low, even when assisted by BARD.
As discussed in section 4.2, participants are unlikely to provide
a high proportion of the specific items the rubric rewards. Our
rudimentary AI tool was designed to suggest possible text to
include in justifications, but at this early stage of development
it was not able to suggest all the relevant points, and apparently it
had limited effect.

Given that our X participants were supposed to achieve better
written reports than K by constructing BN models, it is natural
to ask how accurate their models turned out to be, and how
well-correlated this was to the quality of their written reports.
In Bolger et al. (2020), our BARD team members assessed the
quality of BN structures by measuring the difference between
these and normatively correct “gold-standard” structures using
“edit distance,” which is the most well-known structural measure
in the literature (e.g., Spirtes et al., 2000). However, this approach
was facilitated by requiring participants to choose variables out
of a set provided, and not requiring probabilities to be entered in
the models, thus avoiding both sources of variation in participant
answers. Furthermore, the aim was to compare the relative
quality of structures produced by individuals before and after
peer feedback, not their absolute quality. Here, even if we used
a broader measure of the overall quality of the BNs produced
by our X teams, there would be no meaningful comparison
to evaluate how well our X teams performed. The only way
to compare X to K performance is to measure the quality of
their written reports, which they both produce, and are designed
to implicitly test the accuracy of the BNs constructed by X
teams via the accuracy of their answers. The same inherent
limitation applied to the SoloBARD experiment. However, we
will make all the BNs produced by our X teams available for
subsequent research.

For similar reasons, it is difficult to assess the skill level
in BN construction achieved by our X teams. There is, as
yet, no standard test for BN-modeling difficulty or ability, so
we can’t quantify more precisely the difficulty of building our
problem BNs or the ability achieved through our minimal
training. However, it is notable that, as in our two previous
experiments, our BARD users received very little BN training by
industry standards, and yet they were able to construct BNs well
enough to outperform control participants on our probabilistic
reasoning problems. This provides some welcome evidence that
intelligence analysts, for example, can be quickly trained to use
BNs using our online resources. We are also confident that with
further training and experience, X teams would substantially
improve their BN building skills and consequently their
written reports.
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FIGURE 5 | Effect sizes measured by Glass’ 1 with their 95% CIs for each week.

7. CONCLUSION

Our results show that BARD is an extremely promising
tool for intelligence analysis that warrants further research.
Compared to business as usual, it already performs much

better on simple test problems. Compared to existing BN
software, it offers a unique integration of BN construction

with a Delphi-style collaborative workflow, high-quality online
training and help, and a structured template for written
reports with complementary text explanations automatically
generated from the BN. Furthermore, there is enormous

potential for further research and improvement: in developing
more complex problems, in developing BARD’s features,
and in testing their individual and combined efficacy
on those problems. There are also numerous potential

applications for BARD outside intelligence analysis, since
many areas—including those to which BNs have already
been introduced—require reasoning and decision making
under uncertainty.

More generally, our results provide some
cumulative evidence (in addition to prior theory
and experiments) for the utility of BARD’s
key components:

• Good online training allows people who are not BN experts to
construct BNs, minimizing the need for a facilitator who is a
BN expert.

• Where time permits, BN construction can be used
effectively for probabilistic reasoning problems.
This helps to avoid numerous types of causal
and probabilistic reasoning difficulties, and
adds precision.

• Small group collaboration, via RT Delphi in particular,
can be used successfully for BN construction. This allows

multiple viewpoints to be debated and combined to produce
a better result.

Three issues for further research deserve
particular emphasis:

1. We must test the efficacy of probability estimation. Our
team showed that it is possible and necessary to develop
a new type of test problem for probabilistic reasoning:
sufficiently challenging, yet simple enough to assess (with
many normatively correct elements in the solution). More
complex problems of this sort must be developed that include
the estimation of probabilities by experiment participants,
rather than relying entirely on precise parameters specified
in the problem statement. BARD’s built-in capacities for
eliciting and combining probability estimations can then be
rigorously tested.

2. Our social processes, in addition to RT Delphi, include
components such as discussion boards and the rating of other
team members’ work. These components can be evaluated
and optimized individually and in combination. If such
components work sufficiently well, then in many applications
BARD could dispense with the human facilitator altogether
without much loss.

3. Our automated verbal explanations were novel and promising,
but we have not yet measured their contribution. Moreover,
we now believe this XAI tool would be better implemented
as a combination of visual and verbal features that are more
interactive. Our spin-off project, mentioned in section 3.4, will
investigate this in detail36.

36 “Improving human reasoning with causal Bayes networks: a multimodal

approach.” See https://dataportal.arc.gov.au/NCGP/Web/Grant/Grant/

DP200100040.
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