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The brain representation of language in bilinguals is sculptured by several factors, such
as age of acquisition (AoA) and proficiency level (PL) in second language. Although the
effect of AoA-L2 on brain function and structure has been studied, little attention is
devoted to dynamic properties of the language network and their differences between
early and late bilinguals. In this study, we acquired resting-state fMRI data from early
and late Cantonese (L1)–Mandarin (L2) bilinguals with high PLs of verbal fluency in
both languages. We then analyzed dynamic functional connectivity (dFC) by using the
sliding-windows approach, estimated the dFC states by using the k-means clustering
algorithm, and calculated the dynamic topological properties of the language network for
the early and late bilinguals. We detected four dFC states, State 1, State 2, State 3, and
State 4, which may be related to phonetic processing, semantic processing, language
control, and syntactic processing, respectively. Compared to the late bilinguals, the early
bilinguals showed higher dFC between the inferior frontal area and the temporal area in
State 1 and State 2, while higher dFC between the cerebellum and other regions in
State 3. The early bilinguals showed a higher clustering coefficient and local and global
efficiency in State 1 and State 3, but lower characteristic path length in State 1, than the
late bilinguals. Together, these results suggested that AoA-L2 affects temporal neural
activation and dynamic topological properties of the language network. These findings
provide new information to understand the effect of experience of L2 acquisition on
language network in bilinguals.

Keywords: age of acquisition, dynamic functional connectivity, second language, bilingual experience, bi-dialects

INTRODUCTION

Bilingual brains can be shaped by age of acquisition in second language (AoA-L2) and proficiency
level in L2 (PL-L2) (Abutalebi, 2008). Early bilinguals are more likely to use a common neural
mechanism to process L1 and L2 (Klein et al., 2006; Garbin et al., 2011), while late bilinguals with
low PL-L2 may recruit more activation of cognitive control regions when processing L2 (Saur et al.,
2009; Berken et al., 2015). Language processing is supported by a set of brain regions located in the
language network (Price, 2010; Tie et al., 2014; Seo et al., 2018), in which the information transfers
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as a dynamic instead of static signal (Friederici and Gierhan,
2013; Fedorenko and Thompson-Schill, 2014; Wu et al., 2019).
The dynamic property of the language network is mainly reflected
in regional activation of the language network changing over
time when subject processing language or even in brain resting
state (Fedorenko and Thompson-Schill, 2014; Chai et al., 2016).
Although previous studies (Wartenburger et al., 2003; Hernandez
et al., 2007; Berken et al., 2015) detected a brain language
network in early and late bilinguals, a few studies reported the
effect of AoA-L2 on the dynamic properties of the language
network in bilinguals.

Previous studies (Klein et al., 2014; Wei et al., 2015;
Hämäläinen et al., 2017; Mitsuhashi et al., 2020; Ou et al.,
2020) examined the effect of AoA-L2 on brain intrinsic FC,
structural morphology, and task-based activation in bilinguals.
Gullifer et al. (2018) selected the anterior cingulate (BA 24),
the left caudate, the inferior frontal gyrus (IFG, BA 44, and
BA 47), and the inferior parietal lobule (IPL, BA 40) as seeds
to study the impact of AoA-L2 on resting-state FC in French–
English bilinguals. They found that earlier AoA-L2 related to
higher FC between left and right IFG, and to reduced reliance
on proactive executive control during the completion of an AX-
Continuous Performance Task outside the MRI scanner. These
results suggested that different experiences of L2 acquisition
impact brain intrinsic FC patterns and neural network involved
in the executive control. Mechelli et al. (2004) studied the
difference in cortical thickness of brain regions between early
and late bilinguals. They found that late bilinguals showed
increased cortical thickness in the IFG and decreased cortical
thickness in the right IFG compared to early bilinguals. The above
studies indicated that the AoA-L2 influences brain functional and
structural neuroplasticity in bilinguals.

However, the effect of AoA-L2 on the dynamic properties
of the language network is still unclear. Actually, the language
network is a dynamic system (Blumstein and Amso, 2013;
Fedorenko and Thompson-Schill, 2014; Chai et al., 2016). On
the one hand, several crucial regions predominantly located in
the left hemisphere, such as the IFG, the MFG, and anterior
temporal regions, consistently coactivate with each other. On
the other hand, other regions mainly located in the right
hemisphere, such as middle anterior and posterior temporal
regions, coactivate with others at different times during language
processing and at brain resting state. Moreover, previous studies
(Hosoda et al., 2013; Yang et al., 2015) found that the changed
FC within the language network was related to L2 learning,
indicating the dynamic properties of the language network in
some degree. Yang et al. (2015) recruited 39 native English
speakers to learn a novel tonal vocabulary and examined neural
activity associated with L2 word learning. After a period of
6 weeks in training session, they found higher FC among the
IFG, the middle frontal gyrus (MFG), the supplementary motor
area (SMA), the insula (INS), the superior temporal gyrus (STG),
and the IPL in successful learners compared to less successful
learners. These findings reflected that the dynamic properties
of the language network could be detected during brain resting
state, language processing, and language training. However, most
previous studies only considered the entire rs-fMRI scanning the

static but not dynamic properties to analyze the effect of AoA-
L2 on brain functional neuroplasticity. Revealing the dynamic
properties of the language network may provide us a novel
perspective to understand the neural mechanisms in different
experience of L2 acquisition.

In this study, we aimed to investigate the effect of AoA-L2 on
the dynamic properties of the language network in Cantonese–
Mandarin bilinguals with high PL-L2. We analyzed dynamic FC
(dFC) by using the sliding-windows approach and estimated
the dynamic topological properties of the language network by
using the graph theory. The graph theory has been widely used
to measure the topological properties of brain networks (Wang
et al., 2010; Bullmore and Bassett, 2011; Karwowski et al., 2019).
For example, Sulpizio et al. (2020) applied the graph theory to
explore the neural activation within the language and control
networks in bilinguals. In this study, we selected four parameters,
clustering coefficient (Cw), characteristic path length (Lw), global
efficiency (Eglob), and local efficiency (Eloc), to characterize the
dynamic topological properties of the language network. These
four parameters can be used to examine the local (Cw, Eloc) and
global (Lw, Eglob) information communication in the network
and provide the altered information transferring within the
language network. Since Broca’s area and Wernicke’s area are
considered as core regions in language processing (Kim et al.,
1997; Tomasi and Volkow, 2012; Zhu et al., 2014), we constructed
the language network in early and late bilinguals separately by
selecting the seeds in Broca’s area and Wernicke’s area. The dFC
was calculated with the sliding-windows approach (Chang and
Glover, 2010). Previous studies (Consonni et al., 2013; Sabourin
et al., 2014; Archila-Suerte et al., 2015) showed that different
neural activation during language processing could be detected
between late and early bilinguals reaching high PL-L2. That
means the experience of L2 acquisition may shape brain function
and structure in bilinguals. We hence hypothesized that early
and late bilinguals may have a difference not only in dFC among
the language network regions, such as the IFG, the MFG, and
the middle temporal gyrus (MTG), but also in the dynamic
topological properties of the language network.

MATERIALS AND METHODS

Subjects
This study recruited early and late Cantonese–Mandarin
bilinguals. Figure 1 shows the flowchart of this study, including
the procedure of selecting subjects. Through questionnaires and
interviews, we selected the subjects from a pool containing 500
volunteers of Cantonese–Mandarin bilinguals based on their age
of acquisition in second language (AoA-L2), the performance of
listening and oral proficiency level in L1 (PL-L1) and L2 (PL-
L2), and the exposure period to L1 and L2. At the beginning,
each of these 500 subjects attended an interview and finished
a questionnaire to confirm the age of acquisition in L2 (AoA-
L2). Afterward, we excluded 272 subjects whose AoA-L2 was
more than 7 years old from further experiment and kept the
228 subjects for the next steps in the experiment. We classified
these 228 bilinguals into two groups: (i) the early bilingual group
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FIGURE 1 | The flowchart for analyzing the language network in this study. (1) Selection of subjects. (2) Preprocessing fMRI data with SPM 12 and DPABI. (3)
Identifying nodes of the language network based on Broca’s and Wernicke’s areas. (4) Extracting the time series of each node for constructing the language network.
(5) Identifying dFC states of the language network with a k-means algorithm. (6) Estimating dynamic functional connectivity (dFC) and dynamic topological properties
of the language network.

(EBG) including 127 early bilinguals who acquired L2 at about
3.5 years old and (ii) the late bilingual group (LBG) including
101 late bilinguals who acquired L2 at about 6.5 years old. The
classification steps are described as follows. These 228 subjects
took part in the listening and oral PL assessments of L1 and
L2. The assessment of listening PL includes two parts: one is
a self-report with 10 linguistic questions through the European
Framework of Reference (CEFR) for Languages, and the other
is to estimate answer accuracy to the listened stories in L1 and
L2 with five probe questions. The 10 linguistic questions and
5 probe questions to the story were randomly presented to all
228 subjects. Subjects who answered correctly no less than six
linguistic questions and four questions to the story were assigned
to the high listening PL. For the oral PL, three language experts
were invited to grade the subject’s ability of using L1 or L2 by
the standard of CEFR from A1 (breakthrough) to C2 (mastery).
The grade criteria were as follows: the competence level of
basic users was assessed in A1 or A2, independent users were
assessed in B1 or B2, and proficient users were assessed in C1
or C2. After listening and oral PL assessments of L1 and L2,

we chose 67 bilinguals who had comparable high listening and
oral PL in L1 and L2. At last, a seven-point scale was used to
evaluate all bilinguals’ language exposure in their different age
grades (“1” represents only exposed to L1, “7” represents only
exposed to L2, and “4” represents the same language exposure
to L1 and L2). Based on these selection criteria, two bilingual
groups, the EBG and the LBG, were obtained for the subsequent
fMRI scan. We have selected 10 subjects in the EBG and 11
subjects in the LBG based on their AoA-L2 and other language
measurements. The detailed information about their AoA-L2,
listening and oral PL in L1 and L2, and language exposure to
L1 and L2 of all 21 subjects is listed in Supplementary Table S1
(Supplementary Material).

All subjects were right-handed according to the Edinburgh
Handedness Inventory (EHI) scores. No subjects reported
current or history of neurological or psychiatric disorders
or brain injury. Written notification of informed consent
was collected from each subject before the study. The
protocols were approved by the Review Board of South China
Normal University.
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Image Acquisition
All MRI data were acquired on a 1.5-T Philips Achieva Nova
Dual MR scanner at the Department of Radiology, Huangpu
Clinical Medical Center, First Affiliated Hospital of Sun Yat-
sen University, Guangzhou, China. The functional images were
obtained using a single-shot gradient-echo echo-planner imaging
(GE-EPI) sequence with the following parameters: repetition
time (TR) = 3,000 ms, echo time (TE) = 40 ms, flip angle
(FA) = 90◦, field of view (FoV) = 240 mm × 240 mm, matrix
size = 64 × 64, slice thickness = 4 mm without interslice gap, and
180 volumes acquired in 9 min. We also obtained high-resolution
T1-weighted brain structural images of detailed anatomy for
each subject using a rapid interference phase gradient echo flip
recovery pulse sequence (TR/TE = 9.6 ms/3.8 ms, FA = 8◦,
FoV = 256 × 256 mm, data matrix = 288 × 288, slice
thickness = 1 mm, voxel size = 1 mm3) and 176 sagittal slices
(from left to right) covering the whole brain. To minimize head
movements during testing, which could damage the quality of
images, we used a pair of foam paddings on both sides of the
head. During the rs-fMRI scanning, each subject was inquired to
lie quietly in the scanner, close his or her eyes, remain wake, and
not think about anything.

Preprocessing Data
Functional imaging data were preprocessed in SPM 121 and
DPABI2. The first 10 volumes were discarded to allow for the MRI
signal to approach steady state. We then preprocessed slice timing
for the remaining 170 volumes to account for the acquisition
time delay among slices before realigning to the first volume
for head-motion correction. Subsequently, the function images
were spatially normalized to the standard MNI-152 template and
resampled to a voxel size of 3 mm × 3 mm × 3mm with a kernel
of full-width at half-maximum (FWHM) of 8 mm. Last, the
data were signal-linear-detrended and band-pass-filtered (0.01–
0.08 Hz). In the calculations, we finally regressed out the nuisance
covariates including the head-motion effect derived from the
Friston 24 correction (Friston 24-parameter model, white matter
signal, and cerebrospinal fluid signal) within each voxel in the
whole brain. Due to the controversy of regressing out the global
signal in rs-fMRI analysis (Fox et al., 2009; Murphy et al., 2009),
we did not regress out the global signal in this study.

Constructing the Language Network
Two regions-of-interest (ROIs), Broca’s and Wernicke’s areas,
were selected in the MNI space and were used to define
the language network with a standard seed-voxel approach.
Particularly, we defined two ROIs with 3-mm-radius spheres
as seeds based on automated anatomical labeling (AAL) atlas
(Tzourio-Mazoyer et al., 2002). A previous study (Tomasi and
Volkow, 2012) used these two seeds and applied a seed-voxel
approach to identify the language network. One ROI was close to
the left pars triangularis (MNI coordinate: x = −53, y = 20, z = 15)
representing the Broca’s area, and the other ROI was close to the
left supramarginal gyrus (MNI coordinate: x = −51, y = −51,

1http://www.fil.ion.ucl.ac.uk/spm
2http://rfmri.org/dpabi

z = 30) representing the Wernicke’s area. The averaged time series
of these two ROIs during the whole scanning was extracted from
each subject. For a given ROI, we considered it as a seed and then
estimated the static functional connectivity (sFC) and Pearson’s
correlation coefficient r, between the selected ROI and each voxel
in the whole brain. Hence, we obtained the sFC maps based on
Broca’s and Wernicke’s areas. Next, the Fisher’s r-to-z transform
was adopted to convert these sFC correlation maps into z-value
maps for the following statistical analysis.

One sample t-test was used to detect the group-level sFC
among 21 subjects examined in this study. We defined the clusters
with the following criteria: significant threshold p < 0.01 (family-
wise error, FWE-corrected), and the number of voxels in each
cluster exceeds 50 voxels based on a gray matter template of more
than 90% probability in SPM 12. In this way, we determined the
clusters that strongly connected to the Broca’s and Wernicke’s
areas. For a given cluster in the sFC map, we selected the voxels
that had statistical peak values from one sample t-test and drew
spheres with radius = 3 mm. By considering these spheres as
nodes and the sFC as the weighted edge, we built the language
network in this study.

Sliding-Windows Approach
We calculated the dynamic functional connectivity (dFC) of
the language network for each subject by using a sliding-
windows approach (Chang and Glover, 2010; Allen et al., 2012)
in DynamicBC (Liao et al., 2014), a MATLAB toolbox for
dynamic brain connectome analysis. We segmented the entire
time series of each node into multiple subseries related to
the sliding windows (the window length of 35 TRs or 105 s
with step = 1 TR), from each of which the FC networks were
constructed. The reason for selecting a window length of 35
TRs is because the sliding-windows correlation analysis with
a short window length could induce artificial fluctuations in
estimating dFC (Lindquist et al., 2014; Hindriks et al., 2016;
Liegeois et al., 2017). Hence, we selected the window length
of about 100 s, which was suggested by previous studies (Liu
et al., 2018; Pang et al., 2018; Li et al., 2019; Chen et al., 2020).
According to the above analysis, we obtained 136 subseries in
the sliding windows for each subject. In each sliding window,
we calculated the Pearson’s correlation coefficient r between the
subseries of any two nodes to identify the dFC of the language
network in this study.

Identifying dFC States
We used a k-means clustering algorithm to cluster all sliding
windows into several separate clusters (i.e., connectivity states,
dFC states) based on the Euclidean distance metric. Earlier
studies (Allen et al., 2012; Yang et al., 2014) suggest that
brain spontaneous activity is changing over time. These changes
in blood oxygenation level dependent (BOLD) signal showing
several similar connectivity patterns in the brain are considered
as dFC states. In the calculations, we extracted the dFC of the
language network in a given sliding window and then arranged
all sliding windows in sequence to constitute the dynamic
connectivity matrix for each subject. Since there were N nodes
in each sliding window and 136 sliding windows in each subject,

Frontiers in Psychology | www.frontiersin.org 4 June 2020 | Volume 11 | Article 1189

http://www.fil.ion.ucl.ac.uk/spm
http://rfmri.org/dpabi
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-11-01189 June 16, 2020 Time: 19:59 # 5

Liu et al. Dynamic Language Network in Bilinguals

the dynamic connectivity matrix included 136 rows (136 sliding
windows) and 21 × (N × N – N)/2 columns (all dFC of 21
subjects in 1 sliding window). Finally, the k-means algorithm
(k from 2 to 12) was applied to divide all sliding windows into
several dFC states based on the dynamic connectivity matrix.

Criteria for k-Means Solution
The silhouette score (Rousseeuw, 1987) was used to check the
better solution of the k-means algorithm. It is applied to calculate
the separation distance between any two resulting clusters. The
silhouette score near 1 corresponds to the fact that the sample is
distant from its neighboring clusters, while the silhouette score
near 0 means the decision boundary is very close between these
two neighboring clusters, and negative means that the sample
might have been assigned to the wrong cluster. We selected an
optimal k solution based on the silhouette score that in this
solution was significantly higher than it was in the last k solution.

dFC of the Language Network
After identifying several optimal dFC states, we studied the
difference in dFC between the EBG and the LBG. Particularly,
we first extracted all dFCs in 136 sliding windows for each
subject. Then, we averaged those dFCs that are in the same
dFC state for each subject. At last, the difference in dFC of the
language network between the EBG and the LBG can be studied
in each dFC state.

Dynamic Topological Properties of the
Language Network
We studied the difference in the dynamic topological properties
of the language network between the EBG and the LBG. The
dynamic topological properties were estimated using GRETNA3.
We calculated the dFC and generated 136 symmetric matrices for
each subject. In this study, each dFC should satisfy a threshold
of significance level of p < 0.05 (FWE-corrected) compared
to others (Cruse et al., 2011). Based on the dFC in each
sliding window, we estimated the dynamic topological properties,
including the clustering coefficient (Cw), the characteristic
path length (Lw), the global efficiency (Eglob), and the local
efficiency (Eloc) by using the graph theory for all subjects. The
description of these four parameters is listed in Supplementary
Table S3. Afterward, we determined the difference in the dynamic
topological properties of the language network between the
EBG and the LBG in each dFC state. The definitions and
descriptions of the above parameters can be also found in
Rubinov and Sporns (2010).

Statistical Analysis
A nonparametric permutation t-test was used to determine the
difference in dFC and dynamic topological properties of the
language network between the EBG and the LBG. Briefly, for
a given parameter (dFC, Cw, Lw, Eglob, and Eloc), we randomly
paired its values between the EBG and the LBG, and then
generated a new group. Subsequently, we recalculated the mean

3http://www.nitrc.org/projects/gretna/

value of this new group. This permutation was repeated 5,000
times to acquire the empirical distribution of the difference in
all new groups. In the calculations, we set a significant level
at p < 0.05 to determine the significant difference between the
EBG and the LBG at 95% of the empirical distribution in a two-
tailed t-test. Given the small sample size of the subjects in our
study, we also calculated the corresponding effect size (Cohen d)
according to Cohen (2013).

RESULTS

Behavioral Tests
Neither age nor gender had significant differences between the
EBG and the LBG. For the language test, no significant between-
group difference was found in the scores of L1 and L2 listening
PLs, L1, and L2 Oral PLs, and language exposure level in separate
grades after 6 years old. The detailed information about the
behavioral tests between the EBG and the LBG is listed in
Supplementary Table S2 (Supplementary Material).

Language Network
Figure 2A illustrates the determined sFC maps based on Broca’s
and Wernicke’s areas (p < 0.01, FWE-corrected and cluster
size > 50 voxels) for all subjects. We detected seven clusters in
which the time series was significantly positively correlated with
that of Broca’s area, including the bilateral MTG, the inferior
frontal triangular part (IFGtriang), the left superior medial
frontal gyrus (SFGmed.L), the right angular gyrus (ANG.R),
and the temporal pole (superior temporal gyrus, TPOsup.R).
Meanwhile, we also detected 10 clusters in which the time series
was meaningfully positively correlated with that of Wernicke’s
area, including the bilateral supramarginal gyrus (SMG), the
inferior frontal orbital (ORBinf), the cerebellum, the left cuneus
(CUN.L), the middle frontal gyrus (MFG.L), the right middle
frontal gyrus (MFG.R), and the inferior frontal opercularis
(IFGoperc.R). In the calculations, we found no cluster in which
the signals were significantly negatively correlated with that of
either Broca’s or Wernicke’s area after applying FWE correction.
More detailed information of these clusters is shown in Table 1.
Finally, we detected the voxels with statistical peak values of t-test
among these 17 clusters to draw spheres (3-mm radius) as the
nodes and to construct the language network, which can be found
in Figure 2B.

dFC States of the Language Network
The silhouette scores for different dFC states in the
language network are shown in Supplementary Figure S1
(Supplementary Material). All sliding windows were clustered
into different dFC states by the k-means algorithm. We
determined four dFC states (i.e., State 1, State 2, State 3, and
State 4) for further analysis based on the silhouette score. That is,
the silhouette score (0.53) in this solution (k = 4) is significantly
higher than that in the last solution (k = 3).

Figure 3 shows the between-group difference in the average
dFC of the language network in each dFC state for both the
EBG and the LBG. Statistical analysis (p < 0.05, FWE-corrected)
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FIGURE 2 | Spatial distribution of temporal correlations for Broca’s and Wernicke’s areas estimated using static functional connectivity (sFC). (A) sFC map of Broca’s
and Wernicke’s areas. The color bar represents t-value (p < 0.01, FWE-corrected). (B) Nodes in the language network based on the sFC maps. Abbreviation: MTG,
middle temporal gyrus; IFGtriang, inferior frontal triangular part; ORBinf, inferior frontal orbital; SFGmed, superior medial frontal gyrus; TPOsup, temporal pole
(superior temporal gyrus); MFG, middle frontal gyrus; ANG, angular gyrus; IFGoperc, inferior frontal opercularis; SMG, supramarginal gyrus; CUN, cuneus; L(R), left
(right) hemisphere.

revealed that the EBG was significantly higher in 22 dFCs
compared to the LBG in three dFC states (State 1, State 2, and
State 3) (Figure 3A). We found that IFGtriang.L, TPOsup.R,
MTG.L, and MTG.R indicated a significantly higher dFC of
the language network compared with other related regions. No
significantly higher dFC was found in the LBG compared to
the EBG. Detailed information about the dFC of the language
network in each dFC state is listed in Table 2. The distributions
of average dFC in each dFC state for both the EBG and the LBG
are shown in Figure 3B.

Figure 4 shows the dynamic topological properties of the
language network in each dFC state for both the EBG and the
LBG. Statistical analysis (p < 0.05, FWE-corrected) revealed
that compared to the LBG, the EBG had a significantly higher
clustering coefficient and local and global efficiency in two
dFC states (State 1 and State 3), while a significantly lower
characteristic path length in one dFC state (State 1). Table 3
lists the detailed information about the statistical between-group
difference and the corresponding effect size (Cohen d) for
dynamic topological properties.
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TABLE 1 | Cluster locations and peak coordinates in the language network
corresponding to the static functional connectivity (sFC) based on Broca’s and
Wernicke’s areas.

Seed Cluster Cluster t-value in Peak coordinate
region location size BA peak voxel in MNI space

x y z

Broca’s
area

IFGtriang.L 1252 48 39.27 −51 21 15

TPOsup.R 128 38 14.61 48 21 18

IFGtriang.R 80 14 11.53 57 30 9

MTG.L 307 22 11.20 −60 −42 6

MTG.R 153 21 10.43 69 −36 −3

SFGmed.L 99 9 10.07 0 45 39

ANG.R 51 8.93 39 −66 36

Wernicke’s
area

SMG.L 786 40 37.17 −54 −51 30

SMG.R 391 48 13.19 51 −42 30

MFG.L 157 9 12.58 −42 12 45

ORBinf.R 58 12.15 51 33 −15

Cerebellum.R 170 11.48 33 −69 −42

ORBinf.L 191 47 10.58 −39 42 −15

IFGoperc.R 59 44 10.43 57 18 12

MFG.R 115 46 10.31 42 36 33

CUN.L 50 9.91 −9 −75 36

Cerebellum.L 128 9.55 −18 −78 −39

The statistical significance is set at p < 0.01 (FWE-corrected). The clusters are
listed in the order of t-value in peak voxel. BA, Brodmann’s area.

DISCUSSION

In this study, we examined the effect of AoA-L2 on the dynamic
properties of the language network in Cantonese–Mandarin
bilinguals. The language network for the EBG and the LBG
was constructed by analyzing resting-state FC from the Broca’s
and Wernicke’s areas (Figure 2, Table 1). Based on the sliding-
windows method and k-means clustering analysis, we detected
dFC and four dFC states of the language network for both early
and late bilinguals. We found that the EBG showed significantly
higher dFC in three states (State 1, State2, and State 3) compared
to the LBG (Figure 3). In addition, the EBG had a significantly
higher clustering coefficient and local and global efficiency in
State 1 and State 3, but a significantly lower characteristic path
length in State 1, compared to the LBG (Figure 4).

Dynamic Language Network
We found four dFC states of the language network in both
early and late bilinguals (Figure 3B result was consistent with
previous studies (Zalesky et al., 2014; Betzel et al., 2016; Kabbara
et al., 2017; Shine and Poldrack, 2018), which suggested that
the dynamic organization of the functional network occurred
at different time. The human brain is a complex and dynamic
system. Dynamic organization of the functional network resulted
in a well-organized way to ensure more efficient cooperation
between brain regions during the brain resting state and different
cognitive tasks (Raichle et al., 2001; Fox and Raichle, 2007;
Sporns, 2010). A recent study (Wu et al., 2019) found more
activity in subcortical areas and a connection from frontal

to subcortical areas when bilinguals performed a language
switching task compared to a nonverbal switching task. These
results suggested a reconfigurable brain network for language
and domain-general cognitive control in bilinguals. Moreover,
dynamic organization of the functional network is regular, rather
than random, over time, which was considered as different
dFC states (Allen et al., 2014). For the language network,
a set of core regions such as the IFG, the MTG, and the
IPG exhibited robust responses and changed the dFC between
these regions during language processing and brain resting
state (Friederici and Gierhan, 2013; Fedorenko and Thompson-
Schill, 2014; Liljeström et al., 2015). Chai et al. (2016) used 22
adult subjects to perform a language comprehension task and
analyzed the dynamic organization of the language network. They
observed that several core regions located in the left hemisphere
consistently coactivated with each other and changed the dFC
in language-related community over time. In this study, we
found different dFC states of the language network in early
and late bilinguals, which further supports the view of dynamic
organization of the language network during brain resting state.

dFC of the Language Network
Compared to the LBG, significantly higher dFC of the language
network for the EBG was found in three dFC states (State 1, State
2, and State 3) (Figure 3). These results reflected that the different
experience of L2 acquisition influenced the dynamic organization
of the language network in bilinguals. Although late bilinguals
achieve high PL-L2, early experience of L2 may still sculpture the
brain representations of language in their life. Previous studies
(Berken et al., 2016; Gullifer et al., 2018) explored the plastic
effect of AoA-L2 on sFC between early and late bilinguals. And
Berken et al. (2016) studied the AoA-L2 effect on sFC in early and
late French–English bilinguals by using the rs-fMRI approach.
They found higher sFC between the IFG.L and IFG.R, as well
as between the IFG and those regions involved in language
control in early bilinguals, compared to late bilinguals. In a
previous study (Liu et al., 2017), we investigated the effect of AoA-
L2 on intra- and intermodular sFC in bilinguals and revealed
that the intramodular sFC in the EBG was significantly greater
in semantic and phonetic modules and detected that the EBG
showed significantly higher sFC between semantic and phonetic
modules as well as between phonetic and syntactic modules
compared to the LBG. Combining these previous findings, our
results in this current study suggested that the AoA-L2 was also
related to the difference in the dFC of the language network.

dFC State of the Language Network
These four states are related to brain regional activation during
language processing in bilinguals. In State 1, we found a
significantly higher dFC between the superior temporal gyrus
(in temporal lobe, TPOsup) and the superior medial frontal
gyrus (SFGmed) in early bilinguals than that in late bilinguals.
The superior temporal gyrus is related to phonetic processing
(Guediche et al., 2013; Mesgarani et al., 2014). At the beginning,
monolinguals start to learn L2 by listening and imitating the
pronunciation of L2. Usually, late bilinguals are hard to reach the
native-like pronunciation of L2 compared to early bilinguals. The
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FIGURE 3 | The dynamic functional connectivity (dFC) of the language network for both the early bilingual group (EBG) and the late bilingual group (LBG). (A) dFC of
the language network in the subject group. The EBG had significantly higher dFC than the LBG (p < 0.05, FWE-corrected). (B) dFC of the language network for both
the EBG and the LBG in each dFC state. The red boxes show significantly higher dFC in the EBG than the LBG (p < 0.05, FWE-corrected).

AoA-L2 seems to modulate the neural activity of auditory-related
regions and then induces differences in phonetic processing
between early and late bilinguals. Hence, we suggested that
State 1 may be related to regional neural activity for phonetic
processing in early and late bilinguals. In State 2, we found
a higher dFC in early bilinguals in the MTG and the IFG
(IFGtriang and IFGoperc) than that in late bilinguals. Given the
MTG and the IFG are mainly involved in semantic processes
(Hernandez et al., 2015), we assumed that State 2 may be
related to semantic processing. In State 3, we found a higher
dFC in early bilinguals mainly between the cerebellum and the
dominated language regions, such as IFGtriang and IFGoperc,
than that in late bilinguals. The cerebellum is implicated in
language control and conflict monitoring (Callan et al., 2007;

Filippi et al., 2011). The increased dFC in the cerebellum in
early bilinguals may indicate a more efficient language control
to optimize different language processing. Accordingly, State
3 was assumed in language control. In State 4, we found no
significant difference in the dFC between early and late bilinguals.
By using morphosyntactic tasks, Morgan-Short et al. (2012)
found no significant difference in neural activation for late L2
learners who reached high PL-L2 compared to the native speaker
during syntactic processing. This result may indicate that late
bilinguals with high PL-L2 also can reach native-like performance
in syntactic processing. Given that no significant difference was
found in State 4 on both the dFC and the dynamic topological
properties, we suggested it as syntactic State 4. Our results showed
that the AoA-L2 mainly influenced the dFC among the inferior
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TABLE 2 | Dynamic functional connectivity (dFC) of the language network for both the early bilingual group (EBG) and the late bilingual group (LBG) in each dFC state.

State dFC Connectivity strength p-value Effect size (Cohen d)

EBG LBG

1 ANG.R – MFG.R 0.31 ± 0.18 0.07 ± 0.15 1.2 e−3 1.45

IFGtriang.L – MTG.R 0.45 ± 0.15 0.18 ± 0.21 2.2 e−3 1.48

TPOsup.R − SFGmed.L 0.51 ± 0.19 0.24 ± 0.18 2.4 e−3 1.46

TPOsup.R − CUN.L 0.36 ± 0.20 0.09 ± 0.17 1.4 e−3 1.45

MTG.L − MTG.R 0.60 ± 0.20 0.24 ± 0.24 1.2 e−3 1.63

MTG.L − IFGoperc.R 0.48 ± 0.28 0.02 ± 0.21 1.0 e−3 1.86

MTG.R − SFGmed.L 0.47 ± 0.28 0.08 ± 0.27 1.6 e−3 1.42

MTG.R − ORBinf.R 0.42 ± 0.15 0.01 ± 0.28 1.0 e−4 1.83

MTG.R − IFGoperc.R 0.43 ± 0.19 0.14 ± 0.19 1.6 e−3 1.53

IFGoperc.R − MFG.R 0.48 ± 0.14 0.18 ± 0.14 2.8 e−3 2.14

2 MTG.L − IFGtriang.R 0.40 ± 0.19 0.12 ± 0.18 2.4 e−3 1.51

MTG.L − IFGoperc.R 0.37 ± 0.22 0.07 ± 0.19 1.8 e−3 1.46

3 IFGtriang.L − SFGmed.L 0.52 ± 0.17 0.27 ± 0.17 2.4 e−3 1.47

IFGtriang.L − Cerebellum.R 0.33 ± 0.06 0.15 ± 0.17 1.8 e−3 1.41

TPOsup.R − MTG.L 0.57 ± 0.17 0.27 ± 0.14 2.0 e−4 1.76

TPOsup.R − MTG.R 0.55 ± 0.18 0.25 ± 0.20 1.0 e−3 1.58

TPOsup.R − Cerebellum.L 0.44 ± 0.22 0.12 ± 0.19 8.0 e−4 1.56

TPOsup.R − IFGoperc.R 0.50 ± 0.16 0.26 ± 0.19 2.4 e−3 1.37

MTG.R − IFGoperc.R 0.45 ± 0.20 0.12 ± 0.23 6.0 e−4 1.53

IFGtriang.R − Cerebellum.R 0.27 ± 0.11 0.03 ± 0.14 4.0 e−4 1.91

Cerebellum.L − IFGoperc.R 0.41 ± 0.21 0.16 ± 0.14 1.2 e−3 1.40

Cerebellum.R − ORBinf.R 0.32 ± 0.11 0.10 ± 0.17 8.0 e−4 1.54

Statistical significance is set at p < 0.05 (FWE-corrected). Dynamic topological properties of the language network.

frontal (IFGoperc.R and IFGtriang.R), the temporal areas (MTG,
TPOsup), and the cerebellum, which suggested a difference in
phonetic and semantic processing and ability of language control
between early and late bilinguals.

Dynamic Topological Properties of the
Language Network
We found significant differences in the dynamic topological
properties of the language network between the EBG and the LBG
in different dFC states (Figure 4). Our results reflected that the
basic neural mechanism of L2 acquisition in late bilinguals with
high PL-L2 may differ from early bilinguals. Previous task-fMRI
studies (Tham et al., 2005; Abutalebi, 2008; Sebastian et al., 2011;
Consonni et al., 2013) suggested that early and late bilinguals
with high PL-L2 may recruit a similar neural mechanism to
process L1 and L2. Consonni et al. (2013) performed sentence
comprehension and verb and noun production tasks in early
and late Italian–Friulian bilinguals with high PL-L1 and -L2.
They found a complete overlap of neural activations for sentence
comprehension of L1 and L2 languages between early and late
bilinguals. These results suggested that bilinguals with high
PL-L1 and -L2 have similar neural mechanism of language
processing. In this study, we constructed a common language
network in early and late bilinguals at the brain resting state.
However, we still found differences in the dynamic topological
properties of the language network for early and late bilinguals.
This may be due to the dFC states that were also related to

the different stages of language processing. Bilinguals required
successful communication in different language environments,
while the AoA-L2 may lead to a difference in assignment of neural
resources for language input, competition, inhibition, switching,
and output between early and late bilinguals. Our findings
provide a novel dynamic perspective to better understand the
basic neural mechanism of L2 acquisition in bilinguals.

We found that the EBG had a significantly higher clustering
coefficient and local and global efficiency in State 1 and State
3, but a lower characteristic path length in State 1, compared
to the LBG (Figure 4). These results suggested that early
bilinguals would be able to efficiently integrate some stages
of language processing than late bilinguals, which may further
lead to differences in neuroplasticity between early and late
bilinguals. Several previous studies examined neuroplasticity in
the language network after short-term L2 training (Hosoda et al.,
2013; Yang et al., 2015). Yang et al. (2015) performed a novel
tonal vocabulary training in 39 native English speakers. After a
period of 6 weeks in L2 learning, they found that learners and
nonlearners use a different language network to process tonal
and lexical information of L2. In addition, successful learners
showed increased activity in language-related regions such as
IFG.L (BA 46), the left insula, and the right lingual gyrus, and
also recruited a more cost-efficient multipath language network
during L2 processing, compared to less successful learners.
Similarly, Hosoda et al. (2013) performed a cohort study of L2
learning and cessation in late bilinguals. After L2 vocabulary
learning, they found that late bilinguals in the training group
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FIGURE 4 | Dynamic topological properties of the language network, including (A) Cw, (B) Lw, (C) E loc and (D) Eglob, for both the early bilingual group (EBG) and late
bilingual group (LBG) in each dFC state. For a given parameter, the bar corresponds to the mean value and the error bar to the standard deviation of a group (black:
EBG, white: LBG). Abbreviations: Cw, clustering coefficient; Lw, characteristic path length; E loc, local efficiency; Eglob, global efficiency; *p < 0.05, FWE-corrected.

showed increases in the gray matter volume in IFGoperc.R, as
well as changed structural connectivity including the IFGoper,
R-Caudate, R (CA.R), and IFGoper-SMG pathways, compared
to the control group. These differences in structural plasticity
were correlated with learning ability. Compared to short-term
training, experience of L2 acquisition in early and late bilinguals
seemed to be a kind of “long-term immersion” and also induces
dynamic neuroplasticity.

Limitations
There are several limitations in this study. First, the sample
size of this study was small (only 10 subjects in the EBG and
11 subjects in the LBG), which may bias the generality of our
findings. Actually, we recruited 500 subjects at the beginning.
After estimating their AoA-L2, listening and oral PL, and
language exposure in L1 and L2, we obtained only 21 subjects
meeting the inclusion criteria. We calculated the effect size for
the dFC and each of the dynamic topological properties that

showed significant between-group differences. The calculation
revealed that the effect sizes for dFC and dynamic topological
properties were quite high (Cohen’s d > 1.2) in this study. In
addition, recent studies (Gullifer et al., 2018; DeLuca et al., 2019;
Sulpizio et al., 2020) are fast moving toward considering AoA-
L2 as a continuous variable in correlational analysis with brain
function and structure. In future studies, we should include more
detailed behavior measurements (De Bruin, 2019) and recruit
more subjects to undergo MRI scanning. Second, we identified
the brain regions of the language network by estimating the
conventional FC between the seed ROIs (i.e., Broca’s area and
Wernicke’s area) and each voxel in the whole brain. In future
studies, we should calculate the dFC between the selected ROIs
and each voxel in the whole brain to identify the nodes of
the language network, which may provide additional insight
into the dynamic properties of language networks. Recently,
Ji et al. (2016) and Zhong et al. (2019) calculated the dFC
between hippocampus voxels and other voxels in the whole
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TABLE 3 | Dynamic topological properties of the language network for both the
early bilingual group (EBG) and the late bilingual group (LBG) in each of the
dFC states.

Dynamic
topological
properties

State EBG LBG p-value Effect size
(Cohen d)

Clustering
coefficient (Cw)

1 0.27 ± 0.05 0.22 ± 0.04 5.00 e-3* 1.10

2 0.25 ± 0.05 0.21 ± 0.04 2.40 e-2

3 0.27 ± 0.05 0.21 ± 0.04 2.00 e-3* 1.33

4 0.26 ± 0.04 0.23 ± 0.04 6.44 e-2

Characteristic
path length (Lw)

1 5.10 ± 0.40 6.54 ± 1.09 6.00 e-4* 1.75

2 5.65 ± 1.85 6.16 ± 1.43 3.18 e-1

3 5.12 ± 0.84 6.43 ± 1.45 1.36 e-2

4 5.51 ± 1.80 5.86 ± 0.79 3.20 e-1

Global
efficiency (Eglob)

1 0.24 ± 0.03 0.18 ± 0.02 2.00 e-4* 2.35

2 0.22 ± 0.04 0.19 ± 0.03 5.00 e-2

3 0.24 ± 0.04 0.18 ± 0.03 2.80 e-3* 1.70

4 0.23 ± 0.04 0.20 ± 0.03 4.04 e-2

Local efficiency
(E loc)

1 0.27 ± 0.05 0.20 ± 0.04 1.20 e-3* 1.55

2 0.25 ± 0.06 0.20 ± 0.04 2.20 e-2

3 0.27 ± 0.05 0.19 ± 0.04 2.20 e-3* 1.77

4 0.25 ± 0.05 0.22 ± 0.04 4.46 e-2

The significance is set at p < 0.05 (FWE-corrected). Each parameter is given as
mean ± std. *p < 0.05 (FWE-corrected).

brain to parcellate the hippocampus and yielded more reliable
hippocampus subregions. In future studies, it would be better to
use the sliding-windows approach to calculate the dFC between
the selected ROIs (i.e., Broca’s area and Wernicke’s area) and each
voxel in the whole brain to identify the nodes of the language
network. Third, this study was not a longitudinal study; hence,
we cannot exclude the possibility that innate ability for language
acquisition contributed to differences in the dynamic properties
of the language network between the EBG and the LBG. In the
future, we will consider whether different ability of language
acquisition influences the dynamic properties of the language
network. Fourth, we obtained rs-fMRI datasets from a 1.5-T MRI
scanner, which may limit the revealing of spontaneous activity
at the brain resting state. Hence, we should test our results with
a high field MRI scanner. Fifth, we asked subjects to close their
eyes but not think about anything during the rs-fMRI dataset
collection. There were two other resting-state conditions: eyes
open and fixation point. In subsequent studies, we will collect rs-
fMRI datasets including both resting-state conditions. Last but
not least, we used dFC and dynamic topological properties to
study the dynamic properties of the language network in early
and late bilinguals at the brain resting state. However, some
researches (Sporns, 2010; Bola and Sabel, 2015; Braun et al.,
2015; Chai et al., 2016; Giahi-Saravani et al., 2019) studied the
dynamic properties of the functional network during specific
tasks. In future studies, we should apply different language
tasks, such as phonetic, semantic, and grammatical processing
in L1 and L2, and then study the effect of the AoA-L2 on the

dynamic properties of the language network during different
language processing.

CONCLUSION

In this study, we analyzed the dynamic properties of the
language network in early and late bilinguals. We found that
early bilinguals had significantly higher dynamic functional
connectivity between the IFG and the MTG than late bilinguals.
Compared to late bilinguals, early bilinguals displayed a higher
clustering coefficient and global and local efficiency in State 1
and State 3, but a lower characteristic path length in State 2. Our
result suggested the AoA-L2 is one factor affecting the dynamic
properties of the language network in bilinguals. These findings
may provide a dynamic perspective for understanding the neural
mechanism regarding different experiences of L2 acquisition.
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