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New trends on brain-computer interface (BCI) design are aiming to combine this

technology with immersive virtual reality in order to provide a sense of realism to its users.

In this study, we propose an experimental BCI to control an immersive telepresence

system using motor imagery (MI). The system is immersive in the sense that the users can

control the movement of a NAO humanoid robot in a first person perspective (1PP), i.e.,

as if the movement of the robot was his/her own. We analyze functional brain connectivity

between 1PP and 3PP during the control of our BCI using graph theory properties such

as degree, betweenness centrality, and efficiency. Changes in these metrics are obtained

for the case of the 1PP, as well as for the traditional third person perspective (3PP) in

which the user can see the movement of the robot as feedback. As proof-of-concept,

electroencephalography (EEG) signals were recorded from two subjects while they

performed MI to control the movement of the robot. The graph theoretical analysis was

applied to the binary directed networks obtained through the partial directed coherence

(PDC). In our preliminary assessment we found that the efficiency in the α brain rhythm

is greater in 1PP condition in comparison to the 3PP at the prefrontal cortex. Also, a

stronger influence of signals measured at EEG channel C3 (primary motor cortex) to other

regions was found in 1PP condition. Furthermore, our preliminary results seem to indicate

that α and β brain rhythms have a high indegree at prefrontal cortex in 1PP condition, and

this could be possibly related to the experience of sense of agency. Therefore, using the

PDC combined with graph theory while controlling a telepresence robot in an immersive

system may contribute to understand the organization and behavior of brain networks in

these environments.

Keywords: brain-computer interface, partial directed coherence, graph theory, sense of immersion, functional

brain connectivity

1. INTRODUCTION

A brain-computer interface (BCI) is a system that enables a real-time user-device communication
pathway through different types of brain activity. In the beginning, BCIs were aimed for people
with a disability of motor control or speech. Nowadays, even healthy people is using this
technology for different applications. Some examples of BCI with immersive applications include
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gaming (Lalor et al., 2005), training (Vourvopoulos et al.,
2016), rehabilitation (Calabrò et al., 2017), or psychological
treatments (Jäncke et al., 2009). Furthermore, there have been
some applications in which a user can teleoperate a robot, i.e.,
the user can have control of a robot that is not placed in the
same location as him/her. Some examples of such applications
are shown in Escolano et al. (2012), Leeb et al. (2015), Beraldo
et al. (2018). In these cases, the subject perceives the environment
real and in 3D as a extension of his/her sensorial functions. Such
extension increases the feeling of presence of a remote scenario
as well as a sense of agency when moving (Furht, 2008). This can
be achieved by using either technologies based on head-mounted
display (HMD) or multiple projections. Immersive virtual reality
(VR) can also use HMD to project the virtual space just in front of
the eyes, then the users focus on the display without distraction.

In the last years, there has been an increase in the number
of research about sense of presence, embodiment, and sense
of agency when combining BCI and immersive environments.
Nevertheless, most studies of sense of presence have focused in
the subjective experience analysis through questionnaires, like
in Friedman et al. (2007) and Baka et al. (2015). Only a few
studies involve the analysis of brain activity with the aim to
explain cognitive processes related to the sense of agency in
VR environments (Baumgartner et al., 2008). Therefore, the
purpose of this study is to further contribute to this area with a
quantitative analysis of the brain connectivity while controlling a
BCI teleoperated robot in an immersive environment, in our case
through graph theory metrics. For that purpose, we first describe
the BCI which is controlled with motor imagery (MI) and two
conditions: the first person perspective (1PP), i.e., the immersion
experience, and the traditional third person perspective (3PP) of
visual feedback. Next, we introduce the partial directed coherence
(PDC) as the metric that allows us to assess the functional
brain connectivity by calculating a connectivity matrix based on
electroencephalography (EEG) measurements at various brain
frequency bands: θ (4–7 Hz), α (8–13 Hz), β (14–29 Hz), and
γ (30–50 Hz).

We already showed the usefulness of the PDC for the analysis
of functional brain connectivity in Gaxiola-Tirado et al. (2018)
and Alanís-Espinosa and Gutiérrez (2018). Yet, there is still
work to do in how to interpret the interactions that the PDC
reveals. The brain functional connectivity represents a complex
system because of the transient nature of the interactions, such
as synchronizations and desynchronizations between different
brain regions. Therefore, it is complicated to compare the cortical
connections within different brain rhythms. For this reason, here
we propose the use of graph theory to describe the involvement
of the different EEG channels (based on the PDC values)
over the frontal, central, parietal, and occipital regions. Graph
theory is a powerful tool for understanding the interactions
and topology of various types of networks, and it has found
a place in neurosciences for investigating brain aging (Vecchio
et al., 2014), and different brain disorders like in mild cognitive
impairment (Berlot et al., 2016), and brain function in spinal
cord injured patients (de Vico Fallani et al., 2007). In BCI
research, graph theory has been already proposed to analyze brain
networks of different mental tasks (Huang et al., 2016; Stefano

Filho et al., 2018). In this paper, we propose the use of a series
of graph theory metrics in order to understand the differences
in functional brain connectivity that arise depending on the
immersion experience that our users have with our proposed
BCI system.

2. MATERIALS AND METHODS

As proof-of-concept, we acquired the EEG recordings from two
healthy right-handed participants (25 years-old female and 24
years-old male) that were asked to operate our proposed BCI
system. Participants were recruited from the Center for Research
and Advanced Studies at Monterrey and they were not familiar
with BCI’s. All experiments were conducted in an ethical and
responsible manner, and with the approval of our institution’s
ethical committee. Informed consent was obtained from the
participants after explanation of the study.

The experimental protocol consists of two stages. The first one
is the conventional BCI training (2D, monitor-based), in which
imaginary movements are performed according to the visual cues
presented without feedback. The second stage corresponds to the
BCI control task. Next, we will explain both of them.

2.1. Conventional BCI Training
The aim of this stage is to extract characteristic features from the
EEG recordings to be used for the control of the BCI. First, the
subject is required to either perform imaginary movements or
to remain in resting state. Such behaviors are triggered by visual
cues presented on a computer monitor while the subject is sitting
on a chair. The cues are red arrows that indicate to continuously
imagine an action based on the direction of the arrow:

• or indicate the subject to open and close the left or right
hand, respectively;

• indicates to open and close both hands;
• indicates to move up and down both feet;
• If there is not a red arrow in the screen, then the subject should

remain at rest.

Hence, the subjects are tested for four different control conditions
or classes defined by the arrows. Each trial starts with a fixation
cross in which the subject should be at rest. After 3 s of fixation,
the visual cue is presented for 4 s. After that, a black screen
is shown indicating the subject to rest. Each trial is separated
by a random duration interval of 2.1–2.5 s between them to
avoid adaptation (Friedman et al., 2007). The training sequence
is shown in Figure 1.

The subject has five minutes of rest between each one of
the five runs. Each run corresponds to the acquisition of EEG
measurements of forty trials (ten randomized presentations of
the cues of each class). These trials are used as calibration
recordings to build a classifier for discriminating two different
mental tasks (in our case, each of the tested classes compared
against the resting state). The task that shows highest separability
vs. resting state is then used as the user-specific input for the BCI
control task system in the next stage of the experiments.

The EEG signals acquired under the previously explained
protocol are filtered and analyzed with BCI2000 offline tools to
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get a personalized feature for BCI control task. This is done
by the calculation of the coefficient of determination for all
electrodes within 0–70Hz for two cognitive states. The coefficient
of determination, or r2 value, is a statistical measure computed
over a pair of sample distributions, and it provides a measure of
how strongly the means of the two distributions differ in relation

FIGURE 1 | Training sequence as shown to the subject in the

computer monitor.

to variance. In a BCI context, r2 values are computed over signals
that have been measured under two different task conditions,
and they represent the fraction of the total signal variance that is
determined by the task condition. In this way, the channels and
frequencies with higher r2 values are selected as features to train
the classifier. In Figure 2, an example of the results for the power
spectra and r2 values of the channels used to train the classifier
are shown. Note that the power in C3 at 11 Hz corresponding
to MI of right hand is lower in magnitude than in the resting
condition, and this is expected because of the desynchronization
ofµ rhythm at themotor cortex. More details on the process of r2

calculation can be found at http://www.bci2000.org/mediawiki/
index.php/User_Tutorial:Mu_Rhythm_BCI_Tutorial.

2.2. BCI Control Task
For this stage, we used the NAO humanoid robot as the device
the BCI system is to control. The main goal of the subject is to
control themovement of the robot with the personalized classifier
obtained in the training stage. The sequence displayed on the
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FIGURE 2 | Power spectra and r2 values of the channels used to obtain the features to train the classifier for the BCI control task in one subject.
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FIGURE 3 | Control sequence as shown in the computer monitor and HMD.

screen to subjects during the experiment is shown in Figure 3. At
the beginning of the experiment, the subject remains in resting
state for 15 s. Then, the following sequence is displayed on the
screen: it starts with a green cross, followed by a black screen or
a red arrow, and finally the letters FB (for feedback) appear. The
first and second screen appear for 4 s, and the FB screen appears
for 10 s with a random time between each trial from 100 to 500ms
with a black screen. During the FB screen, the subject receives
feedback from the robot moving or not according to the cue.
When a MI task is detected, the robot closes and opens its hand,
otherwise, the robot does not move when resting state is detected.
The two types of feedback implemented are the following:

3PP: The subject is comfortably sitting in front of the robot
and amonitor where the sequence of stimuli is shown, as it can be
seen in Figure 4A. In this case, the subject sees the robot moving
in third-person perspective. For all trials, the robot is placed on
the left side, and the monitor on the right side.

1PP: The subject is comfortably sitting using a passive HMD
in which it is shown whatever the robot sees, as well as the stimuli
sequence (see Figure 4B). Meanwhile, the robot is placed outside
the room as shown in Figure 4C. The implementation of this
feedback scheme is further detailed in section 2.3.

The subject is instructed to avoid blinking during the MI
task to minimize noise in EEG data. Additionally, the subject
has 5 min of rest between runs. A total of 200 trials of 18 s of
duration were recorded in two different sessions per perspective.
The accuracy is recorded for each cue, which corresponds to
the number of times that the subject correctly controlled the
movement of the robot, as well as the number of times the robot
halted during the subject’s resting state.

2.3. Immersive Telepresence System
The aim of this system is to allow the BCI user to see the
world through the perspective of the NAO robot, i.e., as if the
robot’s movements were the user’s own. In order to be immersive,
some requirements have to be considered in the design of
the telepresence:

1. BCI user must control the NAO robot placed in a remote site
using the MI paradigm;

2. control signals have to be sent wirelessly;
3. control signals and video feedback must have the minimum

lag for an immersive experience;
4. BCI user has a stereoscopic video image as feedback displayed

into a HMD.

The implementation of the immersive telepresence system can
be divided into two parts. The first contains the components
of the BCI system considering the stereoscopic video feedback
from the remote environment. The second part comprises
the BCI software implementation, the system for the
communication channel, and the system implemented at
the remote environment. The general setup can be seen in
Figure 5.

The hardware of the immersive telepresence system can be
divided in three different modules:

• Module I corresponds to the location of both the BCI system
and its user. It consists of a desktop computer (Intel core i3, 8
GB RAM) and the signal acquisition system MOBITA, which
is a wireless EEG system with 32-channel. These two pieces
are connected via 2.4 GHz wireless network. The virtual reality
headset consisted of a passive HMD, coupled with a Samsung
Galaxy S6 cellphone. The Galaxy S6 has a large screen (1,440
× 2,560), an Exynos processor 7420 2.1 GHz, 3 GB of RAM
and GPU Mali-T760MP8, and it is powerful enough to have
an unnoticeable delay of the video streaming and VR web
application which allows the immersion feeling.

• In module II, at the NAO’s robot site, a helmet with an
Arducam of 5 MP and 1080p video resolution is placed on
top of the robot’s head in order to provide the required video
feedback that the native robot’s webcam cannot. The Arducam
is connected directly to Raspberry Pi’s native CSI camera port
to provide better performance than a webcam in terms of the
frame rate and resolution.

• Module III corresponds to the communication channel, which
is implemented through an ASUS AC1200 router of double
band and links to the main server running in the RPi 3.

The software architecture is shown in Figure 6. In our case,
the software used at the BCI user site is running in a desktop
computer with Microsoft Windows 7 of 64 bits as operating
system which runs Python 2.7 and OpenViBE (Renard et al.,
2010). Within OpenViBE, the Python box is used to send the
control signals to the RPi 3 and they are echoed to control
robot using TCP/IP. Meanwhile, the stimulus provided by a LUA
stimulator box is sent using an HTTP server written in Python
(see www.lua.org for more details about LUA scripting language).
The stimulus is received with a HTTP client at the RPi 3 and
echoed to the main server.

At the teleoperator site, the RPi Cam-Web-Interface
was implemented to manage the streaming video from the
mini camera. Such interface is freely available at https://
github.com/silvanmelchior/RPi_Cam_Web_Interface. In
order to obtain a stereoscopic video image, we decided to
use only the video from one camera as in the Pi Viewer
demo available at https://github.com/patcat/PiViewer, in
which the video from the RPi camera is streamed into VR
using JavaScript. In our case, it was implemented with some
modifications to enable the appearance of the stimulus
images from OpenViBE without a noticeable delay into a
web app.

Themain server running in the RPi 3 was written with Node.js
(https://nodejs.org). This server allows the integration of the
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FIGURE 4 | Different arrangements for our experiments. (A) Third-person perspective, (B) First-person perspective, and (C) Robot in remote location.

FIGURE 5 | General framework for the implementation of the immersive telepresence system.

FIGURE 6 | Software architecture.
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camera and stimulus into a web app. It hosts the web page where
it is shown a stereoscopic image of the remote environment
streamed by the mini camera, as well as the different stimuli
synchronized from the BCI user site, as it is shown in Figure 7.

2.4. EEG Data Acquisition and
Preprocessing
Subjects were comfortably seated on a chair inside a noise free
and normally lighted room. A 32-channel EEG system (Mobita
TMSi) was used to record the brain electrical potentials by means
of an electrode cap with sensors placed according to the 10–
20 international system and with reference to AFz. Impedance
of all electrodes were kept below 5 k�. The acquisition was
performed at a sampling rate of 1,000 Hz, the signals were
bandpass filtered with a zero-phase fourth-order Butterworth
between 1 and 100 Hz band and a notch filter to remove artifact
caused by electrical power lines in 60 Hz. The blinking artifacts
were removed using independent component analysis (ICA) and
finally a baseline correction was performed.

2.5. Feature Extraction and Classification
The EEG signals obtained from the subjects after the
conventional BCI training scheme described in section 2.1
were analyzed with the general-purpose software system
BCI2000. This software allows for the calculation of personalized
features for BCI control, and this is done by the calculation of
the r2 values for all electrodes within 0–70 Hz for two cognitive
states. In this way, the channels and frequencies with higher r2

values are selected as features to train the classifier. More details
on this process can be found at Mu Rhythm BCI Tutorial.

Once the features have been extracted, a linear discriminant
analysis (LDA) classifier (Kantardzic, 2002) is used to
discriminate between the control command (detection of
features that characterize the MI task) or the rest state.

2.6. Partial Directed Coherence
The partial directed coherence (PDC) is a method based on
the Granger causality to measure the coupling or connectivity
between different channels in the frequency domain. The
PDC also identifies the direction of information flow and
the strength (Baccala and Sameshima, 2001). In our case, the

FIGURE 7 | Stereoscopic image and BCI stimulus. The blue arrow is the

stimulus to perform the motor imagery movement.

frequency domains selected correspond to the known EEG
rhythms θ , α, β , and γ . The PDC was calculated only between
the following EEG channels: FP1, FP2, F3, F4, Fz, C4, C3, Cz, C4,
C3, Pz, T5, T6, O1, Oz, and O2. We chose those channels based
on previous work related to brain processing in the human visuo-
motor system (Binkofski and Buxbaum, 2013), and during motor
imagery events (Ghosh et al., 2015).

In order to compute the PDC, the data needs to be
fitted to a multivariate autoregressive (MVAR) model. For
the case of a set S = {xm, 1 ≤ m ≤ M} of M
EEG signals (in our case those from the previously selected
M = 16 channels), the MVAR model of order ρ of
x(n) = [x1(n), x2(n), . . . , xi(n), . . . , xj(n), . . . , xM(n)]T , for n =

1, 2, . . . ,T time samples, is given by

x(n) =

ρ
∑

l=1

Alx(n− l)+ v(n), (1)

where A1,A2, . . . ,Aρ are the M × M coefficient matrices
containing the coefficients aij(l) accounting for the linear
interaction effect of xj(n − l) onto xi(n), and v(n) =

[v1(n), v2(n), . . . , vM(n)]T is the noise vector (uncorrelated error
process). Under those conditions, a measure of the direct causal
relations (directional connectivity) of xj to xi for a frequency f is
given by the PDC as

πij(f ) =
Aij(f )

√

aj(f )a
T
j (f )

, (2)

where Aij(f ) and aj(f ) are, respectively, the i, j element and the
j-th column of

A(f ) = I−

ρ
∑

l=1

Ale
−j2πfl. (3)

In this work, the connectivity analysis is done during MI epoch
from the first to the third second after the cue is presented in
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FIGURE 8 | p-value as a function of τ in α band. Dash-dotted line indicates

p = 0.05.

TABLE 1 | Final values of τ used to calculate the digraphs for each frequency

band.

Rhythm θ α β γ

τ 0.65 0.3 0.65 0.9

p-value 0.007 0.005 0.05 0.05
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FIGURE 9 | Significant connectivity (left) and its corresponding degree distributions (right) for the 3PP (A,C) and 1PP (B,D) conditions in α band for P1 and P2,

respectively. Indegree distribution is represented by dark-color bars and the outdegree is represented by light-color bars.

order to calculate the PDC values for each frequency between 4
and 50 Hz. All values are arranged in matrices of size 16 × 16
(to account for all πij values of our EEG channels) for each of
the frequencies. Then, the maximum PDC value is calculated
between those PDC matrices corresponding to the frequencies
of each brain rhythms. At the end, we are left with four PDC
matrices per trial (representing θ , α, β , and γ ), which are then
used for the graph analysis.

2.7. Graph Analysis
Graph theory has been used to describe large scale networks
in different research fields. In neuroscience, graph theory is
employed as a network analysis to identify the simultaneous

activity of different brain regions stimulated by a mental

state. In our case, a brain network is obtained based on the

PDC matrix generated with the PDC values of each pair of
channels {i, j}. From the perspective of graph theory, the set of

nodes correspond to the EEG channels, while the set of edges

represent an anatomical link between those nodes or a functional
dependence (Sporns, 2010). These pairwise connections are
accounted for in a connection matrix.

In order to compute the topological features of interest, the
connectivity matrix is converted into a directed, unweighted
graph (also referred to as digraph). Such unweighted matrix is
then binarized by choosing a threshold τ that represents the
number of most powerful connections (connection density).
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FIGURE 10 | Comparison of the indegree (vertical axes) in β for both conditions and participants. The indegree values for P1 and P2 are indicated with © and �,

respectively.

In our study, τ represents the ratio between the effective
connections and all the possible ones in the digraph. A range
of τ = [0.3, 0.9] was explored for each frequency band with
increments of 0.05. Then, we identified the minimum p-value in
which there was a significant difference (p ≤ 0.05) of the global
efficiency metric when comparing it between the 1PP and 3PP
cases. Figure 8 shows an example of such search when p-values
are obtained from a Wilcoxon rank-sum test for the case of τ

between 1PP and 3PP in α band. Table 1 summarizes the results
for τ in each frequency band, which then we used to obtain the
digraphs for the following graph metrics.

Once it was binarized, the digraph was characterized
according to the degree, distribution degree, node betweenness
centrality, and local efficiency. All those network metrics
were computed using the brain connectivity toolbox for
Matlab (Rubinov and Sporns, 2010). Next, a more detailed
description of each of them is presented.

2.7.1. Degree Distribution
The degree k of a node i measures the number of connections,
so it indicates how many nodes are connected to node i. The
degree distribution P(k) represents the probability to find a node
i with certain degree k. In our case, the degree distribution
can be divided in two: the indegree (ID) denoted as kin, and
the outdegree (OD) denoted as kout. Those represent the total
number of connections incoming to a node and outgoing from

a node, respectively. A large value for kin means that the
node is influenced by a large number of different channels.
A large value of kout means a node has a large number of
potential targets.

2.7.2. Betweenness Centrality
In a graph structure, we can identify important nodes
that often interact with many others as a way to
facilitate functional integration (Rubinov and Sporns,
2010). Within a graph, we can also find central nodes
that participate in many short paths, and these act as
important controllers of information flow. Betweenness
centrality is a sensitive measure defined as the fraction
of all shortest paths in the network that pass through a
given node. This measure is used to identify important
functional connections.

2.7.3. Efficiency
This metric was introduced by Latora and Marchiori (2001) to
measure how efficiently the nodes communicate between them.
The efficiency eij of the communication between the nodes i and
j is inversely proportional to the shortest path length dij. If a path
does not exist between the nodes i and j, then dij = ∞ and eij = 0.
The global efficiency is defined as

Eglobal =
1

N(N − 1)

∑

i6=j

1

dij
, (4)
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FIGURE 11 | Mean indegree for both participants shown in color only at the sensors with an incremental trend in comparison to the other condition. For each

frequency band, the heads to the left (A,C,E,G) show the cases when the indegree in 1PP increased in comparison to 3PP, while the heads to the right (B,D,F,H)

show those for which 3PP increased in comparison to 1PP.

where N corresponds to the number of nodes composing
the graph.

2.8. Statistic Assessment of Connectivity
Based on eConnectome toolbox (He et al., 2011), a
nonparametric method based on surrogate data is used to
assess the statistical significance of our calculated values of PDC.
The Fourier transform is applied to each trial of the original
data to randomly shuffle the phases without changing the
magnitude as follows. Next, inverse Fourier transform is applied
to each trial with permutated phase to generate surrogate data in
time, followed by the PDC estimation. The shuffling and PDC
calculation are repeated 1,000 times, resulting in a distribution of
PDC values under the null hypothesis that no connectivity exists
and with a significance level of 0.05 (Yasumasa Takahashi et al.,
2007).

3. RESULTS

The analysis within the two types of experiments was done with
the MI of the right hand because it was the one that presented
the highest values of r2 for Participant 1 (P1) and Participant 2
(P2). Therefore, the movement of the NAO robot was chosen to
be also the closing and opening of its right hand to promote the
sense of agency.

Next, the degree distributions for ID and OD were
calculated for each frequency band. As an example,
the significant connectivities and their corresponding
degree distributions in α band for both the 1PP and 3PP
conditions are shown in Figure 9 for P1 and P2, respectively.

Histograms are normalized to the number of possible
nodes in the network (15 nodes). We note the consistency

in the behavior of the distribution in both participants.
An interesting result, is that the OD distribution shows

different trends within each condition. The right-skewed
tails of the OD distributions indicate that there are no
nodes with less than 7 outgoing links. Contrary to the ID
distribution, in which there are no nodes with more than 7
incoming connections.

Similarly, Figure 10 shows the comparison between 1PP and

3PP of the ID in β for all the channels of interest of each

participant. We can identify in which node a specific metric
is greater or lower for both participants. For example, we can

identify a greater ID in 1PP than in 3PP at FP1, which would
mean that FP1 is dependent by more channels in 1PP than in
3PP. Likewise, Oz has a greater ID in 3PP than in 1PP. Thismeans
that the dependency of channel Oz from other channels is lower
in 1PP than in 3PP.

In Figures 11–14, we show a summary of all the graphmetrics
obtained from our participants in the different brain rhythms.
These results are presented over the array of sensors for a better

Frontiers in Psychology | www.frontiersin.org 9 July 2020 | Volume 11 | Article 1301

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Alanis-Espinosa and Gutiérrez Brain Connectivity Associated to an Immersive BCI

A

CzC3 C4

Fz

FP1 FP2

F3 F4

PzP3 P4

T5 T6

O1 O2
Oz

α, 1PP

B

CzC3 C4

Fz

FP1 FP2

F3 F4

PzP3 P4

T5 T6

O1 O2
Oz

α, 3PP

C

CzC3 C4

Fz

FP1 FP2

F3 F4

PzP3 P4

T5 T6

O1 O2
Oz

β, 1PP

D

CzC3 C4

Fz

FP1 FP2

F3 F4

PzP3 P4

T5 T6

O1 O2
Oz

β, 3PP

E

CzC3 C4

Fz

FP1 FP2

F3 F4

PzP3 P4

T5 T6

O1 O2
Oz

θ , 1PP

F

CzC3 C4

Fz

FP1 FP2

F3 F4

PzP3 P4

T5 T6

O1 O2
Oz

θ , 3PP

G

CzC3 C4

Fz

FP1 FP2

F3 F4

PzP3 P4

T5 T6

O1 O2
Oz

γ , 1PP

H

CzC3 C4

Fz

FP1 FP2

F3 F4

PzP3 P4

T5 T6

O1 O2
Oz

γ , 3PP

FIGURE 12 | Mean outdegree for both participants shown in color only at the sensors with an incremental trend in comparison to the other condition. For each

frequency band, the heads to the left (A,C,E,G) show the cases when the outdegree in 1PP increased in comparison to 3PP, while the heads to the right (B,D,F,H)

show those for which 3PP increased in comparison to 1PP.

view of the brain regions they correspond to. Furthermore, only
the metrics that increased in both participants are shown for both
1PP and 3PP conditions:

• Figure 11 shows the magnitude of the indegree. We can
identify the stronger value of the ID in β , θ , and γ for
1PP condition at right temporal, parietal, and occipital
brain regions.

• Figure 12, shows the magnitude of the outdegree. We can
identify in β that at C3 and the midline it is greater in 1PP
than in 3PP. This could mean that the influence of these
channels is stronger than the others. Additionally, there is a
high OD at T6 in the 3PP condition in all frequency bands,
which could mean that this channel is an important hub in
3PP condition.

• Figure 13 shows the magnitude of the node betweenness
centrality. The greatest betweenness centrality is at C3 in
α for the 1PP condition. In θ and γ the betweenness
centrality nodes are at the temporal and occipital regions
in 1PP condition. Meanwhile, for the 3PP condition are at
the frontal region. We didn’t find any significant difference
in α.

• Figure 14 shows the magnitude of the local efficiency. We
can identify high efficiency in β for both conditions, but
for 1PP is greater at P3, while from 3PP is greater at C3.
We did not find any significant differences in the other
frequency bands. As an important result, we identified a

greater efficiency in 1PP than in 3PP at the prefrontal area (FP1
and FP2). This could be due to the sense of agency, similarly
to Baumgartner et al. (2008) where they found the prefrontal
areas strongly involved in the modulation of experience of
presence in adults.

4. DISCUSSION

This proof-of-concept study, whose main purpose is to showcase
an experimental platform with great potential to facilitate the
user’s immersion experience, also allowed to exemplify the use
of graph theory to investigate relevant features in brain networks
through EEG data. Such data was acquired from an experimental
BCI system that is well suited to describe the differences of sense
of agency in two environments with different levels of immersion.
We calculated functional connectivity based on PDC because it
is a metric that allows for an analysis in the frequency domain,
then giving us more information about the cognitive processes
in a specific band. This brain network analysis could help us
understand the causal relationships and give us an idea of the
information flow and brain organization during the control of an
immersive BCI and sense of agency.

Our results show the frontal and parietal brain regions
as target areas during 3PP, mainly in β . This is consistent
with Rathee et al. (2016) who reported that, using the partial
Granger causality during the right hand MI, the higher

Frontiers in Psychology | www.frontiersin.org 10 July 2020 | Volume 11 | Article 1301

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Alanis-Espinosa and Gutiérrez Brain Connectivity Associated to an Immersive BCI

A

CzC3 C4

Fz

FP1 FP2

F3 F4

PzP3 P4

T5 T6

O1 O2
Oz

β, 1PP

B

CzC3 C4

Fz

FP1 FP2

F3 F4

PzP3 P4

T5 T6

O1 O2
Oz

β, 3PP

C

CzC3 C4

Fz

FP1 FP2

F3 F4

PzP3 P4

T5 T6

O1 O2
Oz

θ , 1PP

D

CzC3 C4

Fz

FP1 FP2

F3 F4

PzP3 P4

T5 T6

O1 O2
Oz

θ , 3PP

E

CzC3 C4

Fz

FP1 FP2

F3 F4

PzP3 P4

T5 T6

O1 O2
Oz

γ , 1PP

F

CzC3 C4

Fz

FP1 FP2

F3 F4

PzP3 P4

T5 T6

O1 O2
Oz

γ , 3PP

FIGURE 13 | Mean node betweenness centrality for both participants shown in color only at the sensors with an incremental trend in comparison to the other

condition. For each frequency band, the heads to the left (A,C,E) show the cases when the node betweenness centrality in 1PP increased in comparison to 3PP,

while the heads to the right (B,D,F) show those for which 3PP increased in comparison to 1PP. No increase in node betweenness was found in α.
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FIGURE 14 | Mean efficiency for both participants shown in color only at the sensors with an incremental trend in comparison to the other condition. The first two

heads (A,B) show the cases when the efficiency in 1PP increased in comparison to 3PP, while the third head (C) shows those for which 3PP increased in comparison

to 1PP. No increase in node efficiency was found in α for 3PP, nor in θ and γ in any modality.

amount of outgoing information was from the central region
(C3, Cz, C4) and the targets were Fz and Pz. Furthermore,
the nodes with higher ID in 3PP in α and β are in
accordance with the results in Athanasiou et al. (2018),
where the nodes with higher in-degree are associated with
the supplementary motor areas bilaterally during hand motor
imagery, which corresponds to F3, Fz, and F4. Moreover, α

and β presents a high ID at FP1 in 1PP condition, which
might possibly be related to a better coordinating role of
these rhythms in the planning of the sensorimotor process.
Also, Baumgartner et al. (2008) found that the prefrontal

areas are strongly involved in modulating the experience of
presence. In Ghosh et al. (2015), they found as characteristic
the out strength of C3 while performing motor imagery of
the right hand. In our case, we found that the OD at C3
in 1PP is higher than in 3PP. Then, the stronger influence
from C3 to other regions might be possibly a reflection of a
better engagement.

In this study we found a greater OD at the SMA (C3,
Cz) in 1PP than in 3PP in β and γ , which could be related
to the regulative role of the SMAs during the planning of a
movement, as identified in Athanasiou et al. (2012). Furthermore,
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when performing MI of right hand in 1PP, there is a greater
OD and node betweenness centrality in β than in 3PP, which
can be an indication of the existence of a central node for
information exchange. This is in line with results from Li et al.
(2019).

The node betweenness centrality shows us an important
functional connection at C3 in β , which could mean that
C3 plays the role of regulator in the flow of information
during the MI in 1PP condition. As seen in α, the efficiency
is greater in 1PP condition than in 3PP at the prefrontal
cortex, which could be considered as a structural candidate
for modulating inter-individual differences in the experience of
presence (Baumgartner et al., 2008).

The present study is limited by its small sample size in
human subjects, but our primary goal was the development and
demonstration of our experimental BCI system and the analysis
approach of the data we collected from it. Future work would
include a more exhaustive experimentation in different subjects,
as well as increasing the sense of agency by incorporating
other activities and other interfaces, such as the one described
by Gaxiola-Tirado et al. (2019). Additionally, and given that
in this work we only analyzed the data during the MI epochs,
we would like to extend the analysis to the feedback epochs as
well so to discard the possible involvement of mirror system
neurons (Pineda, 2005) and properly assess the experience of
sense of agency.

5. CONCLUDING REMARKS

In this paper, we showed the applicability of an experimental

BCI system for the interaction with a robot through different

immersion experiences. The BCI system we proposed can

be seen as a tool for the analysis of functional brain
connectivity associated to the control of a BCI in an immersive
environment. For that purpose, we expended our previous work
on connectivity measures based on the PDC by using metrics of

graph theory. As a proof-of-concept, we analyzed the data from
two participants, and the results seem to be in line with previous
results from the literature.
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