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People often struggle with Bayesian reasoning. However, previous research showed
that people’s performance (and rationality) can be supported by the way the statistical
information is represented. First, research showed that using natural frequencies instead
of probabilities as the format of statistical information significantly increases people’s
performance in Bayesian situations. Second, research also revealed that people’s
performance increases through using visualization. We have built our paper on existing
research in this field. Our main aim was to analyze people’s strategies in Bayesian
situations that are erroneous even though statistical information is represented as natural
frequencies and visualizations. In particular, we compared two pairs of visualization with
similar numerical information (tree diagram vs. unit square, and double-tree diagram
vs. 2 × 2-table) concerning their impact on people’s erroneous strategies in Bayesian
situations. For this aim, we conducted an experiment with 540 university students.
The students were randomly assigned to four conditions defined by the four different
visualizations of statistical information. The students were asked to indicate a fraction in
response to four Bayesian situations. We documented the numerator and denominator
of the students’ responses representing a basic set and a subset in a Bayesian
situation. Our results showed that people’s erroneous strategies are highly dependent
on visualization. A central finding was that the visualization’s characteristic of making
the nested-sets structure of a Bayesian situation transparent has a facilitating effect on
people’s Bayesian reasoning. For example, compared to the unit square, a tree diagram
does not explicitly visualize the set-subset relations that are relevant in a Bayesian
situation. Accordingly, compared to a unit square, a tree diagram partly hinders people
in finding the correct denominator in a Bayesian situation, and, in particular, triggers
selecting a wrong numerator. By analyzing people’s erroneous strategies in Bayesian
situations, we contribute to investigating approaches to facilitate Bayesian reasoning
and to further develop the teaching of Bayesian reasoning.

Keywords: Bayesian reasoning, Bayesian situations, natural frequencies, strategies, visualization

INTRODUCTION

Bayes’ formula is one of the main models for dealing with inferential judgment of situations of
uncertainty (Gigerenzer and Hoffrage, 1995). Reasoning in such situations, known as Bayesian
situations, is a challenge for students in school (e.g., Wassner, 2004; Weber et al., 2018); adult
laymen in real life (e.g., Colomé et al., 2018); and even experts in different professions, such
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as physicians, lawyers, or managers (Gigerenzer, 2014; Hoffrage
et al., 2015). A typical Bayesian situation concerning an unspecific
medical context is given in Figure 1.

Although it is important to judge Bayesian situations in
various aspects of real life, research from recent decades showed
that experts as well as laymen and students have severe difficulties
with Bayesian reasoning (Kahneman et al., 1982; McDowell
and Jacobs, 2017). McDowell and Jacobs (2017) revealed that
only about 4% of people were able to calculate a probability
in a Bayesian situation when the statistical information
was given by percentages or rather probabilities, such as
P

(
disease|test positive

)
=

10%·60%
10%·60%+90%·20% = 25% representing

the solution of the Bayesian situation in Figure 1.
However, research gained results refer to two approaches

of representing statistical information that facilitate Bayesian
reasoning. Research showed that using an appropriate Bayesian
strategy in a Bayesian situation is highly dependent on the
way the statistical information is presented. The first approach
is using natural frequencies (Gigerenzer and Hoffrage, 1995;
Cosmides and Tooby, 1996). The meta-analysis by McDowell
and Jacobs (2017) showed that the rate of correct responses
increases from approximately 4% to about 25% if the statistical
information in a Bayesian situation is presented in the form
of natural frequencies. Figure 2 presents the Bayesian situation
in Figure 1 using natural frequencies. The second facilitating
approach is using visualization (McDowell and Jacobs, 2017).
Research demonstrates a facilitating effect of different kinds
of visualizations, such as tree diagrams (e.g., Sedlmeier and
Gigerenzer, 2001), double-tree diagrams (e.g., Böcherer-Linder
and Eichler, 2019), 2 × 2-tables (e.g., Binder et al., 2015),
unit squares (e.g., Böcherer-Linder and Eichler, 2017), Euler
diagrams (e.g., Sloman et al., 2003), roulette-wheel diagrams
(e.g., Yamagishi, 2003), bar graphs (e.g., Starns et al., 2019),
frequency grids (e.g., Sedlmeier and Gigerenzer, 2001), or icon
arrays (e.g., Brase, 2009). In particular, studies using visualization

FIGURE 1 | A typical Bayesian situation in an unspecific medical context
(Johnson and Tubau, 2015, p. 3).

FIGURE 2 | The Bayesian situation of Figure 1 with natural frequencies.

in addition to natural frequencies reported an increase of
correct responses in Bayesian situations from about 40–70%
(Garcia-Retamero and Hoffrage, 2013; Binder et al., 2015;
Böcherer-Linder and Eichler, 2017).

The aim of this paper is to contribute to the field of facilitating
Bayesian reasoning by focusing on those people who fail to use
the correct Bayesian strategy (Zhu and Gigerenzer, 2006) in a
Bayesian situation although the statistical information is given
by natural frequencies and by visualization. For this purpose,
we investigate particularly erroneous and non-Bayesian strategies
(cf. Zhu and Gigerenzer, 2006) of 540 undergraduate students
concerning four Bayesian situations. Furthermore, we investigate
relationships between erroneous strategies and properties using
two pairs of visualizations of Bayesian situations. We restrict our
focus to these two pairs of visualizations for two reasons. First,
our aim was to investigate visualizations that are appropriate
for training, regardless of available tools such as paper and
pencil, or computers (cf. Bruckmaier et al., 2019). This excludes
visualization representing a frequency style (Khan et al., 2015)
from our study. For example, to draw an icon array with 1,000
icons is not appropriate in a paper-pencil situation. Second, from
the other two styles (Khan et al., 2015), that is, the branch
style and the nested style, we selected two visualizations each
that were found to have a facilitating effect, but that differed in
the numerical information. Thus, we investigated relationships
between two pairs of visualizations, providing mostly the same
numerical information (i.e., tree diagram vs. unit square, and
double tree diagram vs. 2× 2-table), and the erroneous strategies
of the students. Since the main aim of our study was to
investigate erroneous non-Bayesian strategies when Bayesian
situations are presented in a supportive way including both
natural frequencies and visualizations (cf. McDowell and Jacobs,
2017), we desisted from defining a condition in which the
Bayesian situations were only supported by natural frequencies,
or in which the Bayesian situations were given in a probability
format. A related investigation was presented by Gigerenzer and
Hoffrage (1995) or Zhu and Gigerenzer (2006).

THEORETICAL PERSPECTIVES ON
NATURAL FREQUENCIES AND
VISUALIZATION

Two perspectives are proposed to explain the “natural frequency
facilitation effect” (McDowell and Jacobs, 2017, p. 5). The
first perspective refers to an ecological rationality (Gigerenzer
and Hoffrage, 1995; Johnson and Tubau, 2015). A human
strategy is “ecologically rational to the degree that it is adapted
to the structure of an environment” (Todd and Gigerenzer,
2000, p. 730). A possible evolutionary reason for the ecological
rationality of a frequency format is “that the mind is tuned
to frequency formats, which is the information format humans
encountered long before the advent of probability theory”
(Gigerenzer and Hoffrage, 1995, p. 697). This evolutionary
explanation of the benefit of representing Bayesian situation in
a frequency format was also supported by Cosmides and Tooby
(1996). Gigerenzer and Hoffrage (1995) further emphasized
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the match between natural frequencies and a natural sampling
process that leads to reduced computational complexity in a
Bayesian situation (Brase and Hill, 2015; Johnson and Tubau,
2015; McDowell and Jacobs, 2017).

The second perspective is called “nested-set hypothesis”
(Sloman et al., 2003, p. 297). This hypothesis is based on a
dual-process model, including a “primitive” and error-prone
associative system, and a rule-based system respecting the “logic
of set inclusion” (Barbey and Sloman, 2007, p. 244). Thus, in
this perspective, the main assumption is that a representation
of statistical information that “makes nested set relations
transparent” (Barbey and Sloman, 2007) triggers a rule-based
system and therefore facilitates Bayesian reasoning. Accordingly,
proponents of the nested-sets perspective suggest that “any
manipulation that increases the transparency of the nested-sets
relation should increase correct responding” (Sloman et al., 2003,
p. 302; cf. also Mandel, 2015; Mandel and Navarrete, 2015).
We discuss a concrete example of a transparency of nested-sets
relations in visualizations in the next section.

Some researchers recommend neglecting the differences of the
two theoretical perspectives on the natural frequency facilitation
effect (Brase and Hill, 2015; Johnson and Tubau, 2015; McDowell
and Jacobs, 2017). Thus, Johnson and Tubau (2015, p. 5)
suggested that “in order to advance the discussion, we need to
move away from the standard ‘natural frequency vs. nested-sets’
debate.” Putting this debate in the background means to focus
on the basis of the natural frequency facilitating effect, that is, to
provide an transparent structure of the statistical information and
simpler computation compared to a probability format (Johnson
and Tubau, 2015; McDowell and Jacobs, 2017).

There is a broad consensus that visualization facilitates
Bayesian reasoning (e.g., Brase, 2009; Spiegelhalter et al., 2011;
Khan et al., 2015; McDowell and Jacobs, 2017). Depending on
the theoretical perspectives outlined above, different facilitating
properties of visualizations are proposed. Proponents of the
ecological rationality perspective suggest “real, discrete, and
countable” objects as facilitating property of visualization
(Cosmides and Tooby, 1996, p. 33; cf. also Tubau et al.,
2019). Proponents of the nested-sets perspective suggest that
“the transparency of the nested-sets” (Sloman et al., 2003,
p. 302) facilitates Bayesian reasoning. Transparency means
making “set inclusion and set membership” visible (McDowell
and Jacobs, 2017, p. 6; cf. also Sloman et al., 2003). Accordingly,
an Euler diagram or a roulette wheel diagram (Yamagishi,
2003) that include transparency of a nested-sets relation
are proposed as facilitating visualization. Moro et al. (2011)
also recommend making the relative proportions of sets and
subsets transparent. Beyond the theoretical perspectives, Garcia-
Retamero and Hoffrage (2013) or Binder et al. (2015) give
evidence that visualizations have an additional facilitating effect
when the statistical information in a Bayesian situation is given
by natural frequencies. Our own research (Böcherer-Linder
and Eichler, 2019) focused on the effect of five visualizations
including the natural frequency format (tree diagram, double
tree diagram, 2 × 2-table, unit square, and icon array) on
people’s performance concerning Bayesian reasoning tasks. The
results provided evidence that visualizing discrete and countable

objects (cf. Cosmides and Tooby, 1996; Brase, 2009), and
making the nested-sets relation transparent (Sloman et al., 2003;
Barbey and Sloman, 2007), have a facilitating effect on people’s
performance concerning Bayesian reasoning tasks. However, we
found that making nested sets transparent has a much stronger
effect compared to visualizing discrete and countable objects
(Böcherer-Linder and Eichler, 2019).

VISUALIZATION OF BAYESIAN
SITUATIONS

This paper is based on the theoretical discussion summarized
above and on existing empirical research including our own
findings. Instead of comparing performance rates for Bayesian
reasoning tasks, here we focus on erroneous “non-Bayesian
strategies” (Zhu and Gigerenzer, 2006, p. 296) that people
use instead of a correct Bayesian strategy and ask for specific
characteristics of visualizations that trigger erroneous strategies.
As outlined in the introduction, we restrict our focus in this
research to two pairs of visualizations: tree diagram and unit
square, double-tree diagram and 2 × 2-table (Figure 3). We
discuss each of the four visualizations of Bayesian situations
regarding their main properties below. We further refer to the
solution in the medical context given in Figures 1, 2, respectively.
Using the abbreviation � for a sample, H for hypothesis (in this
case having a disease), and D for data (in this case a positive test
result), the solution for the medical context given with natural
frequencies is P (H|D) = P(H∩D)

P(D) =
6

6+18 =
1
4 .

A common visualization of Bayesian situations representing
a branch style (Khan et al., 2015) is a tree diagram (e.g., de
Veaux et al., 2012; Utts and Heckard, 2015; Figure 3A), which
is often found to facilitate Bayesian reasoning (Sedlmeier and
Gigerenzer, 2001; Steckelberg et al., 2004; Binder et al., 2015;
Budgett et al., 2016). A tree diagram implies a hierarchy of sets
(events) that are highlighted by nodes (cf. Böcherer-Linder and
Eichler, 2017; Bruckmaier et al., 2019). Thus, a set inclusion
following this hierarchy, such as (H ∩ D) ⊆ H, is transparent
(cf. also the findings of Bruckmaier et al., 2019). Concerning the
solution P (H|D) of a Bayesian reasoning task, the set H ∩ D
is given by a single node, but the set D is given by two nodes
representing H ∩ D and H̄ ∩ D. Since the nodes and the related
branches are parts of different paths of the tree, the set inclusion
(H ∩ D) ⊆ D and (H̄ ∩ D) ⊆ D is not transparent (Böcherer-
Linder and Eichler, 2017). Furthermore, the hierarchy of the tree
diagram implies the conjunction of events, such as H ∩ D, only
implicitly in the second level of the tree.

A unit square (Eichler and Vogel, 2015; Figure 3B)
representing a nested style (Khan et al., 2015) was also found
to facilitate Bayesian reasoning (Oldford, 2003; Böcherer-Linder
and Eichler, 2017, 2019; Talboy and Schneider, 2017). In a unit
square, the set inclusion (H ∩ D) ⊆ D and (H̄ ∩ D) ⊆ D as well
as (H ∩ D) ⊆ H and (H ∩ D̄) ⊆ H are presented in one row or
in one column. Thus, physically neighboring fields in a column
or row represent subsets of the same set. For this reason, we
understand a unit square as a visualization that makes the nested-
sets relation in a Bayesian situation transparent. More specifically,
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FIGURE 3 | Tree diagramm (A), unit square (B), double-tree diagram (C), and 2 × 2-table (D) visualizing the Bayesian situation of Figure 2. The indication of the
sets were added for illustrating the discussion in the text.

we call this transparency “graphical transparency.” A unit square
further shows the proportions of sets and subsets (cf. Moro
et al., 2011). Although Talboy and Schneider (2017) suggest this
area proportionality as an important property of a visualization
of a Bayesian situation, we did not found a facilitating effect
of this property concerning people’s performance in Bayesian
reasoning tasks (Böcherer-Linder and Eichler, 2019). A unit
square does not include a hierarchy. A unit square includes
similar numerical information as a tree diagram concerning a
Bayesian situation. We call the amount of numerical information
“numerical transparency.” Although there are slight differences,
we understand the numerical transparency of a tree diagram and
a unit square as comparable.

A double-tree diagram (Figure 3C) has also been found to
facilitate Bayesian reasoning (Wassner, 2004; Böcherer-Linder
and Eichler, 2019). The double-tree diagram represents a branch
style (Khan et al., 2015), and emphasizes two different hierarchies
in a Bayesian situation. One hierarchy is the same as in a tree
diagram, showing, for example, the relation � ⊇ H ⊇ (H ∩ D)
with � = (H ∪ H̄). The second hierarchy shows inversely, for
example, the relation (H ∩ D) ⊆ D ⊆ � with � = (D ∪ D̄). For

this reason, the set inclusion (H ∩ D) ⊆ D and (H̄ ∩ D) ⊆ D is
visualized in both cases by a branch that connects the subset with
the basic set (Figure 3C). Thus, the set inclusion is transparent.
In addition, a double tree diagram includes more numerical
information compared to a tree diagram and a unit square,
namely for every nine sets and subsets in a simple Bayesian
situation, such as the situation shown in Figure 1. Thus, the
numerical transparency of a double tree diagram is higher than
the numerical transparency of a tree diagram and a unit square.
The conjunction of events (e.g., H ∩ D) is visible since there exist
branches to each of the two basic sets, that is, to H and to D.
However, the conjunction of events is not explicitly visualized.

Further, a 2 × 2-table (Figure 3D) representing a nested style
(Khan et al., 2015) facilitates Bayesian reasoning (Binder et al.,
2015; Böcherer-Linder and Eichler, 2019). A 2× 2-table includes
the same numerical information of the nine sets and subsets in a
simple Bayesian situation as a double tree diagram. Thus, a 2× 2-
table provides the same numerical transparency than a double
tree diagram, but shows a higher numerical transparency than
a tree diagram and a unit square. The set inclusion (H ∩ D) ⊆
D and (H̄ ∩ D) ⊆ D as well as (H ∩ D) ⊆ H and (H ∩ D̄) ⊆ H
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is presented in one row or in one column in a 2 × 2-table.
Subsets of the same set are given in neighboring fields in the
same row or same column (c.f. Figure 3D; Böcherer-Linder and
Eichler, 2019). For example, H ∩ D and H̄ ∩ D are represented
by neighboring fields in the same row in a 2 × 2-table. A 2 × 2-
table does not include a hierarchy of events. The conjunction of
events such as H ∩ D is explicitly visualized. For example, the
events H and D are represented by a side of a field that represents
the conjunctive event H ∩ D.

To conclude, if a set and subset are connected by a branch
(or path) or are given by neighboring fields in a row or
column, we assume the transparency of a set inclusion and,
thus, the transparency of a set-subset relation in a Bayesian
situation (graphical transparency). Furthermore, a visible relation
between two sets and their intersection set makes the nested-
sets structure of a Bayesian situation transparent (cf. Barbey
and Sloman, 2007; McDowell and Jacobs, 2017). Finally, we
differentiated between the two pairs of visualizations concerning
the amount of numerical information (numerical transparency).
A tree diagram and a unit square provide mostly the same
numerical information, although there are slight differences.
For example, in a tree diagram, there is additional numerical
information of the sample size (#�), as compared to the unit
square. The double tree diagram and the 2 × 2-table provide the
same numerical information.

STRATEGIES IN BAYESIAN SITUATIONS

To summarize the existing knowledge about people’s strategies
in Bayesian situations, we use Figure 4, including a tree
diagram, a unit square, a double-tree diagram, and a 2 × 2-table.
For every visualization, n is the size of on abstract sample.
Based on n, we define the following natural frequencies:
h1 := n · P (H) , h2 := n · P

(
H̄

)
, d1 := h1 · P (D|H) , d2 :=

h1 · P
(
D̄|H

)
, d3 := h2 · P

(
D|H̄

)
and d4 := h2 · P

(
D̄|H̄

)
.

A Bayesian strategy (Zhu and Gigerenzer, 2006) produces the
correct response P (H|D) = d1

d1 +d3
.

Since the correct identification of the basic set D is crucial in a
Bayesian situation, we first refer to erroneous strategies involving
a correct identification of the basic set D. After this, we report
other erroneous strategies.

A strategy first described by Zhu and Gigerenzer (2006) is
called “pre-Bayes” and is represented by the quotient of h1

d1+d3
.

In this strategy, the correct basic set D, or rather, the frequency of
d1 + d3, is chosen as denominator, but an incorrect numerator is
chosen by confusing the sets H and H ∩ D.

The strategy is “evidence only” (Zhu and Gigerenzer, 2006), is
represented by the quotient of d1+d3

n . In this strategy, the correct
basic set, that is, D = (H ∩ D) ∪ (H̄ ∪ D) is connected to the
whole sample (�) represented by the frequency of n.

Further strategies do not include D, or rather the frequency
d1 + d3, but include H ∩ D as subset represented by d1 as the
numerator of the correct solution. One erroneous strategy is
described in mathematics education research (Diaz and Batanero,
2009) as well as in psychological research (Zhu and Gigerenzer,

2006) and is given by d1
h1

. This strategy is based on the reciprocal
value of the conditional probability of the correct Bayesian
strategy. For this reason, Diaz and Batanero (2009) called this
strategy “transposed conditional” fallacy. Zhu and Gigerenzer
(2006) named this strategy “representative thinking” following
Dawes (1986). A further name was given by Gigerenzer and
Hoffrage (1995), who called this strategy “Fisherian.”

A further erroneous strategy is called “joint occurrence” and is
represented by the quotient of d1

n (Zhu and Gigerenzer, 2006). In
this case, people seem to over-emphasize the conjunction H ∩ D,
and to neglect H̄ ∩ D.

An erroneous strategy that neither includes the correct
basic set D represented by the frequency d1 + d3 nor
the subset H ∩ D represented by frequency d1 is called
“conservatism” and is given by the quotient of h1

n (Zhu
and Gigerenzer, 2006). The same strategy is called “base-rate
only” by Gigerenzer and Hoffrage (1995).

Diaz and Batanero (2009) described an erroneous strategy
without naming it that is represented by the reciprocal value
of the correct quotient, that is, d1+d3

d1
. We call this strategy

“inverse Bayes.” This strategy may be explained through correct
identification of the basic set and the subset in a Bayesian
situation but also through confusing the correct relationship of
the frequencies representing these sets.

Further erroneous strategies were reported by Gigerenzer
and Hoffrage (1995), but these strategies were restricted to a
probability format of statistical information (e.g., a likelihood-
subtraction). In addition, some erroneous strategies that were
observed in the cited studies were not categorized since
the frequency of these strategies were small. Gigerenzer and
Hoffrage (1995) summarized related strategies as “not identified
strategies,” Zhu and Gigerenzer (2006) subsumed these strategies
to “guessing.”

A study by Bruckmaier et al. (2019) also focused on people’s
strategies in Bayesian situations. Since the study was based on
an eye-tracking method, the study included a very small sample
size of 24 students. Bruckmaier et al. (2019) found only strategies
discussed so far for the students’ Bayesian reasoning to be
supported by natural frequencies and a tree diagram or 2 × 2-
table. The findings concerning the tree diagram supported the
hypothesis that the hierarchy of the tree diagram triggers people
to identify a subset-set relation in different levels of the tree. The
results referring to the 2 × 2-table are difficult to interpret for
our purposes, because participants solved the same tasks with the
2× 2-table that had been solved before with the tree diagram.

Although the participants, materials, and methods were
different in the cited studies, we present the frequencies for the
Bayesian strategy and further erroneous strategies for different
studies and samples in Table 1.

In each of the cited studies, the focus is on strategies
representing people’s way of identifying a combination of a
basic set and subset, or rather, a fraction. In this study, we
aim at enhancing the focus by differentiating between choosing
a denominator and a numerator of a fraction representing
a basic set and subset. Given the specific properties of
the visualizations of Bayesian situations, we hypothesize that
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FIGURE 4 | Tree diagram (A), unit square (B), double-tree diagram (C), and 2 × 2-table (D) with natural frequencies.

TABLE 1 | People’s strategies for dealing with Bayesian situations in prior research.

Authors Zhu and Gigerenzer,
n = 135, young

students

Gigerenzer and
Hoffrage, n = 405,

univ. students

Bruckmaier, Binder, Krauss and
Kufner, n = 24, university students

Diaz and
Batanero, n = 177

and 206

Format Frequency Frequency Frequency Probability Probability

Visualization None None Tree (2 × 2-table) Tree (2 × 2-table) None

Strategy

Bayesian strategy d1/(d1 + d3) 36.9% 45.8% 43.3% (81%) 29.5% (32%) Not reported

Pre-Bayes h1/(d1 + d3) 11.5% Not reported 2.2% (0%) Not reported Not reported

Evidence only (d1 + d3)/n 4.6% Not reported Not reported 10% (0%) Not reported

Representative thinking d1/h1 1.8% 12.3% 17.4% (4.3%) 37.5% (2.1%) Without frequency

Joint occurrence d1/n Not reported 4.5% 21.7% (8.5%) 8% (55.3%) Not reported

Conservatism, Base rate only h1/n 5.3% 2.9% Not reported Not reported Not reported

Inverse Bayes (d1 + d3)/d1 Not reported Not reported Not reported Not Reported Without frequency

Guessing and other strategies 39.8% 33.5% 15.2% (6.4%) 15% (10.6%) Not reported

different visualizations trigger people to choose specific basic
sets and subsets.

HYPOTHESES

Our approach is to analyze which set (numerator) and
subset (denominator) people choose depending on the different
visualizations. Based on this, a structured set of hypotheses refers

to the following selection of a denominator and numerator in a
Bayesian situation:

H1: Selection of the correct denominator

H1.1: Selection of the correct numerator provided the
denominator is correct

H1.1.1: Specific response in the numerator provided
the denominator is correct
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H2: Selection of the correct numerator

H2.1: Selection of the correct denominator provided the
numerator is correct

H2.1.1/2: Specific responses in the denominator
provided the numerator is correct

H3: Erroneous strategy depending on the numerical
proportion of numerator and denominator

Now, we provide the rationale behind every hypothesis and
formulate the hypotheses more specifically. Since we divided the
four visualizations in two pairs of visualizations, in which each
pair of visualization provides the same amount of numerical
information (numerical transparency), we also divided the
hypotheses for each pair: the hypotheses labeled “a” concern the
pair of tree diagram and unit square, and the hypotheses labeled
“b” concern the pair of double tree diagram and 2 × 2-table.
Finally, we do not formulate directional hypotheses referring
to the facilitating effect of visualizations between the two pairs
of visualizations.

A main challenge in Bayesian situations is to identify the
correct basic set (D), that is, to identify d1 + d3 (Figure 4) as
the denominator in Bayes’ formula (cf. Sloman et al., 2003). In
a tree diagram, the subsets H ∩ D and H̄ ∩ D are represented by
two nodes of different paths that have no visible direct relation.
Thus, the set inclusion (H ∩ D) ⊆ D and (H̄ ∩ D) ⊆ D is not
transparent (cf. McDowell and Jacobs, 2017). To use the correct
denominator d1 + d3 requires adding the two frequencies d1 and
d3. In a unit square, the subsets H ∩ D and H̄ ∩ D are directly
related since they are represented by neighboring fields (in a
row). Thus, the set structure of a Bayesian situation and the set
inclusion (H ∩ D) ⊆ D and (H̄ ∩ D) ⊆ D is more transparent
than in the tree diagram (cf. Sloman et al., 2003; Moro et al.,
2011). As in the tree diagram, the correct denominator in a
Bayesian situation, that is, d1 + d3 has to be computed by a simple
addition. For this reason, the first main hypothesis is as follows:

Hypothesis 1a: People who use a unit square refer to d1 + d3
as the denominator more frequently than those who use a tree
diagram.

In a double-tree diagram, both subsets H ∩ D and H̄ ∩ D
are connected to the basic set D by a branch. Thus, the set
inclusion mentioned above is transparent in the hierarchy of the
double-tree diagram. Further, the correct denominator in Bayes’
formula is directly given as a frequency and needs no additional
computation (numerical transparency). In a 2 × 2-table, the
two subsets H ∩ D and H̄ ∩ D are represented by neighboring
fields (in a row), and the frequency of the basic set D, that
is, the frequency d1 + d3, is directly given. Since the double
tree diagram and unit square do not seem different regarding
numerical and graphical transparency, we did not formulate a
directed hypothesis.

Based on the correct identification of the basic set D and
the denominator d1 + d3, it is a further challenge to identify
the correct subset H ∩ D, or rather, the correct numerator d1 in
Bayes’ formula (cf. Sloman et al., 2003). In the hierarchy of a
tree diagram, H ∩ D and H ∩ D̄ appear explicitly as subsets of

H. Moreover, H̄ ∩ D and H̄ ∩ D̄ appear explicitly as subsets of
H̄. However, the tree diagram does not make the set inclusion
(H ∩ D) ⊆ D transparent since (H ∩ D) and

(
H ∩ D̄

)
are not

directly related. In a unit square, the set inclusion (H ∩ D) ⊆
(H ∩ D) ∪ (H ∩ D̄) is directly related since it is visualized by
neighboring fields of a row. If the basic set D was identified before,
the mentioned set inclusion is transparent. For this reason,
the structure of the tree diagram seems to hinder people in
identifying both the basic set and subset in a Bayesian situation.
Hence, a subsequent hypothesis is as follows:

Hypothesis 1.1a: Restricted to those who identify d1 + d3
as correct denominator: People who use a tree diagram fail
to identify d1 as numerator of the correct solution more
frequently than those who use a unit square.

A double-tree diagram makes this set inclusion outlined above
transparent: In the second hierarchy of a double tree, the set
inclusion (H ∩ D) ⊆ D is given by a branch. The set inclusion
(H ∩ D) ⊆ D is also visualized in a 2× 2-table in a row including
two frequencies of subsets and the sum of these two frequencies.
For this reason, we did not formulate a directed hypothesis
regarding a difference between the double tree diagram and the
2× 2-table.

People who correctly identified the basic set D and the related
frequency d1 + d3 may fail to identify the correct numerator
(d1) in Bayes’ formula. Based on our main assumption about
the transparency of a set inclusion, in a tree diagram H, H̄,
or � are transparently related to H ∩ D and H̄ ∩ D (Figure 4).
To differentiate between the three possible sets, we follow Zhu
and Gigerenzer (2006), who argued that people do not use a
combination of a numerator and a denominator that results in
a fraction above 1 (cf. also Chapman and Liu, 2009). However,
the mentioned fraction with a denominator d1 + d3 is below
1 only for specific numerators h1 and is never below 1 for a
numerator n. The possible quotient h1/(d1 + d3) is known as pre-
Bayes strategy by Zhu and Gigerenzer (2006), but this quotient
is not always below 1. Thus, the pre-Bayes strategy is highly
dependent on the Bayesian situation and the concrete frequencies
in this situation. This is apparent also in the results of Bruckmaier
et al. (2019), who used two situations with h1/(d1 + d3) > 1 and,
accordingly, found nearly no pre-Bayes strategy. In our study,
we used situations with h1/(d1 + d3) > 1, and situations with
h1/(d1 + d3) < 1. Considering Zhu and Gigerenzer (2006), we
expect few answers representing the pre-Bayes strategy in the first
case. We refer later to the difference of situations concerning the
value of h1/(d1 + d3) below or above 1.

Referring to the transparency of a set-subset relation, for a unit
square there is no meaningful reason to select H, or rather h1, as
the numerator in a Bayesian situation.

A similar difference could be identified concerning the second
pair of visualizations: In a double tree diagram, H ∩ D and H̄ ∩ D
are obviously transparently related to D by a branch. However, H
and H̄ or � are related to D by a path (Figure 4). For this reason,
the erroneous pre-Bayes strategy is also plausible for the double
tree diagram if people fail to identify d1 as the correct numerator.
For a 2 × 2-table there is no meaningful reason to select H, or
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rather h1, as the numerator in a Bayesian situation. Thus, our
hypotheses are as follows:

Hypothesis 1.1.1a: Restricted to those who identify d1 + d3 as
correct denominator: People who use a tree diagram use h1
as numerator in a Bayesian situation more frequently than
those who use a unit square.
Hypothesis 1.1.1b: Restricted to those who identify d1 + d3 as
correct denominator: People who use a double tree diagram
use h1 as numerator in a Bayesian situation more frequently
than those who use a 2× 2-table.

The corpus of hypotheses formulated so far focuses on
selection of the basic set (correct: D) in a Bayesian situation or
the denominator (correct: d1 + d3) in Bayes’ formula. However, it
is possible to change the perspective and focus on the selection of
a subset, or rather, a numerator in a Bayesian situation. Actually,
the visualizations allow for selecting a frequency representing
a set, and selecting a second frequency representing either a
basic set or a subset. The correct subset H ∩ D is transparently
visualized as a conjunction of two sides, representing the sets H
and D in the related field in a unit square and a 2 × 2-table.
This structure of sets and the subset H ∩ D does not seem to
be as transparent as in the double tree diagram, since H and D
represent paths in two different hierarchies. The tree diagram
does not make the structure of the sets H and D and the subset
H ∩ D explicitly transparent. For this reason, we expect a unit
square and 2 × 2-table to facilitate the identification of the
conjunction H ∩ D as a relevant subset in a Bayesian situation.
Thus, the second main hypothesis is as follows:

Hypothesis 2a: People who use a unit square refer to d1 as the
numerator in the correct solution more frequently than those
who use a tree diagram.
Hypothesis 2b: People who use a 2× 2-table refer to d1 as the
numerator in the correct solution more frequently than those
who use a double tree diagram.

Furthermore, with the same rationale outlined for hypothesis
1.1, it is possible to develop a hypothesis based on correct
selection of the subset H ∩ D, or rather, the correct numerator d1.
The basic set D is not transparent in the tree diagram (see above),
but is transparently visualized in a unit square. For this reason, a
further hypothesis is as follows:

Hypothesis 2.1a: Restricted to those who identify d1 as correct
numerator: People who use a unit square refer to d1 + d3 as
the denominator in their solution more frequently than those
who use a tree diagram.

Since there is no theoretical difference concerning the
numerical or graphical transparency of a double-tree diagram
and a 2 × 2-table, we formulated no directional hypothesis
concerning the identification of the correct denominator given
a correct numerator.

With the same argumentation as outlined above, the hierarchy
of a tree (and partly also the double-tree) may influence the
selection of a denominator (basic set) using a path of the tree,
namely h1 or n. Hence, a further pair of hypotheses regarding

an erroneous response with the correct numerator in a Bayesian
situation is as follows:

Hypothesis 2.1.1a: Restricted to those who identify d1 as
correct numerator: People who use a tree diagram use h1 as
denominator in a Bayesian situation more frequently than
those who use a unit square.
Hypothesis 2.1.1b: Restricted to those who identify d1 as
correct numerator: People who use a double tree diagram use
h1 as denominator in a Bayesian situation more frequently
than those who use a 2× 2-table.
This confusion is called “representative thinking” strategy in
Table 1.
Hypothesis 2.1.2a: Restricted to those who identify d1 as
correct numerator: People who use a tree diagram, use n as
denominator in a Bayesian situation more frequently than
those who use a unit square.
Hypothesis 2.1.2b: Restricted to those who identify d1 as
correct numerator: People who use a double tree diagram use
n as denominator in a Bayesian situation more frequently
than those who use a 2× 2-table.
This confusion is called “joint occurrence” strategy in Table 1.

Referring to people’s strategies in Bayesian situations reported
so far, we neglected the evidence-only strategy, that is, (d1 + d3)/n,
and the conservatism strategy, that is, h1/n. We analyzed both
erroneous strategies without a directional hypothesis for both
pairs of visualizations.

As outlined above, an erroneous strategy may highly be
influenced by the given situation that is represented by specific
natural frequencies. For example, if h1/(d1 + d3) > 1, we
expect only few people to use the pre-Bayes strategy compared
to situations in which h1/(d1 + d3) < 1. For this reason,
we formulate – independent from specific visualizations – the
following hypothesis:

Hypothesis 3: In Bayesian situations with h1/(d1 + d3) < 1,
people follow a pre-Bayes strategy more frequently compared
to Bayesian situations with h1/(d1 + d3) > 1.

MATERIALS AND METHODS

Our sample consisted of 540 undergraduate students enrolled
in two mathematics courses for prospective primary school
teachers. Bayesian reasoning was not part of their curriculum.

The students were randomly assigned to the four
visualizations. The subsamples differed a little and had the
following sizes: 122 students were assigned to the tree diagram,
120 students to the double tree diagram, 146 students to a
2× 2-table, and 152 students to a unit square.

Each student received a test referring to a specific
visualization, such as a tree diagram, comprising two parts.
The first part consisted of one page with a brief explanation of
how to construct a specific visualization (cf. Böcherer-Linder and
Eichler, 2017). Every explanation started with a table including
the statistical information in a natural frequency format. The
explanations for every visualization consisted of two further steps
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FIGURE 5 | Sample task including a Bayesian situation. In the original tasks, only one of the four visualizations was shown.

describing how to construct the specific diagram. The number
of explanation-steps was kept constant to provide the same
amount of supporting information in every condition. However,
the explanations among the visualizations differed due to their
different characteristics. Also, the level of familiarity was different
among the visualizations. 98% of students indicated familiarity
with a tree diagram, and 86% indicated familiarity with a 2 × 2-
table. By contrast, only 33% were familiar with a unit square, and
28% were familiar with a double tree diagram. We discuss these
differences later. The second part of the questionnaire consisted
of four Bayesian tasks. One of the tasks is given in Figure 5, and
the other tasks are available in a free accessible repository1. In
these tasks, the Bayesian situation was represented by only one
specific visualization. We did not use natural frequencies in the
brief description of the Bayesian situation in the text (except the
total sample size), but only within the visualizations. Therefore,
problems could only be solved by reading the information from
the visualization. This decision was made to be able to analyze
the facilitating effect of the visualization. In every Bayesian
situation, we asked students to indicate a fraction representing
the mathematical expression for the relation of the cardinal
numbers of the set (denominator) and subset (numerator). Thus,
the fraction is an expression of the data partition in a Bayesian
situation (Barbey and Sloman, 2007). In this regard, to ask for a

1https://osf.io/w64n5/

fraction is the mathematical version of a single-step frequency
question (Girotto and Gonzalez, 2001). Asking for a fraction is
also related to the common format for responses in textbooks for
school or university (e.g., Utts and Heckard, 2015).

The students had 15 min to complete the test. No intervention
was delivered during the test.

The numbers in every Bayesian situation were chosen in a
way that allowed identifying which sets a student had selected for
determining the numerator and the denominator of his or her
response. As mentioned before, the focus on the denominator
and numerator allows for specifying the students’ identification
of basic sets and subsets in a Bayesian situation. In some of the
tasks, one of which is shown in Figure 5, the fraction h1/(d1 + d3)
is below 1; in other tasks, the fraction h1/(d1 + d3) is above 1.

For analyzing students’ strategies, we regarded only those
solutions that included a fraction or a number. There were also
students who completed, for example, two tasks, but did not
provide a solution to the other two tasks. For this reason, the
amount of strategies that students showed differed among the
four Bayesian situations. In the results section, we indicate the
number of strategies shown by the students, as well as the missing
responses. The data is provided in a free accessible repository (see
text footnote 1).

Firstly, we documented each combination of a denominator
and numerator in a descriptive way, also including versions that
were cancelled down. Following Zhu and Gigerenzer (2006), we
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TABLE 2 | Limits for estimating an erroneous strategy as systematic.

Visualization Tree diagram Unit square Double-tree 2 × 2-table

n 272 235 194 156

k 10 9 8 7

did not analyze the few solutions that provided a fraction above 1
in detail, except for the specific analysis concerning hypothesis 3.
For this reason, we did not regard the inverse Bayes’ strategy that
Diaz and Batanero (2009) proposed (see Table 1).

For the inferential analysis, we referred to systematic
strategies. To estimate whether a student’s response represented
a systematic strategy or was a result of guessing, we followed
Zhu and Gigerenzer (2006) and compares the student’s responses
with a guessing model. The basis of this model is the amount
of single numbers and simple sums of two numbers that are
provided in a Bayesian situation. Nine of these numbers or sums
are given in a 2 × 2-table (Figure 3). We further added 1 as a
possible number since some of the students’ responses consisted
of a natural number. In these cases, we assumed a denominator
of 1. We further assumed that the students chose two different
numbers or sums representing different sets for the numerator or
denominator. Thus, we regarded 10 × 9 = 90 different possible
responses. Only half of these responses consisted of a fraction
below 1. One of these responses represents the Bayesian strategy.
For erroneous strategies, we assumed a uniform distribution
and, accordingly, a probability of 1/44 for every strategy. We
used this model to decide whether a response was based on a
systematic strategy or guessing. We used a binomial distribution
in which p equals 1/44 and n is given by the number of erroneous
responses for a specific visualization. Based on this distribution,
we determined an integer k for that the probability of the interval
[k; n] is lower than 0.05, but bigger than 0.05 for [k-1; n]. Table 2
shows the values of k for the different visualizations. Thus, if
a certain erroneous strategy is given in k or more than k of
the students’ responses, we defined this strategy as systematic
erroneous strategy.

We used a χ2–test for independence for the statistical analyses.
To measure the effect of differences between two visualizations,
we used the odds ratio, but also reported Cohen’s d.

This experiment was carried out in accordance with
the University Research Ethics Standards. Participation was
voluntary, without financial incentives, and anonymity was
guaranteed. A written, informed consent was not required as per
local legislation and institutional requirements.

RESULTS

Strategies
First, we describe the results in a descriptive way, concerning
absolute and relative frequencies with which the students
indicated different fractions in the four Bayesian situations.
We consider these fractions by indicating the numerator and
the denominator.

Each table in Figure 6 shows the numerators that the students
at least once provided in the first row, and the denominators
that the students at least once provided in the first column. In
each cell, the absolute frequency and relative frequency are given.
The last row and the last column indicate the sums. The sum
in the second row indicates the number of responses that could
not be interpreted. The gray shaded fields represent fractions that
no student provided as response. Further, the fields with a thick
frame represent the fractions that were reported as an erroneous
strategy in literature (cf. Table 1). The black field represents the
Bayesian strategy.

The results concerning systematic strategies are given in
Table 3, based on the guessing model outlined in the methods
section. The strategies are sorted in the same way as in Table 1.
The frequencies refer to the number of responses in which
the fraction in the first column or an equivalent fraction was
indicated. Beyond the erroneous strategies reported so far, we
identified and labeled two further erroneous strategies with
regard to existing strategies, namely, a pure evidence strategy,
and a likelihood strategy. These two erroneous strategies may be
understood as systematic strategies for at least one of the four
visualizations, and are given in Table 3 in italics. The category
“guessing” includes the amount of responses that could not be
interpreted or that were seldom indicated. Finally, we indicated
the amount of missing responses for every visualization. The
impact of the visualization on the amount of missing responses
is highly significant. Here, a very familiar visualization, a
2 × 2-table, has significantly less missing responses than the
other three visualizations. However, since our aim was to
analyze people’s erroneous strategies in Bayesian situations and
the impact of different visualizations on these strategies, we
neglect the missing responses in the following section. For an
analysis of people’s performance in Bayesian situations when
using visualizations that also include incomplete tasks, see
Böcherer-Linder and Eichler (2019).

Results Concerning the Hypotheses
Hypotheses Concerning the Correct Denominator
The first hypothesis refers to differences in students’ abilities to
indicate the correct basic set represented by d1 + d3. The results
given by absolute and relative frequencies referring to each of
the visualizations in brackets are shown in Table 4. The order of
the visualization, that is, tree diagram – unit square in the first
pair, and double tree diagram – 2 × 2-table in the second pair,
represents the order in all hypotheses. Thus, in these hypotheses,
we assume that the visualization on the right side of the two pairs
is more efficient than the visualization on the left side.

A χ2-test for independence indicating d1 + d3 did not produce
a significant difference between a tree diagram and unit square
(df = 1, χ2 = 2.91, p = 0.088). By contrast, the difference between
a double tree diagram and 2 × 2-table was significant (df = 1,
χ2 = 10.17, p < 0.05), with a small effect (odds ratio: 1.60;
Cohen’s d = 0.20). Thus, hypothesis 1 was not confirmed, since
the difference between a tree diagram and unit square was less
pronounced than expected. By contrast, we found an unexpected
difference between the double tree diagram and 2× 2-table.
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FIGURE 6 | Students’ answers to Bayesian tasks differentiated to denominators and numerators.
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TABLE 3 | Descriptive results of students’ responses concerning the Bayesian strategy and erroneous strategies. n indicates the number of students in a condition. The
percentages are related to the amount of responses (excluding missing responses). The amount of missing responses is also given.

Visualization Tree diagram (n = 122) Unit square (n = 154) Double-tree (n = 120) 2 × 2-table (n = 148) Sum average

Bayesian strategy d1/(d1 + d3) 162/37.3% 312/57.0% 238/55.1% 410/72.4% 1122/56.7%

Pre Bayes h1/(d1 + d3) 94/21.7% 26/4.8% 64/14.8% 34/6.0% 218/11.0

Evidence only (d1 + d3)/n 12/2.8% 4/0.7% 7/1.6% 1/0.2% 24/1.2%

Representative thinking (d1/h1) 69/15.9% 64/10.7% 35/8.1% 56/9.9% 224/11.3%

Joint occurrence d1/n 22/5.1% 44/8.0% 30/6.9% 18/3.2% 114/5.2%

Conservatism h1/n 14/3.2% 14/2.6% 9/2.1% 3/0.5% 40/2.0%

Pure evidence d1/1 8/1.8% 10/1.8% 14/3.2% 7/1.2% 39/2.0%

Likelihood d1/d3 6/1.4% 19/3.5% 2/0.5% 1/0.2% 28/1.4%

Guessing 58/13.4% 54/9.9% 33/7.6% 36/6.4% 181/9.1%

Missing responses 54 61 48 18 181

In an exploratory way, we also tested post-hoc the difference
between visualizations regarding pairs of visualizations that
differ in terms of the numerical information. Since there were
four further pairs of visualizations with different numerical
information, we ran χ2-tests using the Bonferroni-correction. In
this case, the difference between a unit square and double tree
diagram was significant (p∗ = 4p < 0.05, Cohen’s d = 0.17). The
difference between a unit square and 2 × 2-table was highly
significant (p∗ = 4p < 0.001), with a medium effect (Cohen’s
d = 0.37). Finally, the difference between a tree diagram and both
a double-tree diagram and 2 × 2-table was highly significant
(p∗ < 0.001), with a nearly medium effect: Cohen’s d being
between 0.24 and 0.45.

Hypothesis 1.1 refers to applying the Bayesian strategy
restricted to those students who indicates d1 + d3 as denominator.
In a subordinated hypothesis 1.1.1, we explored further if there
was a dependency of the visualization, and a tendency to use
h1 as numerator given the correct denominator d1 + d3. Due to
the difference in the Bayesian situations, we involved only two
Bayesian situations with h1 < d1 + d3 for hypothesis 1.1.1. The
related results for both hypotheses (1.1 and 1.1.1) are shown in
Tables 5, 6.

The visualization seems to have a strong impact on the ability
to correctly combine d1 + d3 and the correct numerator d1.
A χ2-test found a highly significant difference between a tree
diagram and a unit square (df = 1, χ2 = 71.16, p < 0.001),
with a nearly high effect (odds ratio 6.2; d = 0.72). Also, the
difference between a double tree diagram and 2 × 2-table was
highly significant (df = 1, χ2 = 26.59, p < 0.001), with a medium
effect (odds ratio 3.0; d = 0.38). For this reason, hypothesis
1.1 was confirmed.

TABLE 4 | Frequencies for indicating d1 + d3 as denominator in a Bayesian
situation.

Visualization Tree
diagram

Unit
square

Double-
tree

2 × 2-
table

Sum

d1 + d3

indicated
256

(59%)
341

(62%)
304

(70%)
448

(79%)
1349
(68%)

d1 + d3 not
indicated

178
(41%)

206
(38%)

128
(30%)

118
(21%)

630
(32%)

TABLE 5 | Frequencies for indicating the correct numerator when d1 + d3 is given
as correct denominator in a Bayesian situation.

Visualization
(d1 + d3

indicated)

Tree
diagram

Unit
square

Double-
tree

2 × 2-
table

Sum

d1 as
numerator

162
(63%)

312
(92%)

238
(78%)

410
(92%)

1122
(83%)

not d1 as
numerator

94
(37%)

29
(8%)

66
(22%)

38
(8%)

227
(17%)

TABLE 6 | Frequencies for indicating h1 as numerator when d1 + d3 is given as
correct denominator in a Bayesian situation.

Visualization
(d1 + d3

indicated), only
cases with
h1/(d1 + d3) < 1)

Tree
diagram

Unit
square

Double-
tree

2 × 2-
table

Sum

h1 used as
numerator

75
(50%)

23
(12%)

48
(28%)

29
(13%)

175
(24%)

h1 is not used as
numerator

73
(50%)

176
(88%)

121
(72%)

197
(87%)

567
(76%)

TABLE 7 | Frequencies for indicating d1 as the correct numerator in a
Bayesian situation.

Visualization Tree
diagram

Unit
square

Double-
tree

2 × 2-
table

Sum

d1 as
numerator

268 (62%) 449 (82%) 320 (74%) 493 (87%) 1530 (77%)

Other
numerator

166 (38%) 98 (18%) 112 (26%) 73 (13%) 464 (23%)

Moreover, the difference between the tree diagram and both
a double-tree diagram and 2 × 2-table was highly significant
(p∗ = 4p < 0.001). The odds ratios were between 2.1 and 6.3, and
Cohen’s d showed a medium effect for the double-tree diagram
(d = 0.33), and a nearly high effect for the 2 × 2-table (d = 0.72).
Finally, the difference between a double-tree diagram and a unit
square was highly significant (p∗ = 4p < 0.001; d = 0.38). This
means that both tree diagrams seem to hinder identification of
d1 as numerator of the correct solution if the correct basic set is
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identified. This is also apparent in the comparison of a double
tree diagram and unit square, although a double tree diagram
provides more numerical information than a unit square.

For hypothesis 1.1.1, a χ2-test provided a highly significant
result (df = 1, χ2 = 64.09, p < 0.001) concerning the difference
between a tree diagram and unit square, with a high effect
(odds ratio: 7.0; d = 0.93). The visualization strongly impacted
the pre-Bayes strategy when d1 + d3 was identified as correct
denominator. Further, the difference between a double-tree
diagram and 2× 2-table was highly significant (df = 1, χ2 = 14.94,
p < 0.001), with a medium effect (d = 0.39). Thus, hypothesis
1.1.1 was confirmed. Both tree diagrams seem to trigger people to
choose a node in the hierarchy of tree diagrams for identifying an
adequate numerator.

Again, the difference between a tree diagram and both a
double-tree diagram and 2 × 2-table was highly significant
(p∗ = 4p < 0.001). The effect sizes varied concerning the odds
ratio between 2.6 and 7.3, while Cohen’s d implied an at least
medium effect (d = 0.46 for double-tree, and 0.88 for a 2 × 2-
table). Moreover, the difference between a double-tree diagram
and a unit square was highly significant (p∗ = 6p < 0.001;
d = 0.39), although a double tree diagram provides more
numerical information than a unit square.

Hypotheses Concerning the Correct Numerator
For testing Hypothesis 2, we analyzed the two pairs of
visualizations concerning the use of the correct numerator d1.
The related results are shown in Table 7.

The ability to identify the correct numerator in a Bayesian
situation was highly impacted by the visualization. The difference
between a tree diagram and unit square was highly significant
(df = 1, χ2 = 50.87, p < 0.001), with a medium effect (odds
ratio: 2.8; d = 0.46). Further, the difference between the double-
tree diagram and 2 × 2-table was significant (df = 1, χ2 = 27.54,
p < 0.001), with a medium effect (d > 0.33). Thus, hypothesis
2 was confirmed. The tree diagrams seem to systematically
hinder people to identify the correct numerator. Again, the
difference between a tree diagram and both a double-tree diagram
and 2 × 2-table was highly significant (p∗ = 4p < 0.001).
Moreover, the difference between a double-tree diagram and unit
square was significant (p∗ = 4p < 0.05; d = 0.17), although
a double tree diagram provides more numerical information
than a unit square.

Hypothesis 2.1 refers to the amount of correct solutions
with the indication of d1 as correct numerator. In a pair of
subordinated hypotheses (2.1.1 and 2.1.2), we further explored

TABLE 9 | Pre-Bayes strategy for situations with d1 + d3 > h1 and with
d1 + d3 < h1.

Visualization Tree
diagram

Unit
square

Double-
tree

2 × 2-
table

Sum

h1/(d1 + d3) > 1:
pre-Bayes

19 (9%) 3 (1%) 16 (7%) 5 (2%) 43 (4%)

h1/(d1 + d3) > 1:
no pre-Bayes

205 (91%) 268 (99%) 209 (93%) 265 (98%) 947 (96%)

h1/(d1 + d3) < 1:
pre-Bayes

75 (38%) 23 (9%) 48 (24%) 29 (10%) 175 (19%)

h1/(d1 + d3) < 1:
no pre-Bayes

123 (62%) 232 (91%) 153 (76%) 253 (90%) 761 (81%)

the dependency of the visualizations and tendency to use h1 or
n as denominator given the correct numerator d1. The results
concerning these three hypotheses are shown in Table 8.

For hypothesis 2.1.1, a χ2-test showed that the dependency
of indicating h1 as denominator given d1 as correct numerator
and the visualization was significant. The difference between a
tree diagram and a unit square was highly significant (df = 1,
χ2 = 14.67, p < 0.001), with a nearly medium effect (odds ratio:
2.1, Cohen’s d = 0.29). By contrast, the difference between a
double tree diagram and a 2 × 2-table was not significant. Thus,
hypothesis 2.1.1 was partly confirmed for hypothesis 2.1.1a).

Further, the difference between a tree diagram and a
double-tree diagram and 2 × 2-table was highly significant
(p∗ = 4p < 0.01), with a medium effect (d = 0.39 and 0.37).

The tendency to identify the incorrect denominator n
combined with the correct numerator d1 was partly impacted
by the visualization. The difference between a tree diagram
and unit square was not significant. By contrast, the difference
between a double-tree diagram and 2 × 2-table was significant
(df = 1, χ2 = 11.44, p < 0.001), with a small effect (odds ratio:
2.7; d = 0.23). Thus, hypothesis 2.1.1 was partly confirmed for
hypothesis 2.1.1b). Moreover, the difference between the three
visualizations, that is a tree diagram, a double tree diagram and
a unit square, and a 2× 2-table was significant with a small effect.

Hypothesis Concerning the Specific Proportion of
Numerator and Denominator
Finally, we tested hypothesis 3. Table 9 shows the results for both
scenarios, d1 + d3 > h1, and d1 + d3 < h1. The relative frequency
is based on the number of solutions for each visualization in each
of the two scenarios.

TABLE 8 | Frequencies for indicating the correct solution, n as denominator, or h1 as denominator, given d1 as the correct numerator in a Bayesian situation.

Visualization (d1 as numerator) Tree diagram Unit square Double-tree 2 × 2-table Sum

d1 + d3 as denominator 162 (60%) 312 (70%) 238 (74%) 410 (83%) 1122 (73%)

not d1 + d3 as denominator 106 (40%) 137 (30%) 82 (26%) 83 (17%) 408 (37%)

h1 used as denominator 69 (26%) 64 (14%) 35 (11%) 56 (11%) 224 (15%)

Other denominator 199 (74%) 385 (86%) 285 (89%) 437 (89%) 1271 (85%)

n used as denominator 22 (8%) 44 (10%) 30 (9%) 18 (4%) 114 (7%)

Other denominator 246 (92%) 405 (90%) 290 (91%) 475 (96%) 1416 (93%)
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The difference concerning the sum of the four visualizations
produced a highly significant result (df = 1, χ2 = 98.75,
p < 0.001). The highly significant difference appeared
for each of the visualizations as well. Thus, the context
represented by a specific proportion of the numerator and
denominator has a significant impact on the pre-Bayes strategy
in Bayesian situations.

Use of the Strategies Described in the
Literature
Additionally, we analyzed differences between the visualizations
referring to the erroneous strategies reported in Table 1. Table 10
indicates if a visualization in the first column shows a significantly
higher amount of people showing a specific strategy. We do
not regard the accumulation of hypotheses in this case. For this
reason, the results must be interpreted carefully. Referring to the
pre-Bayes strategy, we again restricted the analysis to two tasks.

DISCUSSION

The main aim of this paper was to contribute to the field
of facilitating Bayesian reasoning by focusing on people who
fail to use the correct strategy in a Bayesian situation, even
though the statistical information is given by natural frequencies
and visualization. We focused on two pairs of visualizations.
According to Khan et al. (2015), the visualizations within a
pair provide mostly the same numerical information but differ
in style, that is, a branch style and a nested style, and further
differ in graphical transparency. Visualizations between the two
pairs differ in at least the numerical information and, thus,
in numerical transparency. To investigate people’s erroneous
strategies, we differentiated between identifying the correct basic
set and the correct subset of the nested-sets structure in a
Bayesian situation. We realized this approach by asking people
to respond with a fraction. This allowed us to analyze erroneous
responses concerning the denominator and the numerator.
However, since other studies use a single step frequency version
for a response, findings in these studies must be compared
with caution with our results. Our results provide substantial
evidence that people’s strategies in Bayesian situations are
strongly dependent on different visualizations. Thus, a specific
visualization hinders or facilitates identification of the relevant
basic set D represented by the denominator d1 + d3, and the
relevant subset H ∩ D represented by the numerator d1.

We first analyzed different strategies regarding identification
of the correct basic set D (hypothesis 1). We found that
numerical transparency has the main impact. We did not find
significant differences within the two pairs of visualization, that
is, between a tree diagram and a unit square, and between
a double tree diagram and a 2 × 2-table. By contrast, but
as expected, the difference between the two visualizations
that provide the relevant subset (D) numerically (double tree
diagram and 2 × 2-table) and the two visualizations that
do not provide this numerical information (tree diagram and
unit square) is significant. Against expectations, a unit square
was not found to be more effective for identification of the
correct basic set in a Bayesian situation compared to the tree
diagram. This was an unexpected result, since the mentioned
partition of D is transparent in the unit square, but not in a
tree diagram. Regarding a differentiation between the relevant
basic set (denominator) and subset (numerator), our result
contributes to the discussion of transparency of the nested-sets
relation in a Bayesian situation by focusing on the visualizations’
characteristics (cf. Sloman et al., 2003).

In subordinated hypotheses, the students’ responses were
restricted to those in which the basic set D was correctly
identified. The correct identification of the basic set in
visualizations representing a nested style (unit square, 2 × 2
table, cf. Khan et al., 2015) almost always goes along with the
use of a Bayesian strategy: 92% of the responses with the correct
basic set show the correct Bayesian strategy. Students who use
a visualization representing the branch style (tree diagrams, cf.
Khan et al., 2015) and who identified the correct basic set use
the correct Bayesian strategy to a lesser extent: only 78% of the
students using a double-tree diagram and 63% of the students
using a tree diagram used the Bayesian strategy, although they
were able to identify the correct basic set D. More specifically,
our results show that both tree diagrams trigger the identification
of H as a relevant subset. We expected a difference between a
tree diagram and unit square since the relation between the basic
set D and the subset H ∩ D is not visualized in the hierarchy
of the tree diagram and is therefore not transparent. However,
a study by Bruckmaier et al. (2019) suggests that people tend
to search for a set-subset relation in the hierarchy of a tree
diagram. For this reason, the tree diagram hinders use of the
Bayesian strategy compared to other visualizations such as unit
square, since a tree diagram obscures the nested-sets structure of
a Bayesian situation. We did not expect the difference between a
double tree diagram and 2 × 2-table, and even between a double
tree diagram and unit square. This result provides evidence

TABLE 10 | Differences among the visualizations referring to strategies shown in Table 1 based on the entirety of students’ answers.

Tree diagram Unit square Double-tree 2 × 2-table

Tree diagram p < 0.001: pre-Bayes p < 0.001: rep. think. p < 0.01: pre-Bayes
p < 0.05: evid. only, p < 0.001: pre-Bayes evid. only

p < 0.01: rep. think. conserv.
Double-tree p < 0.001: pre-Bayes p < 0.001: pre-Bayes

p < 0.01: joint occ.
2 × 2-table
Unit square p < 0.001: joint occ.

p < 0.01: conserv.
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that a graphical transparency is effective beyond a numerical
transparency. A possible, but speculative interpretation of this
result, is that the two hierarchies in a double-tree diagram partly
trigger people to identify the basic set D with its subsets H ∩ D
and H̄ ∩ D. If this is the case, the challenge is the same as for a
tree diagram, that is, to identify a subset of (H ∩ D) ∪ (H̄ ∩ D)
in the (first) hierarchy of a double-tree diagram. However, this
interpretation should be investigated in future research.

A second analysis started with identification of the correct
subset H ∩ D. As expected, the result indicated that identifying
the correct subset H ∩D is strongly impacted by the visualization.
Thus, a 2 × 2-table and a unit square are more effective for
identifying the correct subset in a Bayesian situation, although
the subset is given by a node in both tree diagrams. We interpret
this result by the transparency of the subset H ∩ D as an
intersection set. Thus, a field within a 2 × 2-table or unit square
implies representing an intersection of sets represented by the
two sides of the field. By contrast, the hierarchical path of both
tree diagrams makes the property of H ∩ D as intersection set
not transparent to the same extent. This result agrees with the
findings of Bruckmaier et al. (2019) regarding the analysis of
people’s ability to identify conjoint probabilities in a tree diagram
and a 2 × 2-table. Our results concur with the findings of Binder
et al. (2020), who found that a 2 × 2-table facilitates identifying
conjoint events compared to a double tree diagram. The result
also goes along with our own finding in Böcherer-Linder et al.
(2018) that people’s performance can be increased by making the
subset H ∩ D as intersection set, graphically transparent.

The results for hypothesis 2.1 are similar to the results for
hypothesis 1: it is easier to identify the correct basic set (D)
in the 2 × 2-table and the double-tree diagram, for which the
basic set is explicitly given (numerical transparency), than in
a unit square and a tree diagram. In contrast to the results
concerning hypothesis 1, it is easier to identify the basic set
in a unit square than in a tree diagram, for which the basic
set D is not transparent. The result concerning hypothesis 2.1.1
strengthens the assumption that a visualization’s hierarchy may
be a disadvantage when dealing with Bayesian situations. Thus, a
unit square was found to be significantly more effective compared
to a tree diagram in order to avoid the representative thinking
strategy (d1/h1), when the correct subset is identified. Also, a
double tree diagram is more effective in avoiding this strategy
than a tree diagram. We interpret this result considering the
property of the double-tree diagram to propose two possibilities
for identifying the correct basic set in the hierarchy of the tree,
that is, the nodes representing the frequencies of h1 and of d1 + d3,
whereas the tree diagram proposes only the node representing h1.

With hypothesis 3, we regarded the influence of the
Bayesian situation’s context that is given by the two scenarios
h1/(d1 + d3) < 1 and h1/(d1 + d3) > 1. The difference in the
Bayesian situations strongly impacts the amount of responses
showing the pre-Bayes strategy. Thus, whereas the pre-Bayes
strategy is of minor importance if h1/(d1 + d3) > 1, it is an
often used strategy if h1/(d1 + d3) < 1. This finding is apparent
for each of the four visualizations. Accordingly, research either
yielded the pre-Bayes strategy (Zhu and Gigerenzer, 2006), or not
(Bruckmaier et al., 2019).

The strategies described so far in literature (Table 1) are
mostly dependent on visualization. The most prominent strategy
is the correct Bayesian strategy that people used in between
37.3% (tree diagram) to 72.4% (2 × 2-table) of the cases.
Thus, visualization was again found to strongly impact people’s
performance in Bayesian situations. Nevertheless, there are some
studies that did not find a facilitating effect of visualization (e.g.,
icon arrays in Sirota et al., 2014; Euler-diagrams in Brase, 2009).
For this reason, and congruent with the research of Binder et al.
(2015) and Binder et al. (2020), we found that visualization
in combination with natural frequencies strongly impacted
people’s performance in Bayesian situations. We have analyzed
differences in people’s performance concerning visualization
before (Böcherer-Linder and Eichler, 2019). In this paper,
erroneous strategies are of particular importance. In this regard,
our findings replicate the results of Zhu and Gigerenzer (2006)
with respect to the existence of the main strategies (Table 1).
However, the work of Zhu and Gigerenzer (2006) is expanded
through our research, since the strategies are described as being
dependent on different visualizations. Further, we contribute to
the analysis of erroneous strategies by a differentiated focus
on the basic set D and the subset H ∩ D. In our results, the
most prominent erroneous strategy was the pre-Bayes strategy.
As outlined above, this strategy depends on the situation and
visualization. Particularly, a unit square and a 2 × 2-table are
more effective at avoiding the pre-Bayes strategy compared to
both tree diagrams. The second significant erroneous strategy is
the representative thinking strategy. The representative thinking
strategy is highly dependent on a visualization, and seems to be
triggered especially by a tree diagram and its hierarchy as outlined
in hypothesis 2.1.2.

The other systematic erroneous strategies are of less
importance if all visualizations are considered. However, for a
part of the visualizations, specific strategies are of importance.
For example, since it seems to be easy to identify the correct
subset (numerator) in a Bayesian situation when a unit square
is used (Table 7), to identify in addition the correct basic set
(denominator) seems to be a bigger challenge and yields a
considerable amount of joint occurrence strategy (d1/n) and
likelihood strategy (d1/d3).

Our results contribute to existing research on Bayesian
reasoning, particularly to research concerning people’s erroneous
strategies in Bayesian situations. Moreover, our results have
implications for mathematics education, specifically the teaching
and learning of conditional probabilities and Bayes’ formula.
Due to the relevance of these subjects for inferential judgements
in situations of uncertainty in real life and the relevance of these
subjects for learning probability in school, understanding how
to facilitate Bayesian reasoning and avoid erroneous strategies is
important. A striking result concerns a property of a tree diagram
compared to the three other visualizations that differ in graphical
transparency (unit square), numerical transparency (double tree
diagram), or graphical and numerical transparency (2× 2-table):
a tree diagram seems to trigger the identification of an erroneous
basic set and, in particular, an erroneous subset in a Bayesian
situation. This result is interesting, since the tree diagram is
one of the most common visualizations of Bayesian situations
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(e.g., Utts and Heckard, 2015). For this reason, favoring the
tree diagram as a visualization to improve Bayesian reasoning
may be questioned.

Further, our results can be used to improve trainings of
Bayesian reasoning that are based on a double-tree diagram
(Wassner, 2004) or a unit square (Talboy and Schneider,
2017). When using a double-tree diagram, a specific focus
must be put on identifying the correct subset H ∩ D, and
emphasizing the related node as representing the intersection
set H ∩ D that allows for the set inclusion (H ∩ D) ⊆ D.
When using a unit square, our results imply that a specific
focus must be put on identification of the correct basic
set, since most of the students found a correct strategy
based on this identification. We assume that a brief training
focusing on the mentioned aspects can result in a considerable
impact on the facilitating effect of a double-tree diagram
and a unit square.

A 2 × 2-table seems to appear as an optimal visualization
of a Bayesian situation. Although this statement is clearly
supported by the results of this study and is also implied
by other studies (Binder et al., 2015; Bruckmaier et al., 2019;
Böcherer-Linder and Eichler, 2019), this statement must be
interpreted carefully. Firstly, for the students in our study,
the 2 × 2-table was a very familiar visualization. With our
study design, we were not able to estimate the impact of
this fact. However, the results regarding the tree diagram
that was also very familiar to the students provided evidence
that familiarity is not as important for a facilitating effect as
other characteristics of a visualization. Furthermore, we follow
Bruckmaier et al. (2019), stating that a 2 × 2-table is restricted
to Bayesian situations that are given in a natural frequency
format. If a Bayesian situation is given in a probability format
with P (H) , P (D|H) and P

(
D|H̄

)
, the conditional probabilities

cannot be visualized by a 2 × 2-table. Thus, to draw a
2 × 2-table based on this information in the probability
format necessitates computing the information in a 2 × 2-
table. This is not necessary for the other visualizations, that
is, a tree diagram, a double-tree diagram, or a unit square.
For this reason, we assume that the facilitating effect of a
2 × 2-table is restricted to situations in which the statistical
information of a Bayesian situation is entirely given in a natural
frequency format.

Finally, an open question remains about the effect of
visualizations on people’s erroneous strategies when they have
been trained in using visualizations before. This research
may lead to further enhancement on the facilitating effect
of visualization and its impact on people’s strategies in
Bayesian situations.

CONCLUSION

We illustrated that people’s strategies in Bayesian situations
depend strongly on specific visualizations of the statistical
information in these situations. Different visualizations trigger
specific ways of identifying a basic set and related subset in
Bayesian situations. Although each of the visualizations in our
research, that is, a tree diagram, a unit square, a double-tree
diagram, and a 2 × 2-table were found to improve people’s
performance in Bayesian situations, a tree diagram triggers
significantly more erroneous strategies in comparison to the
other three visualizations. The differences may be explained
by a numerical transparency. In our research, the numerical
transparency is implied if the basic set of a Bayesian situation is
explicitly given by a field or a node. However, beyond the amount
of numerical information, making the nested-sets structure of a
Bayesian situation graphically transparent seems to help avoid
erroneous strategies. In our research, the nested-sets structure
of a Bayesian situation was in particular graphically transparent
when a subset could be clearly identified as an intersection set.
Our findings contribute to the debate about beneficial graphical
properties of visual representations of statistical information in
Bayesian situations, and serve as an empirical foundation in
mathematics education for designing interventions to improve
Bayesian reasoning.
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