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Domain-specific understanding of digitally represented graphs is necessary for
successful learning within and across domains in higher education. Two recent studies
conducted a cross-sectional analysis of graph understanding in different contexts
(physics and finance), task concepts, and question types among students of physics,
psychology, and economics. However, neither changes in graph processing nor
changes in test scores over the course of one semester have been sufficiently
researched so far. This eye-tracking replication study with a pretest–posttest design
examines and contrasts changes in physics and economics students’ understanding
of linear physics and finance graphs. It analyzes the relations between changes in
students’ gaze behavior regarding relevant graph areas, scores, and self-reported task-
related confidence. The results indicate domain-specific, context- and concept-related
differences in the development of graph understanding over the first semester, as well
as its successful transferability across the different contexts and concepts. Specifically,
we discovered a tendency of physics students to develop a task-independent
overconfidence in the graph understanding during the first semester.

Keywords: graph understanding, pretest–posttest, eye-tracking, dwell times, confidence rating,
university students

RESEARCH FOCUS AND OBJECTIVE

The ability to understand digitally represented graphs is a necessary prerequisite for (online)
learning in most disciplines in higher education1 (Bowen and Roth, 1998). In general, graphs
are used to simplify the presentation of (complex) concepts and to facilitate the exchange of
information between individuals (Curcio, 1987; Pinker, 1990; Freedman and Shah, 2002). Because

1In biology, for example, it is important to make developments (e.g., cell division) visible (Bergey et al., 2015; Kragten et al.,
2015); in mathematics and statistics, relationships between variables, their distributions and progressions can be graphically
visualized (Lichti and Roth, 2019).
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the graphical representation of information is increasingly
becoming more important than texts in the online information
landscape (Moghavvemi et al., 2018), the ability to interpret
graphs is considered a central facet of cross-domain generic
skills such as online reasoning (Wineburg et al., 2018),
media literacy (Shah and Hoeffner, 2002), data literacy
(Cowie and Cooper, 2017), and information problem-solving
(Brand-Gruwel et al., 2009).

Because graphs and other types of diagrams are an
instructional method for representing both domain-specific and
generic knowledge, they are the main focus in teaching, especially
at the beginning of university studies (Heublein, 2014; Laging and
Voßkamp, 2017). Usually, the graphs are embedded in text-based
instructions to aid the comprehension of textual descriptions and
to supplement these descriptions by providing the learner with
further visually structured information (Stern et al., 2003).

Line graphs, in particular, are frequently used in higher
education. For example, the relationships between distance and
speed in physics or between time and stock prices in finance
can both be illustrated with a line graph (Bowen and Roth,
1998; Benedict and Hoag, 2012; Susac et al., 2018; Becker
et al., 2020a,b; Hochberg et al., 2020; Klein et al., 2020).
More recently, a number of studies investigated and compared
university students’ understanding of graphs in mathematics,
physics, and other contexts using parallel (isomorphic) tasks
(Christensen and Thompson, 2012; Planinic et al., 2012, 2013;
Wemyss and van Kampen, 2013; Bollen et al., 2016; Ivanjek
et al., 2016, 2017). These studies have shown that parallel tasks
with an added context (physics or other context) were more
difficult to solve than the corresponding mathematics problems
and that students who successfully solve problems in (purely)
mathematical contexts often fail to solve corresponding problems
in physics or other contexts. Other studies have discovered that
students often struggle to interpret line graphs or solve problems
based on line graphs (Canham and Hegarty, 2010; Kragten
et al., 2015; Miller et al., 2016). Students do not succeed in
transforming data into line graphs (Bowen and Roth, 1998); they
do not spend sufficient time trying to understand the depicted
concepts (Miller et al., 2016) or have difficulties comprehending
the underlying concept.

Although the major importance of being able to correctly
interpret visual representations and graphs within and across
domains (Beichner, 1994; Stern et al., 2003; Planinic et al., 2013),
which must be distinguished from the ability to understand
textual representations (Mayer, 2009), is widely known and
recognized, research on the ability of students in higher education
to solve problems with digitally represented graphs combined
with results on how students extract information from graphs
within and across domains is still scarce. In particular, there are
only very few studies on the development of students’ graph
understanding over a degree course.

In this paper, we address this research deficit in a post-
replication study by following up on two existing studies by Susac
et al. (2018) and of Klein et al. (2019). Both studies investigated
students’ allocation of visual attention, i.e., how students extract
information from graphs, during problem-solving in relation to
their scores. In our study, we extend this approach by including

a comparison of pre- and post-test results. For this purpose, we
use the same graph tasks from the two domains (physics and
economics) that were chosen in the two reference studies. To gain
initial insights about a change in students’ graph comprehension
within and across domains, we also retest a subset of the same
students who previously participated in Klein et al.’s study (2019)
at the end of their first semester.

To achieve a higher degree of (external) validity and
generalizability, the replication of a study requires a
comprehensive presentation of the control variables and
can expand the original study in some aspects (Schmidt, 2009).
The study presented here, in addition to a replicating previous
research, was expanded through the addition of the second
measurement point. As learning with graph tasks, especially
in first semester lectures, is an integral part of the curriculum
and instruction in both domains examined here (e.g., Jensen,
2011), more in-depth knowledge and skills can be acquired by
attending such lectures, and a change in graph understanding
in these two domains can be expected. Thus, in this post-
replication study, changes in students’ understanding of graphs
are investigated within and across the two domains physics
and economics. Moreover, previous research indicates that
while students’ understanding of graphs can improve after a
targeted intervention, students did not improve in transferring
this ability to different task contexts (e.g., Klein et al., 2015).
Therefore, in this study, we investigate whether eye movements
are indicative of increases in graph understanding and potential
weaknesses in transferring graph understanding across different
domains and contexts.

Based on these studies, we developed the following research
questions (RQ) for this article, which focus on the theoretically
expected (i) time effects (measurements t1 and t2), (ii) domain
effects (physics and economics), (iii) (task) context effects, and
possible (vi) interaction effects:

• RQ1: To what extent does the ability of students from
both domains to solve line-graph problems in physics
and finance contexts change over the course of the first
semester?

• RQ2: Are the confidence ratings of graph task solutions in
physics and finance contexts of students from both domains
higher at the end of the semester, and how do they change
with respect to correct and incorrect responses?

• RQ3: How do the dwell times on specific parts of graph
tasks in physics and finance contexts of students from both
domains change between the beginning and the end of
the semester?

In the following, the two studies by Susac et al. (2018) and
Klein et al. (2019) that this replication study is based on are
described in detail. Next, we expand the focus on the two domains
examined and theoretically ground the additional research focus
on the development of the students’ graph understanding. The
hypotheses for this study are formulated based on the defined
conceptual and methodological frameworks. These, in turn, are
based on the method of eye-tracking (ET).
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BACKGROUND OF THE
POST-REPLICATION STUDY

Cross-Sectional Studies by Susac et al.
(2018) and Klein et al. (2019)
In a recent study in Croatia (Susac et al., 2018) and
a German replication study (Klein et al., 2019), students’
graph understanding in physical and economic tasks was
experimentally investigated for the first time. In a 2 × 2 × 2
study design, permuted systematically according to three
characteristics, the graphical concept (graph “slope” vs. “area”
under the curve), the type of question (quantitative vs.
qualitative), and the domain-specific context (physics vs. finance)
were differentiated into four isomorphic task pairs (eight tasks
in total; Klein et al., 2019; Susac et al., 2018). Comparing the
students from two different domains (in Susac et al., students of
physics and psychology responding to graph tasks from physics
and finance; in Klein et al., students of physics and economics
responding to graph tasks from physics and finance), both studies
confirm the differences between the two domains; for instance,
physics students spend a longer period of time on unknown axis
tick labels and analyzing the curve, whereas within the domain of
economics, students there were no significant differences (Susac
et al., 2018; Klein et al., 2019).

In the cross-sectional study by Susac et al. (2018), students
often found it more difficult to make calculations based on the
graph concept “area” (e.g., using an integral) than to determine
the “slope” of a graph. This result confirms existing findings
and theoretical assumptions (Cohn et al., 2001; Benedict and
Hoag, 2012). Klein et al. (2019) found that “area” tasks required
more time and were therefore cognitively more demanding than
“slope” tasks for both domains (physics and economics).

With regard to the transfer of task solutions across domains,
both studies found that physics students, who are the better task
solvers in one task context (physics), also performed better in
another context (finance). For instance, physics students achieved
similarly good results in graph understanding in both examined
domains, however, they solved the tasks from the domain
of physics more quickly than the tasks from the domain of
economics. Psychology students generally scored comparatively
lower in graph understanding (Susac et al., 2018). Klein et al.
(2019) found similar differences.

Comparing tasks that require calculations (quantitative) and
those that require only verbal interpretation (qualitative), both
studies demonstrated that quantitative tasks are generally more
challenging as the students achieved lower scores and at the same
time took longer to complete these tasks (Susac et al., 2018;
Klein et al., 2019). This finding is in line with existing research,
indicating that students have specific difficulties when solving
tasks with numerical or mathematical requirements (Planinic
et al., 2012; Shavelson et al., 2019).

In addition to an analysis of task scores and retention
times, Klein et al. (2019) also collected the students’ self-
assessments of their task solutions and compared them with
the actual scores. The metacognitive assessment provided
further significant insights into the students’ expertise, in

particular between high- and low-performing students. In line
with this existing research, Klein et al. (2019) found better self-
assessments among high-performing students (Brückner and
Zlatkin-Troitschanskaia, 2018) and a systematic overestimation
of their own abilities among low-performing students (Kruger
and Dunning, 1999). The physics students provided correct
answers with higher confidence ratings in comparison to
instances when they gave incorrect answers, whereas economics
students who achieved lower scores also gave lower confidence
ratings with regard to their own performance.

For the postreplication study, the following assumptions can
be summarized:

– There are significant differences between students from the
two domains when it comes to solving graph problems
from familiar versus unfamiliar contexts.

– Students with high test scores assess the correctness
of their solutions more precisely than students with
lower test scores.

– Graph tasks with a focus on the “area under the curve”
or with quantitative requirements are more difficult for
students from both domains than tasks on the concept
of “slope” or without mathematical requirements. This
applies to both task contexts (physics and finance).

Because the data of the study by Susac et al. (2018) and
the replication study (Klein et al., 2019) only originated from
assessment at one point in time, changes that must be expected
over the course of a semester cannot be described. As longitudinal
studies indicate a significant change in knowledge during the
first semester (Happ et al., 2016; Chen et al., 2020; Schlax et al.,
2020), our postreplication study was expanded to include a so far
underresearched developmental focus.

Development of Graph Understanding
Through the systematic use of learning tasks comprising graph
representations in different domains, especially at the beginning
of studies, a positive development of graph understanding can be
assumed because the acquisition of domain-specific knowledge
is expected to support students in solving typical domain-
specific problems related to graphs (e.g., McDermott et al.,
1987). However, there are currently only few studies with a
pretest–posttest assessment design focusing on the changes in
graph understanding and how to foster this understanding.
Digital learning environments, learning from examples, and
using instructional material showed an impact on students’ graph
comprehension (Bell and Janvier, 1981; Bergey et al., 2015; Becker
et al., 2020a,b; Hochberg et al., 2020). For example, the impact of
instruction on graph construction conventions (e.g., on legends
and labels) on students’ graph understanding was confirmed in
a control group design (Miller et al., 2016). By systematically
training the (prospective) teachers as well as the students over
several weeks, graph understanding in biology was promoted
(Cromley et al., 2013).

In supplementing the instruction of graph use with material
for understanding multiple representations (e.g., how data can
be visualized in a graph or how information for graph use
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can be meaningfully extracted from a text), multiple ways to
promote graph understanding over a period of 2 months were
identified (Bergey et al., 2015). In a study with an augmented
reality intervention over a period of 3 weeks, students of the
intervention group showed an improvement in understanding
that exceeded the increase in understanding of a control group
with no such intervention (Jerry and Aaron, 2010). In some
studies, a positive relationship between textual perception and
the understanding of visual representations of domain-related
concepts was found only among students with poor spatial
abilities (e.g., Bartholomé and Bromme, 2009). Overall, a positive,
instructionally initiated development of graph comprehension
was found for several educational levels, types of instruction, and
domains (Miller et al., 2016).

The development of graph understanding is often considered
a generic skill that is also transferable to graphs in other
contexts and domains (Miller et al., 2016). So far, however,
recent research indicates learner difficulties in transferring graph
understanding across problems and domains (Bergey et al.,
2015; Cromley et al., 2013). For instance, one pretest–posttest
study investigated to what extent university students succeed
in applying mathematical functions for the “slope” of a curve
to the context of physics (Woolnough, 2000). The posttest
after 1 year showed an improved calculation and interpretation
of the gradient, as well as a frequent use of the concept of
proportionality, but the students had difficulties with the transfer
from model to real world. Bergey et al. (2015) and Cromley et al.
(2013) showed that training based on graph uses and learning
with multiple representations can improve the understanding of
graphs in biology, but the students did not succeed in transferring
their skills to graphs in geoscience.

Although the ability to understand graphs is necessary for
the development of domain-specific knowledge and conceptual
change, especially in the domains of physics and economics2,
so far little research has been conducted on the development of
graph understanding in these two domains. Whereas in physics,
and especially in physics education, there are many studies on
graph understanding in kinematics (McDermott et al., 1987;
Beichner, 1994; Planinic et al., 2013; Wemyss and van Kampen,
2013; Klein et al., 2020), in economics, no research field has
yet been established that explicitly analyzes graph understanding
(Cohn et al., 2001; Stern et al., 2003; Benedict and Hoag, 2012).
In particular, it is yet underresearched to what extent a transfer
between more distant disciplines, such as between natural and
social science disciplines, can succeed.

While Klein et al. (2019) showed the connection between the
self-assessment of solutions and the correct answers to these
graph tasks, there are hardly any studies that investigate this
relationship over time. However, prior, longitudinal research
has identified correlations of this kind in studies using general
knowledge tests (without graphs; Cordova et al., 2014; Brückner

2In economics, graphs are systematically used in learning situations to explain
complex phenomena (e.g., economic developments, inflation, gradients) and
also in (non)standardized examinations. Graphs are also an integral part of
methodological lessons focusing on modeling economic content and its graphical
representation, especially in the first semesters of an economics degree course (e.g.,
Jensen, 2011).

and Zlatkin-Troitschanskaia, 2018). Moreover, the Dunning–
Kruger effect (Kruger and Dunning, 1999) suggests that learners
with a low level of knowledge struggle to rate their own
performance accurately in self-assessments. Based on these
results, it can be assumed that an increase in (conceptual)
knowledge and (graph) understanding is accompanied by a more
precise self-assessment of knowledge.

In summary, based on research questions 1 and 2, the
following hypotheses (H) can be formulated and will be examined
in this study with regard to the changes in graph understanding:

• H1: Physics and economics students solve graph tasks
related to the subject they are enrolled in more successfully
at the second measurement point than at the first
measurement point.

• H2: Physics and economics students rate their confidence in
their solution of tasks related to the subject they are enrolled
in more accurately at the second measurement point than at
the first measurement point.

Eye-Tracking and Graph Understanding
In recent years, ET is increasingly used to study visual
representations in general (e.g., Küchemann et al., 2020b)
and graph understanding in particular (Madsen et al., 2012;
Planinic et al., 2013; Klein et al., 2017, 2020) as it offers
many advantages, especially for uncovering the systematics
underlying the perception of different graphical representations
(Küchemann et al., 2020a) and can also supplement the findings
on changes in test scores and self-assessments with evidence
obtained from changes in eye movements. This method is also
used in the two studies by Susac et al. (2018) and Klein et al.
(2019) referenced here.

According to the Eye-Mind-Hypothesis (Just and Carpenter,
1980), there is a strong spatiotemporal and causal connection
between visual attention and the associated cognitive processes.
The visual representation of graphs includes, for instance, axes
and labels, which can be arranged in different ways and,
depending on the intensity and duration of the observation,
can also impact understanding of the graph. For example, a
comparatively longer fixation time on relevant areas of a graph
was mainly observed in students who solved a task correctly
(Madsen et al., 2012; Susac et al., 2018; Klein et al., 2019).
Regarding the dwell time for processing one task, students’
previous experience and familiarity with tasks of this kind ease
their comprehension; thus, it can be expected that such effects
also develop over time and that students need less time overall
for solving a task. The transfer between contexts can also be
made visible by analyzing the corresponding eye movements
on components of the graph (Susac et al., 2018; Klein et al.,
2019). However, to date, there is no ET study that analyzes
changes in students’ problem-solving of digitally presented
graphs across two domains using pretest–posttest measurements
at the beginning and end of a semester.

With regard to the additional ET data from the second
measurement point, the factor “time” will be integrated into the
previous models by Susac et al. (2018) and Klein et al. (2019)
to analyze the following hypothesis with regard to the expected
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developmental effects within and across the two domains and
contexts on the relationship between dwell times and test scores:

• H3: The dwell time on the tasks and the individual graph
components [areas of interest (AOIs)] is lower at the second
measurement point for students from both domains and in
both contexts.

MATERIALS AND METHODS

Sample
As a postreplication study, we based the present article on
the sample of the replication study by Klein et al. (2019) and
carried out a second measurement at the end of the winter
semester 2018/19. The first measurement (t1) took place during
the first weeks of the students’ first semester. The students
were tested again at the end of the semester (t2). During the
semester, they attended courses and learned about graphs in
their respective domains. At t2, the same graph tasks were
presented to the students. Study participation was voluntary and
was compensated with 20€.

In total, 41 first-year students (matched sample) from the
initial study of Klein et al. (2019) participated in the experiment
again (Table 1): 20 physics students and 21 economics students.
The average age in the sample was 20.27 years, with physics
students being slightly younger (19.95 years) than economics
students (20.57 years). The grade for higher education entrance
qualification also differs systematically between the physics [P]
and the economics students [E] [(t = −2.784, p = 0.009,
d = 0.972); mean (SD) P = 1.79 (0.478); mean (SD) E = 2.25
(0.469)]; 89% of the physics students took an advanced physics
course in upper secondary education, whereas only 16% of the
economics students attended advanced courses. For an extended
description of the sample, see Klein et al. (2019).

Tasks
To assess students’ graph understanding within and across
domains, graphs that are regularly used in both domains and
are important for learning domain-specific concepts are required.
Linear graphs are used extensively in both physics (Klein et al.,
2019) and economics (Benedict and Hoag, 2012) and are clearly
distinguishable from other forms of graphical representation
(e.g., pie charts, Venn diagrams) (Kosslyn, 1999). Although other

graphs are also used in both domains, our study focuses on one
single type of graph to avoid distortions caused by the graph type
(Strobel et al., 2018).

The study presented here used four isomorphic pairs of line
graph tasks (4 from physics and 4 from economics) as they were
used by Susac et al. (2018) and Klein et al. (2019) (Figure 1).
A 2 × 2 × 2 (context × question × concept) design was applied,
in which each task belongs either to the domain of physics
or economics (context), contains either the graph concept of
“slope” or “area” (concept), and requires either a mathematical
calculation or purely verbal reasoning from the participants (type
of question) (for an example, see Figure 1).

All tasks are presented in a closed-ended format and comprise
a question of one or two sentences, a graph, and one correct
and up to four incorrect response options. Each graph task also
comprises one or two linear curves and other common elements
like x-axis and y-axis.

Apparatus and ET Analysis
To perform the ET study, the graph comprehension tasks
were presented to the students on a 22-inch computer screen
(1,920 × 1,080 pixels). A Tobii Pro X3-120 (120 Hz), which is
positioned below the monitor and is not worn by the test taker,
was used to record the ET data. The visual angle resolution was
below 0.4◦. The dwell time (eye movements below an acceleration
of 8,500◦/s2 and a velocity below 30◦/s) was assessed and used
to measure the students’ focus on selected AOIs in the tasks
(Figure 2). The AOIs included the task question, the graph itself,
axes, and the response options.

After a 9-point calibration process, the eight tasks were
presented to the students in a random order, and ensuring that
two subsequent tasks were never equal in concept and type of
question to avoid students realizing that some tasks only varied in
context and realizing that they just need to apply the same task-
solving strategy. The order in which the tasks were administered
to the students also ensured that isomorphic tasks were never
presented one directly after the other. After viewing a task, the
test takers had to click and choose one answer from the presented
response options using a mouse. Then they had to rate how
confident they were that their chosen response option was correct
on a six-point Likert scale ranging from very high confidence
to very low confidence. By pressing the spacebar, the test takers
could proceed to the next task. After the test, each task was

TABLE 1 | Comparison of the postreplication study with the original study by Susac et al. (2018) and the replication study from Klein et al. (2019).

This study Klein et al., 2019 Susac et al., 2018

Participants 20 physics students (first year), 21 economics
students at t1 and t2

27 physics students (first year), 40 economics
students

45 physics students (teacher program, fourth
year), 45 psychology students

Materials Four isomorphic pairs of items about graph slope and area under a curve in the context of physics and economics (finance)

Apparatus Tobii X3–120 Hz SMI RED500 Hz

Additional data Confidence scores Student strategies (questionnaire)

Coding scheme Only direct response (correct or incorrect) Response and explanation (correction)

Data analysis ANOVAs to determine the effects of question type, concepts, group, and context on the dependent variables
Area of interest (AOIs) question, graph, multiple choice, axis labels, axis tick labels

Analytic focus Analysis of student change between t1 and t2 Saccadic direction, attention distribution Analysis of student strategies
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FIGURE 1 | Continued
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FIGURE 1 | Isomorphic task examples: (A) quantitative “question type” and the graph concept “area” for economics “context”; (B) quantitative “question type” and
the graph concept “area” for physics “context”; (C) quantitative “question type” and the graph concept “slope” for physics “context” (the “qualitative” concept slope
for both contexts can be seen in Klein et al., 2019).

coded with 1 if a student chose the correct response (attractor)
and 0 if a student chose one of the distractors (maximum score:
8 points). The confidence rating and the task score sum were
linearly transformed into a scale reaching from 0 to 100, with 0
indicating low scores and low confidence and 100 indicating high
scores and high confidence.

After completion of all graph tasks (at t1 and t2),
paper-and-pencil questionnaires were administered to collect
sociodemographic data (e.g., gender, school education, school
leaving grade; for details, see Klein et al., 2019).

Statistical Approaches
To answer the research questions, several repeated-measures
analyses of variance (ANOVAs) were performed, which were
also used by Susac et al. (2018) and Klein et al. (2019). This
allowed us to systematically explore the relationships between
task characteristics (context, concept and type of questions) and
examined domains (physics vs. economics) on the basis of the
final test scores and to make the comparison of the findings
between the three studies transparent. The measurement point
(t1: beginning of first semester or t2: end of first semester),
the context, the concept, and the question were modeled as
within-subject factors, and the domain (physics vs. economics)
as intermediate subject factor.

To test the null hypothesis that variance is equal across
domains and measurement points, Levene test was used, and

the assumption of homogeneity of variance was met for every
ANOVA. Analogous to Susac et al. (2018) and Klein et al.
(2019), correlations were calculated using the Bravais–Pearson
correlation coefficient.

As with the test scores analysis, repeated-measures ANOVAs
were performed to analyze the dwell times, taking into account
the task characteristics and domains. In addition to the total
dwell time during task processing, the dwell times on task-
relevant AOIs and on the task questions were analyzed. The total
processing time can vary at the second measurement because the
test takers are familiar with the type of tasks, recognition effects
may occur, and they have attended domain-specific classes in
which they learned about graphs in their specific contexts.

RESULTS

Changes in Students’ Test Scores Within
and Across Domains (H1)
The mean test score of the pretest–posttest sample was
(60% ± 27%) in t1 and (65% ± 25%) in t2, with a change
with a small effect size (Cohen, 1988) [t(40) = 1.366, p = 0.18,
d = 0.21]. A comparison of the two domains shows that the
physics students achieved better results at both measurement
points [t1: (70% ± 27%), t2: (78% ± 18%)] than the economics
students [t1: (49% ± 24%), t2: (52% ± 23%)]. They also
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FIGURE 2 | Areas of interest (AOIs) of a graph task (adapted from Klein et al., 2019, p. 6).

show a comparatively higher increase of about 10% in the test
score than the economics students with about 6%. An ANOVA
with repeated measurements (t1 and t2) as inner-subject factor
and the domain (physics students and economics students) as
intermediate subject factor showed that the mean test score
difference between the domains is also significantly higher with
a large effect size [F(1, 39) = 13.355; p = 0.001; η2

p = 0.255].
However, no significant differences in the increase from t1 to t2
between the two domains, which are mapped by the interaction
term (time × domain), can be identified [F(1, 39) = 0.293
p = 0.592; η2

p = 0.007]. Thus, students from both domains
showed a similar increase in the overall test score.

Next, the changes in the test score between the two
measurements (t1 and t2) were examined with regard to the
question type (qualitative vs. quantitative) and the concept (graph
“slope” vs. “area” under the curve). A two-way repeated-measures
ANOVA was conducted for each domain. For physics students,
a statistically significant main effect was found only for the type
of question [F(1, 19) = 14.968, p = 0.001; η2

p = 0.441] and
no effect for time [F(1, 19) = 1.667, p = 0.212, η2

p = 0.081]
or concept [F(1, 19) = 3.449, p = 0.079; η2

p = 0.154]. The
interaction effects were not significant either. For economics
students, a significant general time effect was not evident [F(1,
20) = 0.373, p = 0.548; η2

p = 0.018], but significant effects

for question [F(1, 20) = 39.174, p = 0.000; η2
p = 0.662],

concept [F(1, 20) = 21.774, p = 0.000; η2
p = 0.521], and the

time × concept interaction [F(1, 20) = 14.440, p = 0.001;
η2

p = 0.419] were found.
Similar to Klein et al. (2019), both physics and economics

students scored higher on qualitative than on quantitative tasks.
Economics students generally scored higher on tasks that cover
the concept of “slope” than on tasks on the concept of “area.”
Furthermore, for economics students, there are differences in
the changes of the test scores between the two concepts.
Economics students’ scores increase on items of “slope” [t1:
57.14%; t2: 71.43%] but decrease on “area” tasks [t1: 41.66%; t2:
33.33%]. Other interaction effects were not significant. For the
economics students, the difference between scores on qualitative
and quantitative tasks was larger for questions about “slope” from
t1 to t2 (Figure 3). “Slope” tasks with quantitative requirements
show the largest increase in the scores of economics students.

For physics students, the biggest change was in the test scores
of qualitative graphs on “slope” from t1 to t2. In t2, all physics
students solved these items correctly.

To compare students from both domains across both contexts,
we applied a repeated-measures ANOVA with time and context
(physics vs. finance) as a within-subject factor and with the
domain (physics vs. economics) as a between-subject factor.
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FIGURE 3 | Average scores of (A) physics students and (B) economics students on the qualitative and quantitative questions about graph slope and area under a
graph at t1 and t2. The error bars represent 1 standard error of the mean (SEM). The dashed lines represent the mean and error bars of the total sample of Klein
et al. (2019).

FIGURE 4 | Average scores of physics and economics students in the contexts of physics and finance on the qualitative and quantitative tasks about graph slope
and area under a graph at t1 and t2. The error bars represent 1 standard error of the mean (SEM). The dashed lines represent the mean and error bars of the total
sample of Klein et al. (2019).

The analysis was performed for each pair of isomorphic tasks
(Table 2). Similar to Klein et al. (2019), for qualitative tasks about
“slope,” significant differences for time but no other main or
interaction effects were found. For quantitative tasks on “slope,” a
significant main effect was found only for task context, indicating
that across both measurements (t1 and t2) and domains, students
generally scored higher on tasks with a physics context than tasks
with a finance context. Compared to Klein et al. (2019), students
from both domains still solved physics tasks better than finance
tasks, although economics students’ scores on quantitative tasks
on “slope” in their own domain increased significantly [t(20),
p = 0.017, d = 0.567] (Table 2).

Compared to Klein et al. (2019), physics students had higher
scores at both t1 and t2 on qualitative tasks on the “area under

the curve” than economics students. The economics students’
scores on “area” tasks differ from their scores on all other
types of task. From t1 to t2, their test scores decreased in the
physics context and increased slightly in the finance context,
and both for qualitative and quantitative tasks (Figure 4). Thus,
significant domain effects for both tasks were found, but no
time × domain × context effect occurred (Table 2).

Overall, physics students scored significantly better on physics
tasks than on finance tasks at t1 [t(19) = 2.131, p = 0.046,
d = 0.466] and t2 [t(19) = 3.040, p = 0.007, d = 0.68]. The
effects for economics students were not significant, although
they increased their score on finance tasks (t1: 45% ± 21%,
t2: 52% ± 28%) more than their score on physics tasks (t1:
54% ± 30%, t2: 52% ± 25%).
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TABLE 2 | Results of the two-way ANOVAs conducted on the students’ scores with the time (t1 vs. t2) and the context (physics vs. finance) as within-subject factors and
with the domain (physics students vs. economics) as a between-subject factor.

Time Domain Context

F p η2
p F p η2

p F p η2
p

“Slope” qualitative 5.075 0.030 0.115 1.839 0.183 0.045 0.384 0.539 0.010

“Slope” quantitative 2.518 0.121 0.061 3.592 0.065 0.084 4.393 0.043 0.101

“Area” qualitative 0.955 0.334 0.024 15.678 0.000 0.287 14.158 0.001 0.266

“Area” quantitative 0.133 0.717 0.003 9.030 0.005 0.188 0.556 0.460 0.014

Time × domain Time × context Time × domain × context

F p η2
p F p η2

p F p η2
p

“Slope” qualitative 0.896 0.350 0.022 0.274 0.604 0.007 0.000 0.990 0.000

“Slope” quantitative 2.518 0.121 0.061 1.448 0.236 0.036 1.448 0.236 0.036

“Area” qualitative 1.938 0.172 0.047 0.049 0.826 0.001 0.503 0.482 0.013

“Area” quantitative 0.495 0.486 0.013 0.001 0.971 0.000 2.266 0.140 0.055

Domain × context

F p η2
p

“Slope” qualitative 0.000 0.988 0.000

“Slope” quantitative 0.275 0.603 0.007

“Area” qualitative 0.337 0.565 0.009

“Area” quantitative 8.036 0.007 0.171

The specification F(1.39) applies to all F values of the following analyses of variance.

Changes in Students’ Confidence
Ratings Within and Across Domains (H2)
The mean confidence rating and standard deviation were [t1:
(61% ± 25%), t2: (67% ± 20%)]. The physics students showed
a confidence level of [t1: (65% ± 29%), t2: (73% ± 22%)] and
the economics students of [t1: (57% ± 21%), t2: (61% ± 17%)],
with no significant differences between the two domains in t1
and t2 (p > 0.05). For the physics students, the total test score
and the mean confidence level correlated highly in t1, but did
not significantly correlate in t2 [t1: r(20) = 0.621, p < 0.01; t2:
r(20) = 0.173, p > 0.05], whereas for the economics students,
there was no significant correlation at either measurement [t1:
r(21) = 0.198, p > 0.05; t2: r(21) = −0.297, p > 0.05].

To further explore students’ confidence ratings, the same
analysis procedure was applied as for the test scores. Two-way
ANOVAs revealed no significant main effects for the factors time,
concept, and type of question for physics students. However,
for economics students, the factor concept was significant
[F(1, 20) = 5.906, p < 0.05, η2

p = 0.228]. No significant
interaction effects between time, concept, and type of question
were revealed for either domain. For both question types about
graph “slope,” students’ confidence ratings increased for both
domains from t1 to t2, while the increase was more pronounced
in physics students. The same applies to both question types
about “area” graphs, even though the increase in confidence
ratings was weaker for both domains compared to “slope” graphs.
For both domains, confidence ratings were higher for “slope”
graphs at t1 and t2 compared to “area” graphs (Figure 5).

To analyze the impact of context and time on students’
confidence ratings, a repeated-measures ANOVA was run with
context and time as the within-subject factors and domain as
the between-subject factor for each pair of isomorphic tasks. The
results are shown in Table 3.

For qualitative tasks of “slope” and “area” under a curve,
significant main effects for time were found. The students’
confidence increased from t1 to t2 for all qualitative tasks,
but not for quantitative tasks. Furthermore, a significant
time × domain × context effect was identified for qualitative
tasks on “area” under a curve, showing that physics students’
confidence increased over time for each context, whereas
economics students’ confidence increased over time for finance
tasks and decreased over time for physics tasks. All other main
and interaction effects were not significant (Table 3).

To investigate the accuracy of students’ confidence, the ratings
for correct and incorrect responses at each measurement (t1
and t2) were considered. Because of this split of the data across
measurements and test scores, and the lack of paired variables
(there is only one confidence rating for either a correct or
an incorrect response), a repeated-measures analysis was not
possible. Hence, all tasks on the “slope” concept and on the
“area” concept were aggregated, respectively (Figure 6). For the
“slope” concept, the physics students were significantly more
confident when responding correctly than when responding
incorrectly at t1 but not at t2 [t1: t(78) = 2.708, p = 0.008; t2:
t(78) = 1.559, p = 0.123]. In contrast, the economics students’
confidence was not significantly different between correct and
incorrect responses [t1: t(82) = 0.362, p = 0.718; t2: t(82) = 1.369,
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FIGURE 5 | Average confidence ratings of physics students and economics students on the qualitative and quantitative tasks about graph slope and area under a
graph at t1 and t2. The error bars represent 1 standard error of the mean (SEM). The dashed lines represent the mean and error bars of the total sample of Klein
et al. (2019).

TABLE 3 | Results of the two-way ANOVAs conducted on the students’ confidence ratings with the time (t1 vs. t2) and the context (physics vs. finance) as within-subject
factors and with the domain (physics students vs. economics) as a between-subject factor.

Time Domain Context

F p η2
p F p η2

p F p η2
p

“Slope” qualitative 4.997 0.031 0.114 0.395 0.534 0.010 0.421 0.520 0.011

“Slope” quantitative 1.191 0.282 0.030 2.652 0.111 0.064 0.211 0.649 0.005

“Area” qualitative 4.914 0.033 0.112 1.708 0.199 0.042 1.299 0.261 0.032

“Area” quantitative 0.565 0.457 0.014 3.399 0.073 0.080 0.707 0.406 0.018

Time × domain Time × context Time × domain × context

F p η2
p F p η2

p F p η2
p

“Slope” qualitative 0.249 0.620 0.006 0.019 0.890 0.000 1.062 0.309 0.027

“Slope” quantitative 0.504 0.482 0.013 1.217 0.277 0.030 0.754 0.390 0.019

“Area” qualitative 0.916 0.344 0.023 3.240 0.080 0.077 12.378 0.001 0.241

“Area” quantitative 0.081 0.777 0.002 1.083 0.305 0.027 0.136 0.715 0.003

Domain × context

F p η2
p

“Slope” qualitative 0.714 0.403 0.018

“Slope” quantitative 1.675 0.203 0.041

“Area” qualitative 3.046 0.089 0.072

“Area” quantitative 0.014 0.905 0.000

The specification F(1.39) applies to all F values of the following analyses of variance.

FIGURE 6 | Average confidence ratings of physics and economics students related to correct and incorrect responses on the slope tasks and on the area tasks at
t1 and t2. The error bars represent 1 standard error of the mean (SEM). The dashed lines represent the mean and error bars of the total sample of Klein et al. (2019).
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p = 0.175]. For the “area” concept, the results were similar for
physics students; whereas they responded correctly with higher
confidence at t1, there was no significant difference at t2 [t1:
t(78) = 2.915, p = 0.005; t2: t(78) = 1.174, p = 0.275]. For
economics students, the results were different (Figure 6): At t1,
they reported a higher confidence in their incorrect responses
than their correct responses, although this difference was not
significant. At t2, this difference increased, indicating that their
confidence was significantly higher for incorrect responses than
for correct responses [t2: t(82) = −2.810, p = 0.006]. Although
there is an increase of overall confidence at t2, the self-assessment
of students in both domains was less accurate at t2 than at t1.

Changes in Students’ Dwell Times Within
and Across Domains (H3)
Total Dwell Time
The analysis of students’ eye movements is based on their total
dwell time on the tasks before responding and then rating their
confidence. The physics students had an average total dwell time
of 412 ± 86 s at t1 and 333 ± 75 s at t2. The economics
students needed 461 ± 172 s at t1 and 346 ± 125 s at t2 to
respond to all tasks.

To compare students’ total dwell time on qualitative and
quantitative tasks about graph “slope” and the “area” under
a curve, an ANOVA was conducted separately for both
domains including time, question, and concept as between
factors. For physics students, significant main effects for time
[F(1, 19) = 13.838; p = 0.001; η2

p = 0.421] and concept
[F(1, 19) = 11.291; p = 0.003; η2

p = 0.373] were found. The factor
question type was not significant, but there was a significant
interaction effect for question × concept [F(1, 19) = 11.244;
p = 0.003; η2

p = 0.372]. Physics students spent less time on
tasks at t2 and spent more time viewing the “area” tasks than
the “slope” tasks (Figure 7). The significant interaction effect
is similar to Klein et al. (2019), indicating that the question
had the opposite effect. Physics students paid more attention to
quantitative “slope” tasks and to qualitative “area” tasks.

The effects were similar for economics students. While there
were significant main effects for time [F(1, 20) = 13.257;
p = 0.001; η2

p = 0.436] and concept [F(1, 20) = 9.199; p = 0.007;

η2
p = 0.315], the factor question type was not significant.

There was a significant interaction effect for question × concept
[F(1, 20) = 13.257; p = 0.002; η2

p = 0.399]. Economics students
also spent less time on tasks at t2 and spent more time viewing
the “area” tasks than the “slope” tasks. The significant interaction
effect also persists for the economics students. Overall, we
found no significant differences between the students’ dwell
times at t1 and t2.

To further explore students’ total dwell times, the same
analysis was applied as for the test scores and the confidence
ratings. The results of a two-way mixed-design ANOVA with
the between-subject factor domain and the within-subject factor
context for each pair of isomorphic tasks are shown in Table 4.
The analysis revealed no main effect of context or domain.
The interaction domain × concept, however, was significant,
indicating that physics students needed less time to respond
to tasks from the physics context, whereas economics students
needed less time to respond to tasks from the finance context.
This finding is similar to Klein et al. (2019).

Regarding differences of total dwell time between t1 and
t2, significant differences were found for almost each pair of
isomorphic tasks. Only the total dwell time in quantitative “area”
tasks was slightly below the level of significance (p > 0.05).
Overall, students needed less time at t2, but as the effect
sizes indicate, there were fewer differences between the two
measurements for quantitative tasks.

Dwell Time on Different Areas of Interest (AOI)
In the sample of Klein et al. (2019), no differences were found
between physics students and economics students in the defined
AOIs (question, graph, and multiple choice) at t1. Compared
to Klein et al. (2019), the findings presented here did not differ
significantly. Students’ dwell times on the AOIs (question, graph,
and multiple choice) were compared between the domains.
Six Bonferroni-adjusted t tests showed no statistical difference
between the dwell time of physics and economics students on
the AOIs question [t1: t(39) = 0.388, p = 0.700; t2: t(39) = 1.530,
p = 0.134], graph [t1: t(39) = −1.262, p = 0.214; t2: t(39) = −0.723,
p = 0.474], and multiple choice [t1: t(39) = 0.012, p = 0.990;
t2: t(39) = 0.321 p = 0.750]. There was a similar drop of total
dwell time from t1 to t2 for students from both domains. In the

FIGURE 7 | Average total dwell time of physics students and economics students on the qualitative and quantitative tasks about graph slope and area under a
graph at t1 and t2. The error bars represent 1 standard error of the mean (SEM). The dashed lines represent the mean and error bars of the total sample of Klein
et al. (2019).
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TABLE 4 | Results of the two-way ANOVAs conducted on the students’ dwell times with the time (t1 vs. t2) and the context (physics vs. finance) as within-subject
factors and with the domain (physics students vs. economics) as a between-subject factor.

Time Domain Context

F p η2
p F p η2

p F p η2
p

“Slope” qualitative 22.951 0.000 0.370 0.083 0.775 0.002 0.914 0.345 0.023

“Slope” quantitative 8.626 0.006 0.181 1.203 0.279 0.030 1.752 0.193 0.043

“Area” qualitative 17.616 0.000 0.311 0.128 0.723 0.003 0.163 0.688 0.004

“Area” quantitative 3.414 0.072 0.080 0.858 0.360 0.022 0.080 0.779 0.002

Time × domain Time × context Time × domain × context

F p η2
p F p η2

p F p η2
p

“Slope” qualitative 0.343 0.562 0.009 0.009 0.925 0.000 9.126 0.004 0.190

“Slope” quantitative 0.954 0.335 0.024 0.302 0.586 0.008 0.566 0.457 0.014

“Area” qualitative 0.027 0.871 0.001 4.301 0.045 0.099 0.316 0.577 0.008

“Area” quantitative 0.797 0.377 0.020 3.217 0.081 0.076 0.856 0.361 0.021

Domain × context

F p η2
p

“Slope” qualitative 5.614 0.023 0.126

“Slope” quantitative 2.102 0.155 0.051

“Area” qualitative 0.958 0.334 0.024

“Area” quantitative 0.556 0.460 0.014

The specification F(1.39) applies to all F-values of the following analyses of variance.

comparison of the two measurements, there were also significant
differences in the AOIs of question and graph between t1 and t2.
However, no significant differences for the AOI multiple choice
between t1 and t2 were found for either physics or economics
students (Figure 8).

Next, the total dwell time on the AOI axis labels (adding the
dwell times on the x-axis and y-axis labels) was determined for
each item. A two-way mixed-design ANOVA with the between-
subject factor domain and the within-subject factors time and
context on total dwell time on the AOI axis labels was performed,
indicating a significant main effect of time [F(1, 39) = 18.196;
p < 0.001; η2

p = 0.318]. In contrast to Klein et al. (2019) and
Susac et al. (2018), no interaction effects were found, even when
considering the effects only at t2 (p > 0.05). Because of the drop
of total dwell times, dwell times on axis labels were also not
significantly different between students from the two domains.

The dwell times on the axis tick labels were analyzed by a
mixed-design ANOVA including time, question, and concept as
within-factors for each domain. There was a significant main
effect of question type [F(1, 19) = 39.752; p < 0.001; η2

p = 0.677]
and a significant interaction effect of time × question × concept
[F(1, 19) = 4.891; p = 0.039; η2

p = 0.205] for physics students.
Other effects were not significant. Similar to Klein et al. (2019),
physics students paid more attention to the axes when responding
to quantitative than to qualitative tasks and especially paid
more attention to the axes of quantitative “area” tasks at t2
in contrast to the quantitative “slope” tasks (Figure 9). For
the economics students, the main effects of the factors concept
[F(1, 20) = 11.491; p = 0.003; η2

p = 0.365] and question type

were significant [F(1, 20) = 19.976; p < 0.001; η2
p = 0.500],

but the effect for the factor time was not. The interaction effects
were not significant. Economics students also paid more attention
to the axis tick labels of quantitative tasks and to the axis tick
labels of tasks about the “area under the curve.” All findings were
similar to Klein et al. (2019).

DISCUSSION

Changes in Scores Across Contexts and
Domains

H1: Physics and economics students solve graph tasks
related to the subject they are enrolled in more successfully
at the second measurement point than at the first
measurement point.

However, the findings indicate differences in the development
of graph understanding that are related to the task context and
the task concept. Similar to the results of Klein et al. (2019),
the physics students outperformed the economics students in
terms of overall test performance and, in particular, achieved
higher scores on tasks from the physics context at both t1 and
t2. On average, at t2, the physics students also performed better
on finance tasks than the economics students. In particular,
they achieved higher scores on qualitative tasks on the concept
of “slope” in the finance context at t2 than the economics
students. On “area” tasks in finance, the scores of physics students
remained at a similar level, and the scores of economics students
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FIGURE 8 | Average fixation time of physics and economics students on the AOIs question, graph, and multiple choice at t1 and t2. The error bars represent 1
standard error of the mean (SEM). The dashed lines represent the mean and error bars of the total sample of Klein et al. (2019).

FIGURE 9 | Average total dwell time of physics students and economics students on the AOI axis tick labels for qualitative and quantitative questions about graph
slope and area under a graph at t1 and t2. The error bars represent 1 standard error of the mean (SEM). The dashed lines represent the mean and error bars of the
total sample of Klein et al. (2019).

increased from t1 to t2, whereas in the physics context, the scores
of economics students decreased. These findings indicate that
the physics students were more successful in transferring the
graph task solution strategies that they had consolidated over the
semester to other task contexts.

For the economics students, an increased “transfer effect”
of this kind can be seen for the “slope” tasks, as the
economics students achieved higher scores on the qualitative
and quantitative tasks in the physics context at t2 than at t1.
Overall, however, their scores at t2 (and t1) are lower than those
of the physics students. The economics students’ scores on “area”
tasks in the physics context were lower at t2 than at t1, whereas
the physics students achieved higher scores as well as greater
graph understanding gains. Whereas at t1 the economics students
achieved higher scores in only one of four task pairs in the finance
context (Klein et al., 2019), at t2 the opposite became evident for
the subsample considered here. Even when taking into account
the declining scores in the quantitative “area” tasks in the physics
context, at t2 the economics students achieved higher scores in
three of four task pairs in the finance context. This indicates that
students experience context-specific learning effects that become
evident when they expand or transfer their graph solving skills to
another context. Similar findings have been reported in previous
research, where the transfer of graph understanding over a period
of time was different for students from different domains, and

the concepts the students were required to use to solve the
tasks also differed (Jerry and Aaron, 2010; Bergey et al., 2015;
Miller et al., 2016).

Similar to the results of both reference studies (Susac et al.,
2018; Klein et al., 2019), at t2, “area” tasks were solved less
successfully than “slope” tasks by students from both domains
(physics and economics). The qualitative tasks related to the
concept of “slope” were solved more successfully across both
domains at t2 than at t1 (80%; Klein et al., 2019), with a correct
solution rate of about 92%. The very high solution rate at t2 is in
line with the results of our curriculum analyses, because tasks of
this kind are an integral part of the curriculum in both domains.
“Retest effects” are less likely to occur as the students were not
given the solutions to the tasks and more than 3 months had
passed between t1 and t2.

For the economics students, an increase in their scores on
“slope” tasks from the physics context was also determined at t2,
indicating a similar understanding of the representation of this
concept in physics and finance graphs. Furthermore, there is a
high increase in scores on the quantitative “slope” tasks in the
finance context. Fundamental mathematical concepts are taught
in economics degree programs right at the beginning of the
curriculum, which enables students to understand and analyze
subject-related phenomena using these methodological tools
(Jensen, 2011; Benedict and Hoag, 2012). Teaching in the domain
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of economics in particular places a strong focus on the concept of
“slope” (e.g., in the analysis of extremes, cost, and profit trends),
which is also generally easier for students to comprehend than
the concept of “area under the curve.” Similar findings were
reported for first-year students from standardized assessments in
higher economics education, which also include tasks that refer
to the “slope” concept (e.g., the Test of Understanding in College
Economics, Walstad et al., 2007; or the German WiWiKom-Test,
Zlatkin-Troitschanskaia et al., 2019), but not to the concept of
“area under the curve.”

Differences in scores also occur with respect to the type of
question. Both at t1 in the overall sample (Klein et al., 2019) and
at t1 and t2 in the subsample examined in this study, qualitative
tasks were always solved more successfully than quantitative
tasks. Solving a mathematical task appears to require more
cognitive resources – which may be measured, for instance,
by assessing cognitive load (Gegenfurtner et al., 2011) – than
solving a graph task with purely textual requirements (for similar
findings, see, e.g., Curcio, 1987; Woolnough, 2000; Benedict and
Hoag, 2012; Laging and Voßkamp, 2017; Ceuppens et al., 2019;
Shavelson et al., 2019). This finding is also in line with research on
mathematical requirements in graph tasks (Curcio, 1987; Planinic
et al., 2013; Susac et al., 2018; Wemyss and van Kampen, 2013).

Apart from the “area” tasks, the number of students who
had already scored high in the qualitative “slope” tasks at
t1 further increased their scores at t2. In the qualitative
“area” tasks, higher scores were also identified at t2 for both
domains, whereas only physics students succeeded in increasing
their scores in the quantitative “area” tasks in the physics
context. The finding that the highest score increases or the
greatest score decreases in the respective familiar contexts
(i.e., “area”/finance and “slope”/finance for economics students;
“area”/physics for physics students) occur in the quantitative
tasks illustrates that the difficulties the students had with these
tasks at the beginning of the semester remained at t2. One
possible explanation is that fundamental mathematics courses,
which also include graph understanding, are taught in both
courses (physics and economics) primarily in the first semesters
(for physics, see Küchemann et al., 2019; for economics, see
Jensen, 2011).

In summary, despite the discussed differences in terms of
domains, task contexts, task concepts, and the type of question,
H1 cannot be rejected, but more comprehensive research on
the graph understanding of students in different domains and
contexts is urgently needed.

Change in Confidence Across Contexts
and Domains

H2: Physics and economics students rate their confidence in
their solution to tasks related to the subject they are enrolled
in more accurately at the second measurement point than at
the first measurement point.

A comparison of the two measurements shows that at t2,
the confidence rating has only slightly, but not significantly,
increased. When looking at the context, we did not find any
statistically significant effects. Moreover, similar to Klein et al.

(2019), there is no significant difference between the students
from both domains. With regard to the task concept, apart
from the “area” task solutions of the economics students, the
confidence rating of correct solutions increased at t2. With
the exception of economics students’ solutions to the “slope”
tasks, incorrect solutions were self-assessed as being correct
with more confidence at t2. Already at t1 (Klein et al., 2019),
approximately 50% of incorrect solutions were self-assessed as
correct, indicating the students’ deficient metacognitive skills.
This effect increased to greater than 60% at t2. This finding is
also in line with numerous studies across disciplines (Nowell and
Alston, 2007; Bell and Volckman, 2011; Guest and Riegler, 2017;
Brückner and Zlatkin-Troitschanskaia, 2018).

The increasing confidence in one’s own erroneous solving
strategies for graph tasks can be traced back to causes described
under the umbrella term “error knowledge,” which includes, for
instance, overestimating one’s (task-related) knowledge and skills
and deficits in the ability to diagnose errors in the solution
process (Kruger and Dunning, 1999). In particular, the latter
one can also be caused by didactic priorities. Generally, students
are taught to identify possible strategies that will lead them to
correct solutions. However, they are less systematically taught to
recognize systematic errors in their solution process.

The negative change in the self-assessment of economics
students on “area” tasks is particularly remarkable. Compared
to all other tasks, both the average correct solution rate and
the average correct self-assessment for these tasks decrease
significantly. Apparently, there is no recognition effect but a
learning effect, so that even wrong task solutions were self-
assessed as correct remarkably often. For qualitative tasks on
“area under a curve,” physics students’ confidence increased
over time for each task context, whereas economics students’
confidence increased for economics tasks and decreased
for physics tasks.

In summary, students rated their correctness of responses
less accurately at t2. These unexpected findings (e.g., economics
students solve “area” tasks less successfully and also rate their
solution less accurately at t2) indicate that the students may have
developed fundamental misconceptions, which require more in-
depth research in further studies. Thus, H2 cannot be confirmed,
although there is an increase in confidence rating from t1 to t2
that reflects earlier findings (e.g., Guest and Riegler, 2017).

Change in Students’ Dwell Times
H3: The dwell time on the tasks and the individual graph
components (AOIs) is lower at the second measurement
point for students from both domains and in both contexts.

With regard to H3, not only did the total dwell time during
task processing decrease significantly at t2, but the students also
spent less time reading the tasks. This may be due to a recognition
effect or a learning effect in graph understanding, as the scores
increased at t2, but familiarity with the tasks increased only
slightly. Despite a decrease in total dwell time at t2, students
from both domains still spent more time on questions about the
“area under the curve” than on questions about graph “slope.” In
view of the decreasing or unchanged scores (with the exception
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of the “area” quantitative task pair in the physics context), this
further indicates the higher cognitive load that “area” tasks elicit
in students (Gegenfurtner et al., 2011; Klein et al., 2019).

Furthermore, findings at t2 confirmed the findings at t1 (Klein
et al., 2019) that the students’ dwell time is also longer for
quantitative tasks than for qualitative tasks if the task is an “area”
task. Students from both domains need longer for quantitative
“area” tasks than for quantitative “slope” tasks. Thus, in line
with Susac et al. (2018) and Klein et al. (2019), students need
longer for complex mathematical calculations, such as “area”
calculations, than for linear “slope” calculations. Longer dwell
times on quantitative tasks can also be attributed to a large extent
to the comparably longer dwell time on the axes. While the dwell
time on the axes generally decreased at t2, it actually increased
for quantitative “area” task processing by physics students. This
supports the conclusion that quantitative tasks are more difficult,
because comparatively more information has to be extracted
from the axes and mentally processed.

Similar to Klein et al. (2019), at t2, students spent the longest
time on qualitative “area” tasks. This persistent finding, which
is also consistent with the decrease in processing times for all
tasks, indicates that estimating the “area” is still more cognitively
demanding than determining a “slope,” despite corresponding
increases in knowledge. However, the effect of the novelty of
such a task was not found. For qualitative tasks, students at
t2 from both domains still spent more time on the axis tick
labels for the “area” task compared to the “slope” task. It can
be assumed that they were looking for further information
to estimate the “area” size on the axes. In contrast to Klein
et al. (2019), however, no longer dwell times on unfamiliar task
contexts were determined at t2 compared to t1. In line with the
discussed findings on transferring graph understanding between
contexts, this may be due to the fact that by learning how to solve
graph problems, students no longer try to decipher the meaning
of the axis designations and instead have developed schemes
(i.e., heuristics) that enable them to transfer the graph solution
strategies from one context to another. Regarding the solving
strategies, economics students still needed more time to explore
the axis tick labels of qualitative “area” tasks, although they are
irrelevant for the solution process. This supports the assumption
that economics students use compensatory strategies to respond
to these tasks. This is in line with the argument of Beichner
(1994) that area estimation stimulates students’ inappropriate
use of axis values.

As in Klein et al. (2019) at t1, no overall, differences in
dwell times between physics and economics students were found
at t2 with regard to the relationship between total dwell time
and students’ performance. Intratemporal and intertemporal
comparisons between both domains (physics and economics)
were conducted over the three areas defined as AOIs (question,
graph, multiple choice), indicating no significant differences, as
students from both domains spent almost an identical amount of
time on the three AOIs at t1 and t2. The significant differences
in the students’ scores cannot be explained by a domain-specific
change in the time spent on the graph tasks, even for t2. Thus,
total dwell time alone does not explain the difference in the
performance outcomes between the students from both domains.

However, a comparison of t1 and t2 shows that the time
spent on the question and graph decreases significantly, but the
time spent on the response options remains almost the same.
This indicates that, although the students apparently extract
information from the tasks more quickly, they do not have any
recognition effects with regard to the task solutions, as they must
look at the responses systematically again.

In summary, the effects reported here for the (sub)sample at t2
are not significantly different from those of the entire sample in
Klein et al. (2019) at t1. Regarding the drop in total dwell time at
t2 and the lower dwell times reported by Susac et al. (2018), there
was a correlation between study progress and dwell time and the
task concept or question type across both domains. In our study,
we thus replicated the findings of both Susac et al. (2018) and
Klein et al. (2019) and determined the stability of the time effect,
as we found similar effects for t1 and t2. The differences between
Susac et al. (2018) and Klein et al. (2019) also persist at t2; there
were no significant main effects of context at t2. This indicates the
stability of the findings over time. Thus, H3 can be confirmed.

CONCLUSION

Summary and Future Perspectives
In a postreplication study, based on the two existing studies of
Susac et al. (2018) and Klein et al. (2019), using a pretest–posttest
measurement, we expanded the analytical research focus to gain
initial insights about changes in students’ graph comprehension
within and across domains with regard to the theoretically
expected (i) time effects (measurements t1 and t2); (ii) domain
effects (physics and economics); (iii) question type, concept, and
context effects; and possible (vi) interaction effects.

Effects of these kinds could be found at both measurement
points. For instance, physics students achieved higher scores
than economics students, whereas economics students, at t2
in particular, achieved better results in tasks with a finance
context than in physics tasks. On average, students from both
domains were more likely to correctly solve tasks on the concept
“slope” at both measurement points, whereas physics students
correctly solved “area” tasks at 67% and “slope” tasks at 75%,
and economics students correctly solved “area” tasks at 42% and
“slope” tasks at 69%. Furthermore, “slope” tasks were visually
processed more quickly than “area” tasks.

Overall, the accuracy of the students’ self-assessment
decreased at t2, showing that overestimating incorrect solutions
occurs more often than underestimating correct solutions.
Further studies are needed with a particular focus on explanations
for overestimating incorrect solutions and uncovering possible
misconceptions, to form a basis for modified instructional
research designs. For example, typical misconceptions could
be discussed in classes or short interventions; for instance,
digital classroom response systems can be used in larger lectures
to gather data on students’ knowledge about a task concept
or a solution process. This is especially important because
students are increasingly using digital media to construct graphs.
However, traditional media are still used in most forms of higher
education instruction. Because the present study focuses only on
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the understanding and interpretation of graphs and not on haptic
construction performance, this problem takes a backseat in the
scope of this article (Limitations and Implications). However,
empirical evidence to examine the difference between paper-
based and digital understanding of graphs is also still missing.
Meta-analyses would also be desirable for a consolidation of the
current findings.

Similar to both referenced studies and at t2 in our study,
the total dwell times and the dwell times on the defined
AOIs (question, graph, and multiple choice) can hardly predict
differences in the scores between the students from both
domains. Instead, better predictions can be made by analyzing
individual parts of the graph (e.g., axis tick labels). However, in
view of the generally faster processing time and on average higher
number of correct solutions, more efficient solution strategies
and information processing can be assumed for students from
both domains at t2. This indicated increase in the efficiency of
information processing also shows that, for example, students are
less irritated by the axes’ labels of unfamiliar domains.

In conclusion, the findings of the postreplication study
are mostly consistent with those of the two previous studies.
Subsequent studies should now be applied more specifically to the
cognitive processes both within and across domains, for instance
by expanding the samples and domains to investigate whether
existing developments can also be found in other domains.

A more systematic exploration of graph task-relevant aspects
could be conducted through expert ratings and additional ET
studies with experts to investigate their solving strategies of graph
tasks. Combinations of ET with other techniques, for instance,
electroencephalography or skin conductance, and in particular
verbal data (Leighton et al., 2017) could provide important
information, for example, on the extent to which the dwell
time on a certain area or the scattering of fixations is more
important for solving a graph task or for maintaining existing or
transferring solving strategies and emotions during learning in a
domain. First insights have been provided by Susac et al. (2018),
who retrospectively recorded students’ task solving strategies.
Computing methods can also provide further evidence as to
the extent to which eye movements are linked to information
processing (Elling et al., 2012).

Further research should also focus on the consistent decrease
in economics students’ scores for “area” tasks from foreign
contexts, as well as on the high increase in scores for quantitative
“slope” tasks at t2, while also controlling for effects of explicit
instructional measures in classes, as well as possible learning
opportunities outside of university. Considering that the eight
isomorphic tasks are tasks that are typically used in textbooks
in print or online formats, in lectures, exercises, or in (online)
assessments, a more comprehensive analysis of the learning
opportunities students have during the semester is required.
Studies have shown, for instance, that students increasingly use
digital media for their examination preparation (e.g., Wikipedia,
see Maurer et al., 2020). In particular, dynamic representations of
graphs or the use of graph creation software could promote graph
understanding (Stern et al., 2003; Gustafsson and Ryve, 2016;
Opfermann et al., 2017). For example, the dynamic hatching of
an “area under a curve” with a parallel indication of the calculated

values and a formula display could facilitate understanding in the
sense of “learning by examples” (Schalk et al., 2020). However,
the extent to which this can have a positive effect on the
understanding of certain concepts like “slope” and “area” still
needs to be investigated. Further research should also investigate
other indicators, such as click rates (Buil et al., 2016; Hunsu
et al., 2016) or the use of multiple learning media (Ainsworth,
2006; Mayer, 2009) in the context of experimental studies to
provide more precise analyses of information processing and
the development of graph comprehension. How students’ graph
understanding and the identified differences and effects develop
over the course of the degree course until their graduation should
also be further investigated.

LIMITATIONS AND IMPLICATIONS

Despite findings that are stable over time and also in line with
previous research, these results should be critically discussed in
view of the limitations of this study. These limitations concern
(i) the construct and the study design, (ii) the sampling, and (iii)
the scope of analyses carried out so far.

(i) The study used graph tasks for two types of concepts
with linear progressions, “area” and “slope,” thus capturing
students’ understanding only of certain types of graphs (Curcio,
1987). Moreover, the study focus is on the students’ internal
mental processes rather than on the active construction or
drawing of graphs or on communication with third parties.
Thus, the focus is on the recognition of trends and areas, i.e.,
coherent parts of a graph. Graph understanding in terms of the
reproduction of individual values, interpolations between graph
parts, the extrapolation and prediction of graph progressions, or
interpretation in larger contexts (e.g., how an increase in inflation
in 5 years will affect the economy) was not captured in this study
(Curcio, 1987). Investigating such phenomena requires further
task constructions and other study designs.

Furthermore, the test instrument used in this study was
limited to eight tasks, which were taken as replications from
previous studies; for the same reason, a treatment-control
group design (e.g., in which students work on certain tasks or
attend selected lectures and courses) was intentionally not used.
However, because the findings and the expectations covered by
the three studies have for the most part have been confirmed
several times, follow-up studies, for instance, in the context
of multimedia learning environments, can now be immediately
conducted, at least in the investigated domains. Moreover, the
present findings are primarily related to digital representations
on computer screens. The extent to which extrapolation of other
representational formats is possible must also be investigated in
further studies.

(ii) Overall, less than two-thirds of the total sample from Klein
et al. (2019) could be retested in the study at t2. Nonetheless,
compared to other existing ET studies, more than 40 study
participants at two measurement points constitute a considerable
sample. For future studies, however, larger sample is required to
generate a higher generalizability (e.g., investigating correlations
of eye movements and scores in different populations), as well
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as an expansion at the institutional level, to include more
universities, faculties, and students, for instance, to analyze
teaching effects. The multilevel structure in which response
behavior can vary between and within domains, previous
knowledge, and other sociobiographical characteristics should
be considered in an expanded sample (Hox et al., 2018).
Many non-significant results in the present study can also
be traced back to the sample size, so that the differences
and correlations were mostly investigated with regard to
effect size (see iii).

The calculation of several ANOVAs for the examined factors
of graph understanding (task characteristics (context, concept,
and type of questions), and domains (physics vs. economics)
builds on the studies of Susac et al. (2018) and Klein et al. (2019)
and extends the existing analyses by the time factor (t1 vs. t2).
Because no comparable findings on the development of graph
understanding are available yet, and the comparability between
the studies should be ensured, an equally possible comprehensive
repeated-measures ANOVA with all within-factors and the
domain as between-factor specified in the study was calculated
but not presented in this article. The findings of these analyses,
taking into account possible inflations of standard error, lead to
the same interpretations due to the significance and effect sizes.

In view of low-stakes assessments, deviations in test-taking
motivation for larger samples should also be considered in
appropriate empirical modeling (Penk et al., 2014). In the present
study, this was only possible by means of response time effect
modeling (Wise and Kong, 2005). To mitigate the potential
supporting effects of test motivation, for instance, in terms of
very short and very long dwell times, the study participants
were offered monetary compensation, and additional individual
surveys were conducted, so that negative hidden mass-group
effects on test motivation were as similar as possible across
all test takers.

(iii) The present study only regarded dwell times. Qualitative,
retrospective interviews (Susac et al., 2018) have shown, however,
that students’ task-solving strategies differ, and research could
be complemented by analyses of saccadic (Klein et al., 2019)
or transitional studies of fixation sequences. For example, it is
conceivable that students will not only solve “area” tasks better if
they look at the graph or the axis tick labels for a longer time, but
also if they perform more saccadic eye movements between axis
tick labels and graph. Such phenomena could be analyzed more
precisely, for instance, by using process and path models.

The “area under the graph” is identified as a crucial concept
in graph understanding and its development and should also
be researched more intensively, especially among economics
students, and treated in a differentiated manner with regard
to instructional research designs. Apparently, the two types of

question and the two task concept types are based on different
cognitive processes, which are also addressed differently over
the semester and thus lead to the changes identified in this
study. Potential explanatory factors such as domain-specific
prior knowledge might have an effect on these processes (e.g.,
students with more prior knowledge may use more efficient
test-taking strategies) and should also be included in further
studies. This can be done, for example, in multilevel linear mixed-
effects models (Brückner and Pellegrino, 2016; Strobel et al.,
2018), which take into account the structure between subject
characteristics, item characteristics and response processes, and
the final test scores.
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