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Relational reasoning (RR) is believed to be an essential construct for studying higher
education learning. Relational reasoning is defined as an ability to discern meaningful
patterns within any stream of information. Nonetheless, studies of RR are limited by
the psychometric structure of the construct. For many instances, the composite nature
of RR has been described as a bifactor structure. Bifactor models limit possibilities for
studying the inner structure of composite constructs by demanding orthogonality of
latent dimensions. Such assumption severely limits the interpretation of the results when
it is applied to psychological constructs. However, over the last 10 years, advances in
the fields of Rasch measurement led to the development of the oblique bifactor models,
which relax the constraints of the orthogonal bifactor models. We show that the oblique
bifactor models exhibit model fit, which is superior compared to the orthogonal bifactor
model. Then, we discuss their interpretation and demonstrate the advantages of these
models for investigating the inner structure of the test of RR. The data are a nationally
representative sample of Russian engineering students (N = 2,036).

Keywords: relational reasoning, the test of relational reasoning, bifactor models, oblique bifactor models, the
Extended Testlet Model, the Generalized Subdimensional Model

INTRODUCTION

Contemporary studies of higher education learning are unthinkable without studies of cognitive
processing. Over the past 20 years, educational experiments have advanced our understanding
of the intellectual and moral development of students. Moreover, they also have merged
educational research with cognitive field (e.g., De Clercq et al., 2013). Researchers more and more
tend to explain educational phenomena in terms of information processing and higher-order
thinking skills.

Among all higher-order thinking skills, relational reasoning (RR) appears to be one of the
most important. Relational reasoning is defined as an ability to discern meaningful patterns
within any stream of information (Alexander and The Disciplined Reading and Learning Research
Laboratory, 2012; Dumas et al., 2013). The importance of RR is well-established in the educational
context; RR has been utilized as a predictive measure in a variety of studies. For example, it can
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predict SAT scores both for the verbal section and for
the mathematics section (Alexander et al., 2016a). Relational
reasoning also demonstrated high levels of predictive validity in
the domain of engineering design (Dumas and Schmidt, 2015;
Dumas et al., 2016) and medical education (Dumas, 2017). In
general, it proved to be a significant predictor of students’ ability
to produce innovations and solve problems.

As with many other conceptualizations of higher-order
thinking skills, RR has been suggested as a composite construct
that has many parts. However, some of the most critical
manifestations of it are analogy, anomaly, antinomy, and
antithesis (Alexander et al., 2016a; Dumas and Alexander, 2016).
Each manifestation corresponds to a particular pattern within
a set of information. Although researchers can saturate these
specific forms of relations with various details of relationships
within a set of information elements, these patterns are usually
described (Alexander et al., 2016b) as follows:

• Similarity (identifying convergence of change patterns);
• Discrepancy (identifying dissimilarity between one element

and all others or finding where the pattern breaks);
• Incompatibility (defining criteria for similarity or

dissimilarity and consequently, determining how to
classify the elements); and
• Polarity (identifying opposites of continuum and

divergence).

However, studies of RR are limited by the psychometric
structure of the construct. For many instances, the composite
nature of RR has been described as a bifactor structure (Dumas
and Alexander, 2016). Although bifactor modeling gained much
attention in recent years, its usefulness for practitioners remains
somehow restricted by its interpretation and challenges in
technical applications (Bonifay et al., 2017). The main problems
with it are constraints introduced in the variance–covariance
matrix of latent dimensions. This severe assumption is necessary
for model identification and avoiding technical difficulties.
However, during a recent peak of attention to these models in
psychometric literature, several extensions have been proposed
to relax this limitation and provide more flexible setups for
modeling bifactor structures.

The test of RR (TORR) was designed (Alexander, 2012)
and validated (Alexander et al., 2016a) to capture RR and
its four manifestations. The TORR was calibrated within
classical test theory, item response theory (IRT) and Bayesian
networks (Alexander et al., 2016a; Dumas and Alexander,
2016; Grossnickle et al., 2016). Overall, the TORR has good
psychometric properties and promising implementations in
educational studies. The measure has 32 nonverbal items
organized into four 8-item scales that represent the four
forms of RR (Figures 1–3 reflect the structure of the TORR
under different model assumptions). All items are scored
dichotomously and have multiple-choice formats with four
response options. Additionally, each TORR scale includes two
relatively easy sample items designed to familiarize participants
with the content of the tasks.

The authors chose the bifactor structure of the TORR,
reflecting the theoretical structure of the construct. An
investigation of the TORR’s dimensionality argued that a 3PL
bifactor model was the best-fitting MIRT model, within which
the test was calibrated (Dumas and Alexander, 2016). However,
the applied model fixates the correlations of all person-specific
parameters at zero, so it is impossible to study the relations
between the subcomponents of RR. Therefore, some research
questions on RR could not be posed despite being of interest.

This study aims to enrich the best of our understanding of RR
by advancing modeling techniques used to describe the construct.
To do so, we apply oblique bifactor models, which impose less
strict constraints on the variance–covariance matrix. One of these
models is the Extended Testlet Model, which allows specific
factors to correlate with the general factor, but forces them to be
orthogonal to each other (Paek et al., 2009). Another model is the
Generalized Subdimensional Model (GSM) (Brandt and Duckor,
2013), which forces specific factors to be orthogonal to the
general factor but allows them to correlate with each other. We
discuss the differences in their interpretation and some technical
application. Then, we compare the models in terms of their
model fit and estimated variance–covariance matrix and review
the results obtained using the nonverbal TORR (Alexander et al.,
2016a). We conclude this article with a discussion of limitations
and possible further research.

The discussed models have been proposed and studied
within the paradigm of Rasch measurement. Therefore, all
considered models belong to Rasch measurement paradigm
to make comparison across them feasible. Because the TORR
utilizes dichotomous scoring, we consider only dichotomous
versions of the bifactor models. Additionally, all illustrative path
diagrams in the description of the models follow the structure
of the TORR: 32 dichotomous items divided into four subscales
(eight items per subscale).

Bifactor Models
Bifactor models have a long history in factor analysis (Holzinger
and Swineford, 1937; Schmid and Leiman, 1957). Their main
feature is that each item loads on the general dimension (we call
it “general factor”) and a latent variable defined by a subscale
to which an item belongs (we call it “specific factor”). Such
structures are useful for modeling composite instruments with
non-ignorable local item dependence (LID; Bradlow et al., 1999).
Local item dependence implies that item responses are random
once values of all latent dimensions are known. As a result of
this logic, bifactor IRT model (Bayesian Testlet Model) has been
proposed, which attempted to add on latent extra dimensions to
make the responses random controlling for them as well as for
the general factor.

Nonetheless, such models are overparametrized and cannot
be estimated unless the latent dimensions are constrained to
be orthogonal (Figure 1). Assumption of total orthogonality
of dimensions proposes a problem because it severely restricts
the interpretation of the results. Total orthogonality means that
specific factors are independent of each other and the general
factor. Even if the general factor still can be somehow interpreted
as the target dimension of interest, it is “purified” from
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FIGURE 1 | Exemplary path diagram for orthogonal bifactor model with four specific factors.

components defined by specific factors. However, interpretation
of specific factors becomes even more complicated, because they
become purified from general RR as well as other components.
Further, difficulties in interpretation of such scores met with
typically low estimates of their reliability, making the subscores
virtually useless (Haberman, 2008).

As a result of this, reasonable setup for bifactor modeling
appears to be limited to modeling of LID in educational
testing. These (constrained) correlations of specific factors
describe correlations of person–testlet interactions (nuisance
dimensions) and therefore are not in the focus of interest (e.g.,
Reise et al., 2010). However, for psychological studies, this
remains somewhat questionable assumption because researchers
typically expect latent dimensions to correlate (Reise, 2012).
A specific example of a consistent application of bifactor
models in psychological studies can be an attempt to separate
a complex construct from its contexts or situations in which
it manifests itself. However, it makes subscores barely useful
either way. In the end, as Reise et al. (2010) noted, “researchers
view bifactor structures with great suspicion” because of such
interpretational difficulty.

A direct example of such approach in Rasch measurement is
the original Rasch Testlet Model (Wang and Wilson, 2005). For
dichotomous items, Rasch Testlet Model can be represented as

g
(
πpi

)
= θp + γp(d) − δi

where, πpi is the probability that the person p gets item i correctly,
g (.) is a function of choice (in this study, we used inverse logit
function), θp is the ability level of the person p on the general
factor, γp(d) is an auxiliary ability level of the person p on the
testlet-specific dimension d, and δi is the generalized difficulty of
the ith item.

As initially proposed, person parameters are assumed to follow
independent normal distributions. Variance of specific factor
accumulates the dependency between the items creating the dth
testlet (LID on θ). This parameter varies across persons and
remains fixed for all items in a testlet d; i.e., it denotes person–
testlet interaction. Thus, the probability of a correct response
of person p on item with difficulty δi depends on the sum of
two person-specific parameters:θp and γp(d). As a result of such

decomposition, there are two points to note in interpreting the
model. First, even under a low level of the general factor, person
p can perform well for some particular testlet d if person p has a
relatively high factor score on the corresponding specific factor.
Second, the general factor and all specific factors are assumed to
be unidimensional.

For the TORR example, orthogonal bifactor model implies
that a general factor of RR is abstract, independent of its
manifestations (analogy, anomaly, antinomy, and antithesis) and
loads items simultaneously with them. However, this assumption
is questionable, taking into account the nature of the construct.
For example, commonly, researchers conceptualize the search
of analogies as a basis for all cognitive functions (e.g., James,
1890; Spearman, 1927; Sternberg, 1977). Regarding four studied
manifestations of RR, it means that all of them can be seen as
“analogical reasoning plus something extra,” where the subscales
differ in additional cognitive operations. Thus, anomaly subscale
can be seen as a subscale measuring skill to find what is similar
among all elements except one. Antinomy can be seen as a skill
to find similarities of an initial element with secondary elements.
Then, the correct answer can be determined by exclusion.
Antithesis can be seen as a skill to find similarities of an initial
element with secondary elements while keeping in mind a rule-
implied change and reversing it. So, some elements of analogical
reasoning can be found everywhere. Therefore, researchers can
expect some nonzero correlations between analogy subscale and
all other subscales, which has been established earlier (e.g.,
Alexander et al., 2016a). At the same time, the orthogonal
bifactor model extracts the general factor, which can be severely
contaminated by analogical reasoning.

However, such logic can be applied even further, to all other
subscales. For example, antinomy subscale can be seen as a
search for the anomaly, when the anchor element is presented.
In contrast, in anomaly subscale itself, a respondent is required
to infer the similarities across elements without the anchor.
Antithesis can be seen as a search for multiple anomalies
simultaneously, and so on. Therefore, nonzero correlations are
expected from all subscales, which is also the case for the
correlated factors model without the general factor (Alexander
et al., 2016a). As a result of this, the general factor in the
orthogonal bifactor model describes nothing more than a
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FIGURE 2 | Exemplary path diagram for the ETM with four specific factors.

commonality between subscales of the TORR. However, if the
generalized ability of RR itself is more than a positive manifold
between different types of cognitive operations, the orthogonal
bifactor model is not the best choice to describe it.

The Extended Rasch Testlet Model
As an attempt to overcome limitations of the original bifactor
models, Paek et al. (2009) proposed the Extended Rasch Testlet
Model (ETM). The key features of this model are correlations of
specific factors with the general factor (Figure 2). Consequently,
specific factors are purified from each other, but they share some
estimated portion of variance with the general factor. Note, that
correlations of latent variables can be negative, because items
from all subscales define the general factor.

The ETM has the same formulation as the original Rasch
Testlet Model and only differs in the assumption applied to
the correlations of person-specific parameters. Constraining all
covariances between the general factor and specific factors to zero
will return a variance–covariance matrix for the original Rasch
Testlet Model with the corresponding structure of the testlets.
Therefore, the orthogonal Rasch Testlet Model is nested within
the ETM. However, the ETM should recover factor scores better
than the original Testlet Model because it takes into account the
shared variance of person parameters.

It is possible to interpret correlations between specific
factors and the general factor as relations between specific
subparts of a more general construct and general ability
itself controlling for other subparts of the construct. This
interpretation follows from the classical interpretation of
regression analysis. These correlations may be seen as partial
correlations or standardized regression coefficients from a
multivariate linear regression model.

For the TORR example, the ETM implies that the general
factor of RR preserves correlations with the manifestations of
it. Therefore, ETM allows for a tailored test of the hypothesis
whether the general factor is just a positive manifold of specific
factors or not (Van Der Maas et al., 2006). If the general

factor of RR preserves nonzero correlations with specific factors
of it, then they indeed measure specific manifestations of
RR, and the general factor is not an exhaustive descriptor
of the latent space of the construct. At the same time, if
the correlations of subscales with the general factor become
insignificantly different from zero, then the general factor of
the orthogonal bifactor model describes nothing more and
then a commonality between subscales, and not a specific
variable with distinct psychological interpretation. Testing
this hypothesis is important because pushing general factor
models beyond their limits can lead to the creation of such
controversial phenomena, as a general factor of personality (e.g.,
Revelle and Wilt, 2013).

The Generalized Subdimensional Model
The GSM (Brandt, 2017) is also a derivative of the original
Rasch Testlet Model but in the opposite direction compared
to the ETM. Instead of assuming orthogonality between
specific factors, it allows them to correlate (Figure 3).
Nonetheless, for model identification purposes and to ensure
that specific factors represent subscale-specific components of
general ability within it, several additional constraints must
be made (for details, see Brandt, 2008). They regard to
“translation” parameters (kd) weighting the variances of specific
factors in order to equalize them: the sum of squares of
translation parameters is constrained to be equal to the number
of specific factors (D, for details, see Brandt and Duckor,
2013). The GSM can be described (Robitzsch et al., 2020) as

g
(
πpi

)
= kd

(
θp + γp(d) − δi

)
.

Note that the GSM requires skipping one of the specific
factors to avoid overconstraining (Brandt, 2008). This
is achieved by defining the skipped specific factor as a
negative sum of all remaining specific factors. Because
one of the specific dimensions is excluded from the
calibration, it is necessary to recalibrate the model
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FIGURE 3 | Exemplary path diagram for the GSM with four specific factors.

with alternative reparameterizations at least three times
to gather the full variance–covariance matrix of the
dimensions, e.g.,

(1) Excluding the last Dth dimension to recover all covariances
between all dimensions but covariances with dimension D,

(2) Excluding dimension D-1 to recover all covariances of
dimension D but the covariance of dimension D with
dimension D-1, and

(3) Excluding dimension D-2 to recover the covariance of
dimensions D and D-1.

A direct interpretation of this model assumes that specific
factors are not purified from each other, but they are allowed to
correlate freely (even negatively). Therefore, this model describes
how specific factors relate to each other after the general factor is
extracted. Brandt and Duckor (2013) recommended interpreting
the general factor as a shared variance of dimensions from a truly
multidimensional construct.

Within the context of TORR, this model describes differences
in commonalities between the subscales. After the general RR
is extracted, this model reveals how similar or how different the
used subscales are and what is the degree of shared cognitive
processing that they provoke. The correlations close to zero will
mean that the subscales are virtually independent controlling
for the general RR, and vice versa. Note that these relations
are not the same as with correlated factors model, where
the general factor is distributed across subscales, causing
possible positive correlations. GSM explicitly models “residual”
correlations between subscales, which are not described by
the general factor.

When comparing the ETM and the GSM, it is important to
distinguish their purposes: they are meant to answer different
research questions in terms of studying the internal structure of
composite constructs. These two models complement each other
in terms of their focus of interest. Usage of them in a directly
competitive manner fits only for deciding which model orders
respondents better by the general factor. Note, however, that

they extract different factor structures. This happens because of
differences in constraints imposed on the variance–covariance
matrix. While orthogonal testlet models and the GSM describe
general RR, which is independent of its manifestations, the ETM
describes general RR, which is correlated to them. Moreover,
the ETM and orthogonal testlet models describe specific factors
that are independent of each other. In contrast, the GSM
describes specific factors that share some portion of variance
with each other.

Roughly all of these models are special cases of the
multidimensional random coefficients multinomial logit model
(MRCMLM; Adams et al., 1997). Therefore, the TAM package
for R software (Robitzsch et al., 2020) can be used to
calibrate these models. Although the GSM itself is not a
special case of MRCMLM (Brandt, 2017), its predecessor—
the Rasch model with subdimensions (Brandt, 2008)—is.
Therefore, all discussed models can be calibrated with TAM
package, using the same algorithms for likelihood estimation.
The parameters were estimated with the quasi–Monte-Carlo
algorithm implemented in the TAM package, which proved
to be efficient in the presence of high-dimensional latent
ability space (Wu et al., 2007). To estimate reliability, we used
expected a posteriori (EAP) estimates of factor scores (Bock
and Mislevy, 1982) because of their flexibility in complex
multidimensional setup. Moreover, EAP uses distributional
information from the variance–covariance matrix to increase the
precision of the estimates.

To demonstrate the advantages of oblique bifactor models
in terms of global model fit, we analyzed absolute and relative
model fit indices. To estimate the absolute global fit, we used
root mean square error of approximation (RMSEA; Steiger, 1990)
and standardized root mean square residual (SRMSR; Hu and
Bentler, 1999) according to the recommendations given by Shi
et al. (2020). Root mean square residual can be interpreted as
an unstandardized measure of the distance between the data-
generating model and the hypothesized model. Standardized root
mean square residual possesses a straightforward interpretation:
it is just on average of correlation residuals. As a result of
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this, models with lower values of these indices are preferable.
We also used comparative fit index (CFI; Bentler, 1990) as
an additional measure of incremental model fit. In contrast
to RMSEA, CFI is commonly interpreted as a measure of the
distance between the hypothesized model and the baseline model,
where all the variables are uncorrelated. Therefore, models
with higher CFI values are preferable. Note, however, that
despite conventional “rules of thumb” derived in factor analytical
approach, there are no strict cutoff criteria for IRT models
(e.g., Maydeu-Olivares, 2013; Savalei, 2018; Xia and Yang, 2019).
Consequently, we cannot definitively conclude that some or all
models fit or do not fit the data. Additionally, we compared the
relative fit of the models with the Akaike Information Criterion
(AIC; Akaike, 1974) and Bayesian Information Criterion (BIC;
Schwarz, 1978). These indices allow for comparison of model
fit across nonnested models, introducing a penalty for extra
parameters (AIC) with respect to sample size (BIC). Lower values
of these indices imply a better global model-data fit accounting
for model complexity.

DATA

The data used for this study is a part of a larger project,
called the Super Test Project, led by researchers at Stanford
University in collaboration with ETS and researchers from
various countries including China and Russia. The overall
purpose of this project is to examine learning outcomes and
institutional- and individual-level factors related to them for
electrical engineering and computer science students across
multiple countries. To this end, the research team also collected
a wealth of contextual survey data from students, faculty,
and administrators.

As a part of the Super Test Project, the TORR was
administered to Russian electrical engineering and computer
science students. We randomly included 34 Russian universities
in a nationally representative sample of engineering students.
The testing was conducted in November–December 2016
among students graduating in 2017 (when they were in the
middle of their fourth year of studying) and in April 2017
among students graduating in 2019 (when they were at the
end of their second year). The testing was conducted in a
computer-based format. Students had 60 min to complete the
TORR. The data cleaning procedure included the deletion
of all response profiles with 50% or less of the responses
on any subscale. Consequently, 76 profiles were deleted
from the database (approximately 3.6%). We compared
correlations between subscales in raw scores before and
after deletion of the profiles, to prove that the deleted
responses did not bias the subsequent analyses. The change
in correlations was less than 0.001. The final sample size
is 2,036 students.

RESULTS

The results of the global model fit analysis are reported
in Table 1 (note that the deviance statistic in the GSM

TABLE 1 | Results of the model comparison.

Statistics Models

Testlet model ETM GSM

χ2 statistics for the baseline model 10, 980.342

Degrees of freedom for χ2 statistics 496

Sample size 2, 036

Number of free parameters 37 41 42

Degrees of freedom for χ2 statistics 491 487 486

χ2 statistics 3, 290.570 2, 315.269 2, 299.300

RMSEA 0.053 0.043 0.043

CFI 0.733 0.826 0.827

SRMSR 0.058 0.051 0.050

Deviance 82, 009.13 81, 677.74* 81, 661.43

AIC 82, 083.13 81, 759.74 81, 745.43

BIC 82, 291.52 81, 990.65 81, 981.97

*Likelihood ratio test reveals that ETM fits significantly better than Rach Testlet
model (critical χ2 value is 9.49 for 4 degrees of freedom on p < 0.05 significance
level; empirical χ2 value is 331.39).

TABLE 2 | Internal structure of country-specific relational reasoning construct from
orthogonal Rasch Testlet model.

Scale Variance EAP reliability

General RR 0.63 0.60

Analogy 0.75 0.39

Anomaly 0.47 0.22

Antinomy 0.61 0.32

Antithesis 0.83 0.46

is averaged over its four reparameterizations). As Table 1
suggests, both the ETM and the GSM fit data better, indicating
that oblique bifactor models provide a better description
of RR than orthogonal bifactor model. In other words,
correlations of latent dimensions should not be ignored
while studying RR.

The results from Rasch Testlet Model are presented in
Table 2. The results indicate that the sample appears to be rather
homogeneous in terms of the ability distribution. Relatively small
variances of the latent abilities can explain the low reliability of
estimates. Variance of specific factors from this model measures a
degree of local dependence (Wang and Wilson, 2005). Therefore,
it is notable that analogy and antithesis subscales possess more
specific variance (LID) than the entire general factor.

The results from the ETM are presented in Table 3. The
results suggest that the variance of three components of
RR lowered compared to their estimates from orthogonal
Rasch Testlet Model (analogy, anomaly, and antithesis).
However, the variance of the fourth component (antinomy)
increased. Notably, the variance of the general RR did
not change across the models, but its reliability increased.
We emphasize that the interpretation of factors differs
across these models because of the difference in the
modeled structures.
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TABLE 3 | Internal structure of country-specific relational reasoning construct from
the ETM.

Scale Correlation with general RR Variance EAP reliability

General RR – 0.63 0.67

Analogy 0.27* 0.34 0.45

Anomaly −0.09* 0.17 0.12

Antinomy −0.70* 0.76 0.46

Antithesis −0.02 0.63 0.38

*p < 0.001.

TABLE 4 | Internal structure of country-specific relational reasoning construct from
the GSM.

Scale Scales Variance EAP reliability

Analogy Anomaly Antinomy

General RR – – – 0.57 0.75

Analogy 0.24 0.39

Anomaly 0.32* 0.25 0.35

Antinomy −0.55* -0.70* 0.86 0.44

Antithesis −0.21* -0.03 -0.53* 0.36 0.45

*p < 0.001.

The results from the ETM suggest that the better engineering
students perform in general on RR, the worse they are at defining
criteria to distinguish continuums (antinomy scale). However,
this exact subscale describes a measure of the ability to identify
compromises between different solutions (Dumas and Schmidt,
2015). This may be a sign of potential difficulties in future
engineering performance for students. At the same time, positive
relations between the overall reasoning and analogical reasoning
have been identified in several previous studies (Carpenter et al.,
1990) and demonstrated here. However, relations among other
forms of RR and general RR itself are negative or insignificant,
suggesting that these parts of RR do not relate to it in any way
that cannot be explained by other subscales (that is, controlling
for other subscales).

The last portion of the results came from the GSM (Table 4).
Note that these results are averaged across four recalibrations
of the model (skipping every specific factor from calibration).
However, the maximum difference between the same parameter
across different recalibrations is less than 0.02. The results suggest
that this model provides overall the most balanced and reliable
estimates of a general RR general as well as its specific factors.
That is, although variances of latent variables are not the biggest
across the three considered models, the reliability of them appears
to be optimal. Notably, the general RR returns the highest
reliability under the GSM structure along with shrinking its
variance. However, the variance of antinomy subscale reaches its
peak in this model, implying that this scale measures cognitive
skill distinct from general RR. Patterns of correlations of latent
variables support this conclusion.

These relationships may indicate how students achieve a score
on general RR. The abilities to find anomalies and analogies
are positively correlated. It is possible to conclude that these

abilities share, to some extent, the same cognitive processing:
to define which elements are to be excluded, one should define
what is similar among other elements. Interestingly, scores on
the anomaly subscale do not depend on scores on the antithesis
subscale: the ability to define an outlying sign of a breaking
pattern does not relate to the ability to find the opposite pattern.

DISCUSSION

Relational reasoning is believed to be an essential construct for
studying higher education learning. Nature of RR reflects the
ability of an individual to capture complex relations between
patterns within the stream of information. Accordingly, RR can
be conceptualized in a multitude of forms, based on the content
of information (e.g., professional knowledge or common sense),
its type (verbal, numerical, graphical), complexity of relations
(e.g., number of analyzed rules), or kind of relations (such as
resemblance or divergence). The analyzed TORR conceptualizes
it in four types of relations connecting abstract geometric
patterns: analogy (similarity), anomaly (discrepancy), antinomy
(incompatibility), and antithesis (polarity; Alexander et al., 2016a;
Dumas and Alexander, 2016). Many studies proved its predictive
power and importance, and the TORR itself has been shown to
exhibit good psychometric properties.

However, studying the nature of RR has been limited by the
traditions of psychometric modeling. Because RR itself has a
composite nature, researchers applied bifactor models to describe
it. As a result of this, extracted factor scores do not correlate
with each other because of technical necessity. For the case of
the TORR, this means that scores on the analogy subscale are
not related to general RR; nor are they related to any other
subscale. However, analogical reasoning is regarded as the basis
of cognitive processing (Gust et al., 2008). Therefore, at least this
subscale should be correlated with general RR as well as with
other subscales.

Bifactor modeling techniques require severe constraints to
be forced on relations of latent variables: they are assumed to
be orthogonal. As a result of this, their interpretation becomes
sophisticated and barely useful for practitioners (Bonifay et al.,
2017). That is, interpretation of specific factors implies that
they do not contain any information, described by the general
factor; nor do they contain information described by other
specific factors. Consequently, the domain of bifactor models
usually is limited by the separation of the general factor from
contexts of its manifestations. Primordial example of this is
modeling LID, caused by shared stimuli of items (DeMars, 2006).
Within this example, subscores do not possess any meaningful
interpretation from the beginning and are extracted only to
reach local independence of items on person parameters. This
is, clearly, not the case for composite psychological constructs,
where components have meaningful interpretation and cannot be
expected to be orthogonal.

Oblique bifactor models can be considered to overcome these
limitations. These models allow relaxing the assumption of total
orthogonality traditionally required for bifactor modeling. The
set of these models includes (but is not limited to) (1) the ETM
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(Paek et al., 2009) and (2) the GSM (Brandt, 2017). While the
ETM allows specific factors to correlate with the general factor
but not with each other, the GSM allows them to correlate with
each other but not with the general factor. As a result of this, these
models extract general factors that differ in interpretation and
psychological meaning but allow researchers to study the inner
structure of psychological constructs. However, these models do
not exhaust the set of oblique bifactor models; e.g., one can
conceive models with zero constraints on the sum of some or all
values in the variance–covariance matrix (e.g., Robitzsch et al.,
2020). Nonetheless, the interpretation of such models is next to
impossible because it is next to impossible to have theoretical
expectations of this kind. It appears such models can only be used
to improve model fit in the case when the orthogonal bifactor
model exhibits inappropriate model fit. Despite that, further
investigation of oblique bifactor models appears to be promising.
Such further research include other constraints on the variance–
covariance matrix (including nonzero constraints on the sum
of its values) and using strong priors about variance–covariance
values in the Bayesian paradigm.

For the TORR example, the GSM is the best-fitting
model. This means that after extraction of the general RR
subscales preserve some relations between each other. Also,
these correlations are more important than correlations of the
subscales with the general RR. This means that the manifestations
of the RR differ more significantly in their relation to each other,
whereas their relation to the RR is more homogeneous. Moreover,
the assumption of their orthogonality leads to misspecification
of the measurement model. Combining results of the ETM and
the GSM, several conclusions arise. First, cognitive processing
of analogies is the basis of RR, as well as other intellectual
activities (Carpenter et al., 1990; Gust et al., 2008). Second,
students of engineering programs can increase their total RR
scores by having higher scores of one of analogy and anomaly,
antinomy, or antithesis abilities. Because this indicates, to some
extent, mutually exclusive groups of cognitive abilities, a possible
investigation of these results may be directed profiling of
cognitive abilities. Third, the most outlying manifestation of RR
is antinomy. It correlates negatively to negligibly with other
components of RR and the general RR itself. More in-depth
investigation of this cognitive process is of great interest.

Unfortunately, the TORR subscores from oblique bifactor
models appear to be unreliable, as well as from orthogonal
bifactor model. Although this may not be the case for other
instruments, this is a natural result for bifactor modeling
(Haberman and Sinharay, 2010). However, for some purposes,
it is required to have specific subscores with reliable estimates.
There are several ways to do so. One of them is recalibrating data
within correlated factors model and defactor ignoring model fit
indices. This approach is unpopular in the statistical literature,
although it fits to willingness to not restrict interpretation to
a single model (Organization for Economic Co-operation and
Development, 2005; Brandt et al., 2014). Another approach is the
application of the composite model, which combines reflective
and formative approaches within a single model (Wilson and
Gochyyev, 2020). However, this model is more or less equivalent
to the correlated factors model and therefore describes the same

relations between subscales. While bifactor models extract the
general factor from the subscales, the composite model distributes
it across them in the same manner as models without general
factor do. As a result of this, it provides high estimates of
reliability for subscores.

Several significant limitations cannot be ignored. In this
study, we did not discuss the TORR comparability across
various demographics groups, for two reasons. The first reason
is regarding the graphical nature of the test and therefore
the plausible assumption for item comparability. Second,
previous studies revealed decent item-level cross-demographics
comparability of the TORR in terms of race and gender
(Dumas, 2016; Dumas and Alexander, 2018). However, those
demographic groups were sampled inside the United States.
Therefore, cross-national comparability of the TORR remains
unknown. Nevertheless, studying cross-national comparability in
terms of item behavior is possible using modifications of the
orthogonal bifactor model that allow for the decomposition of
differential item functioning into testlet-based and item-based
components (Paek and Fukuhara, 2015; Fukuhara and Paek,
2016). Applications of this approach to enhanced bifactor models
and changes in their interpretation are of interest. Nonetheless,
since the topic of comparability lies beyond the scope of this
article, we did not test it. Another limitation concerns the
interpretation of subscores and their relations. Although they
can be described in terms of original names of the subscales,
further theoretical and, probably, experimental study of subscales
purified from general RR and subscales purified from each other
is required. We also did not consider higher-order model. Even
this model is nested within the same class of hierarchical models
as bifactor models (Yung et al., 1999; Rijmen, 2010), they reflect
latent structures, which can be analytically inferred from the
correlated factors model without general factor. Therefore, the
second-order models are vulnerable to the positive manifold
effect. Moreover, they do not imply the use of specific factor
scores, which makes them less useful for practitioners.

Probably, the most significant limitation of this study
concerns the application of only Rasch-type models. The
used oblique bifactor models were proposed and studied
only within Rasch modeling approach. This guarantees that
these models return unbiased estimates. Moreover, Rasch
modeling setup provides numerical stability, which is desirable
for such heavily parametrized models as oblique bifactor
models. However, the counterparts of the described models
can be conceived within 2PL (Birnbaum, 1968) and, probably,
other IRT models. Rasch modeling imposes strict assumptions
regarding item discrimination parameters. On the one hand,
it guarantees that the probability of solving an easier item is
always (on any level of ability) higher than the probability
of solving a harder item. This allows for a straightforward
interpretation of parameters and facilitates the development of
the continuum of observed behavior. On the other hand, it
implicates that all items share an equal portion of variance
with corresponding latent variable. This assumption may
not be as feasible for psychological constructs as it is for
educational constructs. Therefore, replication of this study under
IRT models with more parameters per item is of interest.
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Given, of course, that oblique bifactor models are as well-behaved
under those IRT models as under Rasch modeling framework.
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