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The precondition of the measurement of longitudinal learning is a high-quality
instrument for longitudinal learning diagnosis. This study developed an instrument for
longitudinal learning diagnosis of rational number operations. In order to provide a
reference for practitioners to develop the instrument for longitudinal learning diagnosis,
the development process was presented step by step. The development process
contains three main phases, the Q-matrix construction and item development, the
preliminary/pilot test for item quality monitoring, and the formal test for test quality
control. The results of this study indicate that (a) both the overall quality of the tests
and the quality of each item are good enough and that (b) the three tests meet the
requirements of parallel tests, which can be used as an instrument for longitudinal
learning diagnosis to track students’ learning.

Keywords: learning diagnosis, longitudinal assessments, rational number operations, parallel tests, longitudinal
cognitive diagnosis

INTRODUCTION

In recent decades, with the development of psychometrics, learning diagnosis (Zhan, 2020b)
or cognitive diagnosis (Leighton and Gierl, 2007), which objectively quantifies students’ current
learning status, has drawn increasing interest. Learning diagnosis aims to promote students’
learning according to diagnostic results which typically including diagnostic feedback and
interventions. However, most existing cross-sectional learning diagnoses are not concerned about
measuring growth in learning. By contrast, longitudinal learning diagnosis evaluates students’
knowledge and skills (collectively known as latent attributes) and identifies their strengths and
weaknesses over a period (Zhan, 2020b).

A complete longitudinal learning diagnosis should include at least two parts: an instrument
for longitudinal learning diagnosis of specific content and a longitudinal learning diagnosis model
(LDM). The precondition of the measurement of longitudinal learning is a high-quality instrument
for longitudinal learning diagnosis. The data collected from the instrument for longitudinal
learning diagnosis can provide researchers with opportunities to develop longitudinal LDMs
that can be used to track individual growth over time. Additionally, in recent years, several
longitudinal LDMs have been proposed, for review, see Zhan (2020a). Although the usefulness
of these longitudinal LDMs in analyzing longitudinal learning diagnosis data has been evaluated
through some simulation studies and a few applications, the development process of an instrument

Frontiers in Psychology | www.frontiersin.org 1 September 2020 | Volume 11 | Article 2246

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://doi.org/10.3389/fpsyg.2020.02246
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fpsyg.2020.02246
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyg.2020.02246&domain=pdf&date_stamp=2020-09-02
https://www.frontiersin.org/articles/10.3389/fpsyg.2020.02246/full
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-11-02246 September 1, 2020 Time: 9:8 # 2

Tang and Zhan An Instrument for Longitudinal Learning Diagnosis

for longitudinal learning diagnosis is rarely mentioned (cf.
Wang et al., 2020). The lack of an operable development
process of instrument hinders the application and promotion
of longitudinal learning diagnosis in practice and prevents
practitioners from specific fields to apply this approach to track
individual growth in specific domains.

Currently, there are many applications use cross-sectional
LDMs to diagnose individuals’ learning status in the field of
mathematics because the structure of mathematical attributes is
relative clear to be identified, such as fraction calculations
(Tatsuoka, 1983; Wu, 2019), linear algebraic equations
(Birenbaum et al., 1993), and spatial rotations (Chen et al.,
2018; Wang et al., 2018). Some studies also apply cross-sectional
LDMs to analyze data from large-scale mathematical assessments
(e.g., George and Robitzsch, 2018; Park et al., 2018; Zhan et al.,
2018; Wu et al., 2020). However, most of these application
studies use cross-sectional design and cannot track the individual
growth of mathematical ability.

In the field of mathematics, understanding rational numbers
is crucial for students’ mathematics achievement (Booth
et al., 2014). Rational numbers and their operations are one
of the most basic concepts of numbers and mathematical
operations, respectively. The fact that many effects are put
into rational number teaching makes many students and
teachers struggle to understand rational numbers (Cramer
et al., 2002; Mazzocco and Devlin, 2008). The content of
rational number operation is the first challenge that students
encounter in the field of mathematics at the beginning
of junior high school. Learning rational number operation
is not only the premise of the subsequent learning of
mathematics in junior high school but is also an important
opportunity to cultivate students’ interest and confidence in
mathematics learning.

The main purpose of this study is to develop an instrument
for longitudinal learning diagnosis, especially for the content of
rational number operations. We present the development process
step by step to provide a reference for practitioners to develop the
instrument for longitudinal learning diagnosis.

DEVELOPMENT OF THE INSTRUMENT
FOR LONGITUDINAL LEARNING
DIAGNOSIS

As the repeated measures design is not always feasible
in longitudinal educational measurement, in this study, the
developed instrument is a longitudinal assessment consisting
of parallel tests. The whole development process is shown in
Figure 1. In the rest of the paper, we describe the development
process step by step.

Recognition of Attributes and Attribute
Hierarchy
The first step in designing and developing a diagnostic assessment
is recognizing the core attributes involved in the field of study
(Bradshaw et al., 2014). In the analysis of previous studies,

FIGURE 1 | The development process of the instrument for longitudinal
learning diagnosis.

the confirmation of attributes mainly adopted the method
of literature review (Henson and Douglas, 2005) and expert
judgment (Buck et al., 1997; Roduta Roberts et al., 2014; Wu,
2019). This study used the combination of these two methods.

First, relevant content knowledge was extracted according to
the analysis of mathematics curriculum standards, mathematics
exam outlines, teaching materials and supporting books, existing
provincial tests, and chapter exercises. By reviewing the
literature, we find that the existing researches mainly focus
on one or several parts of rational number operation. For
example, fraction addition and subtraction is the most involved
in existing researches (e.g., Tatsuoka, 1983; Wu, 2019). In
contrast, it is not common to focus on the whole part of
rational number operation in diagnostic tests. Ning et al.
(2012) pointed out that rational number operation contains 15
attributes; however, such a larger number of attributes does not
apply in practice.
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TABLE 1 | Attribute framework of the rational number operation.

Label Attribute Description

A1 Rational number Concepts and classifications

A2 Related concepts of the
rational number

Opposite number, absolute value

A3 Number axis Concept, number conversion,
comparison of the size of numbers

A4 Addition and subtraction of
rational numbers

Addition, subtraction, and addition
operation rules

A5 Multiplication and division of
rational numbers

Multiplication, involution, multiplication
operation rule, division and reciprocal;
Reduction of fractions to a common
denominator

A6 Mixed operation of rational
numbers

First involution, then multiplication and
division, and finally addition and
subtraction; if there are numbers in
parentheses, calculate the ones in the
parentheses first.

FIGURE 2 | Attribute hierarchy of the rational number operation. Note that
A1 = rational number; A2 = related concepts of rational numbers; A3 = axis;
A4 = addition and subtraction of rational numbers; A5 = multiplication and
division of rational numbers; and A6 = mixed operation of rational numbers.

Second, according to the attribute framework based on
the diagnosis of mathematics learning among students in
20 countries in the Third International Math and Science
Study–Revised (Tatsuoka et al., 2004), the initial attribute
framework and the corresponding attribute hierarchy (Leighton
et al., 2004) of this study were determined after a discussion
among six experts, including two frontline mathematics teachers
who have more than 10 years’ experience in mathematics
education, two graduate students majoring in mathematics, and
two graduate students majoring in psychometrics (see Table 1
and Figure 2).

Third, a reassessment by another group of eight experts
(frontline mathematics teachers) and the think-aloud protocol
analysis (Roduta Roberts et al., 2014) were used to verify
the rationality of the initial attribute framework and that
of the corresponding attribute hierarchy. All experts agreed
that the attributes and their hierarchical relationships were
reasonable. In the think-aloud protocol analysis, six items
were initially prepared according to the initial attribute
framework and attribute hierarchy (see Table 2). Then, six
seventh graders were selected according to above-average

TABLE 2 | Items in think-aloud protocol analysis (original items are written
in Chinese).

Please say out aloud your thoughts when you solve the problem.

(1) Which one of the following statement about rational numbers is correct? ().

(A) Rational numbers can be divided into two categories: positive rational
numbers and negative rational numbers

(B) The set of positive integers and the set of negative integers together
constitute the set of integers

(C) Integers and fractions are collectively called rational numbers

(D) Positive numbers, negative numbers, and zeros are collectively called
rational numbers

(2) Which rational number’s inverse equals to itself? ().

(A) () 1 (B) −1 (C) 0 (D) 0 and 1

(3) On the number axis, point A indicates −1. Now A starts to move, first move 3
units to the left, then 9 units to the right, and 5 units to the left. At this time, what
the number is point A indicates? ().

(A) −1 (B) 0 (C) 1 (D) 8

(4) Computing: 9+ (−13)− (−7)+ (−5) =

(5) Computing: (−2)× 14÷ (− 1
7 )× (−1)5

=

(6) Computing: (− 2
5 )× (− 3

7 )− 2
7 −

3
5 ÷ (− 7

3 ) =

performance, gender balance, willingness to participate, and
ability to express their thinking process (Gierl et al., 2008). The
experimenter individually tested these students and recorded
their responses; in the response process, the students were
required to say aloud their problem-solving train of thought.
Taking the responses of two students to item 6 as an
example, Figure 3 and Table 3 present their problem-solving
process and thinking process, respectively. Although different
students used different problem-solving processes, they all used
addition, subtraction, multiplication, and division to solve the
items of the mixed operation of rational numbers. Therefore,
mastering A4 and A5 are prerequisites to mastering A6,
and they validate the rationality of the attribute hierarchy
proposed by experts.

Finally, as presented in Table 1, the attributes of rational
number operation fell into the following six categories: (A1)
rational number, (A2) related concepts of rational numbers,
(A3) axis, (A4) addition and subtraction of rational numbers,
(A5) multiplication and division of rational numbers, and (A6)
mixed operation of rational numbers. The six attributes followed
a hierarchical structure (Figure 2), which indicates that A1–
A3 are structurally independent and that A4 and A5 are both
needed to master A6.

Q-Matrix Construction and Item
Development
According to the attribute hierarchy, A4 and A5 are both
needed to master A6. Therefore, the attribute patterns that
contain A6 but lack either A4 or A5 are unattainable.
Theoretically, there are 40 rather than 26 = 64 attainable
attribute patterns. Correspondingly, the initial Q-matrix (i.e.,
test blueprint) (Tatsuoka, 1983) was constructed based on these
40 permissible attribute patterns and with the following factors
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FIGURE 3 | (A,B) Problem-solving process of two students in the think-aloud protocol analysis. Note that in item 6, (− 2
5 )× (− 3

7 )− 2
7 −

3
5 ÷ (− 7

3 )with the required
attribute pattern (000111).

TABLE 3 | The thinking process of two students in think-aloud protocol analysis.

Student 1:

Step 1: Read the item, and judge that the content knowledge investigated in
this item is the mixed operation of rational numbers;

Step 2: Recall the rule for mixed operation of rational numbers: First power,
then multiplication and division, final addition and subtraction; If there are
parentheses, count them in parentheses first;

Step 3: Make sure multiply and divide first: (− 2
5 )× (− 3

7 ) = 6
35 , and change

division by (− 7
3 ) to multiply by(− 3

7 );

Step 4: Use multiplication: (− 3
5 )× (− 3

7 ) = 9
35 ;

Step 5: Use addition, and get the answer:

Student 4:

Step 1: Read the item, and judge that the content knowledge investigated in
this item is the mixed operation of rational numbers;

Step 2: Recall the rule for mixed operation of rational numbers: First power,
then multiplication and division, final addition and subtraction; If there are
parentheses, count them in parentheses first;

Step 3: Observe dividing by (− 7
3 ) can be changed to multiplying by (− 3

7 ), the
multiplication distribution law can be used;

Step 4: Use the multiplication distribution law, put (− 3
7 )outside of the

parentheses, then (− 2
5 )+ (− 3

5 ) = (−1) in the parentheses;

Step 5: Use subtraction, and get the answer.

Item 6: (− 2
5 )× (− 3

7 )− 2
7 −

3
5 ÷ (− 7

3 )with required attribute pattern (000111).

in mind: (a) the Q-matrix contains at least one reachability
matrix for completeness (Ding et al., 2010); (b) each attribute
is examined at least twice, and (c) the test time is limited
to a teaching period of 40 min to ensure that students have
a high degree of involvement. Finally, the test length was
determined as 18, including 12 multiple-choice items and 6
calculation items (see Figure 4). Notice that all items are
dichotomous scored in current study. To ensure that the
initial item bank contains enough items, we prepared 4–5
items for each of the 18 attribute patterns contained in the
initial Q-matrix. Finally, an initial item bank containing 80
items was formed.

Preliminary Test: Item Quality Monitoring
Participants
In the preliminary test, 296 students (145 males and 151 females)
were conveniently sampled from six classes in grade seven of
junior high school A1.

Procedure
To avoid the fatigue effect, 80 items were divided into two tests
(preliminary test I and preliminary test II, with 40 items in each
test). All participants took part in the two tests. Each test lasted
for 90 min, and the two tests were completed within 48 h.

Analysis
Item difficulty and discrimination were computed based on the
classical test theory. The differential item functioning (DIF)
was checked using the difR package (version 5.0) (Magis et al.,
2018) in R software.

Results
A total of 296 students took the preliminary test. After data
cleaning, 270 and 269 valid tests were collected in preliminary
test I and preliminary test II, respectively. The effective rates of
preliminary test I and preliminary test II were 91.22 and 91.19%,
respectively. Table 4 presents the basic sample information and
descriptive statistics of the raw scores. The distribution of the raw
scores for the two tests was the same.

Table 5 presents the average difficulty and the average
discrimination of the preliminary test (the difficulty and
discrimination of each item are presented in Table 6). In classical
test theory, item difficulty (i.e., the pass rate) is equal to the ratio
of the number of people who have a correct response to the
total number of people, and item discrimination is equal to the
difference between the pass rate of the upper 27% of the group

1Three schools were used in the complete study. In the instrument development,
students in schools A and B participated in the preliminary test and the formal test,
respectively; students in school C participate in the quasi-experiment.
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FIGURE 4 | Q-matrix, where blank means “0” and gray means “1.” Note that A1 = rational number; A2 = related concepts of rational numbers; A3 = axis;
A4 = addition and subtraction of rational numbers; A5 = multiplication and division of rational numbers; and A6 = mixed operation of rational numbers.

TABLE 4 | Basic sample information and descriptive statistics of raw scores in the
preliminary test.

Preliminary test Male Female Total Average score

I 133 137 270 14.77 (8.59)

II 133 136 269 14.78 (8.33)

Note that each test has a full mark of 40. The standard deviation is
indicated in parentheses.

TABLE 5 | Average difficulty and average discrimination of the preliminary tests
(based on classical test theory).

Preliminary test Average difficulty Average discrimination

I 0.37 (0.15) 0.52 (0.18)

II 0.37 (0.14) 0.51 (0.19)

Note that the standard deviation is indicated in parentheses.

and that of the lower 27% of the group. In general, a high-quality
test should have the following characteristics: (a) the average
difficulty of the test is 0.5, (b) the difficulty of each item is between
0.2 and 0.8, and (c) the discrimination of each item is greater than
0.3. Based on the above three criteria, we deleted eight items in
preliminary test I and seven items in preliminary test II.

Table 7 presents the results of the DIF testing of the
preliminary tests. DIF is an important index to evaluate the
quality of an item. If an item has a DIF, it will lead to a significant
difference in the scores of two observed groups (male and female)
in the case of a similar overall ability. In the preliminary tests, the
Mantel-Haenszel method (Holland and Thayer, 1986) was used
to conduct DIF testing. Male is treated as the reference group,
and female is treated as the focal group. The results indicated
that items 28 and 36 in preliminary test I had DIF, and no
item in preliminary test II had DIF. According to item difficulty
and discrimination in the above analysis, these two items were
classified as items to be deleted.

By analyzing item difficulty, item discrimination, and DIF, 65
items finally remained (including 32 items in preliminary test
I and 33 items in preliminary test II) to form the final item
bank. Among them, there are 3–5 candidate items corresponding
to each of the 18 attribute patterns in the initial Q-matrix.
Furthermore, based on the initial Q-matrix, three learning
diagnostic tests with the same Q-matrix were randomly extracted
from the final item bank to form the instrument of the formal
tests: formal test A, formal test B, and formal test C.

Formal Test: Q-Matrix Validation,
Reliability and Validity, and Parallel Test
Checking
It was possible that the initial Q-matrix was not adequately
representative despite the level of care exercised. Thus, empirical
validation of the initial Q-matrix was still needed to improve the
accuracy of subsequent analysis (de la Torre, 2008). Although
item quality was controlled in the preliminary test, it was
necessary to ensure that these three tests, as instruments for
longitudinal learning diagnosis, met the requirements of parallel
tests. Only in this way could the performance of students at
different time points be compared.

Participants
In the formal tests, 301 students (146 males and 155 females)
were conveniently sampled from six classes in grade seven of
junior high school B.

Procedure
All participants were tested simultaneously. The three tests (i.e.,
formal tests A, B, and C) were tested in turn. Each test lasted
40 min, and the three tests were completed within 48 h.

Analysis
Except for some descriptive statistics, the data in the formal
test were mainly analyzed based on the LDMs using the CDM
package (version 7.4-19) (Robitzsch et al., 2019) in R software.
Including the model–data fitting, the empirical validation of the
initial Q-matrix, the model parameter estimation, and the testing
of reliability and validity were conducted. In the parallel test
checking, the consistency of the three tests among the raw scores,
the estimated item parameters, and the diagnostic classifications
were calculated.

The deterministic-input, noisy “and” (DINA) model (Junker
and Sijtsma, 2001), the deterministic-input, noisy “or” (DINO)
model (Templin and Henson, 2006), and the general DINA
(GDINA) model (de la Torre, 2011) were used to fit the data.
In the model–data fitting, as suggested by Chen et al. (2013),
the AIC and BIC were used for the relative fit evaluation, and
the RMSEA, SRMSR, MADcor, and MADQ3 were used for
the absolute fit evaluation. In the model parameter estimation,
only the estimates of the best-fitting model were presented. In
the empirical validation of the initial Q-matrix, the procedure
suggested by de la Torre (2008) was used. In the model-based
DIF checking, the Wald test (Hou et al., 2014) was used. In the
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TABLE 6 | Item difficulty and discrimination of preliminary test (based on
classical test theory).

Items Difficulty Discrimination

Preliminary
test I

Preliminary
test II

Preliminary
test I

Preliminary
test II

1 0.56 0.52 0.68 0.66

2 0.56 0.18 0.59 0.15

3 0.47 0.54 0.68 0.67

4 0.37 0.50 0.49 0.70

5 0.18 0.43 0.18 0.51

6 0.65 0.22 0.56 0.64

7 0.75 0.64 0.45 0.63

8 0.32 0.36 0.37 0.37

9 0.13 0.52 0.18 0.75

10 0.48 0.30 0.67 0.40

11 0.41 0.41 0.62 0.51

12 0.50 0.49 0.56 0.59

13 0.37 0.33 0.45 0.41

14 0.38 0.31 0.30 0.36

15 0.26 0.28 0.42 0.26

16 0.30 0.42 0.37 0.41

17 0.28 0.20 0.78 0.38

18 0.27 0.38 0.75 0.51

19 0.32 0.27 0.75 0.78

20 0.21 0.12 0.29 0.19

21 0.26 0.26 0.78 0.74

22 0.23 0.32 0.68 0.82

23 0.21 0.33 0.74 0.42

24 0.14 0.15 0.38 0.22

25 0.65 0.22 0.53 0.67

26 0.54 0.24 0.60 0.12

27 0.47 0.20 0.62 0.75

28 0.27 0.65 0.27 0.62

29 0.28 0.54 0.29 0.62

30 0.37 0.31 0.51 0.51

31 0.33 0.64 0.40 0.58

32 0.53 0.47 0.77 0.63

33 0.17 0.21 0.16 0.26

34 0.40 0.38 0.45 0.48

35 0.50 0.33 0.53 0.32

36 0.19 0.52 0.40 0.79

37 0.40 0.39 0.73 0.44

38 0.38 0.50 0.56 0.52

39 0.41 0.29 0.62 0.25

40 0.27 0.41 0.77 0.73

Items to be deleted including items 5, 9, 20, 24, 28, 29, 33, and 36 in preliminary
test I, and items 2, 15, 20, 24, 26, 33, and 39 in preliminary test II.

testing of reliability and validity, the classification accuracy (Pa)
and consistency (Pc) indices (Wang et al., 2015) were computed.

Results
Descriptive statistics of raw scores
A total of 301 students took the formal test. After data cleaning,
the same 277 valid tests (including those from 135 males

TABLE 7 | Differential item functioning testing of preliminary test.

Items Preliminary test I Preliminary test II

p deltaMH Code p deltaMH Code

1 0.9012 0.0296 A 0.9446 −0.0276 A

2 0.1318 1.2167 B 0.9412 −0.0313 A

3 0.9508 0.1292 A 0.9317 0 A

4 0.7133 0.3546 A 0.9368 0 A

5 0.9155 −0.1626 A 0.9365 0 A

6 0.4241 0.7871 A 0.9457 0 A

7 0.9055 −0.182 A 0.9448 −0.0289 A

8 0.2583 1.333 B 0.9368 0 A

9 0.6578 0.4168 A 0.9428 0 A

10 0.1922 −0.9753 A 0.9445 0.0841 A

11 0.8356 −0.2203 A 0.9482 0 A

12 0.9223 0.0304 A 0.9455 0 A

13 0.7281 −0.3246 A 0.9383 0 A

14 0.3409 −0.8385 A 0.9416 0 A

15 0.4766 −0.6529 A 0.9483 0 A

16 0.5684 0.8441 A 0.9343 0 A

17 0.8443 0.4158 A 0.9441 0 A

18 0.7296 0.4761 A 0.9131 0 A

19 0.8582 0.2451 A 0.9269 0 A

20 0.9649 0.2428 A 0.9131 0 A

21 0.3897 1.4042 B 0.9272 0 A

22 0.9251 0.5733 A 0.9442 0 A

23 0.7546 0.5935 A 0.9179 0 A

24 0.9732 0.072 A 0.9145 0 A

25 0.5205 −0.4839 A 0.9448 0 A

26 0.9167 0.0326 A 0.9233 0 A

27 0.2342 0.9039 A 0.8897 0 A

28 0.0425 −1.5031 C 0.9448 0 A

29 0.8248 −0.251 A 0.9466 0 A

30 0.6341 0.4249 A 0.9442 0 A

31 0.3118 −0.7995 A 0.9445 0 A

32 0.3405 −0.9153 A 0.9429 −0.0299 A

33 0.7845 −0.3828 A 0.9403 0 A

34 0.4017 0.6477 A 0.9466 −0.0264 A

35 0.2172 −0.9052 A 0.9457 0 A

36 0.0365 1.9793 C 0.937 0 A

37 0.3919 −0.746 A 0.9449 0 A

38 0.8351 −0.2381 A 0.9454 −0.0271 A

39 0.8637 −0.2109 A 0.9464 0 A

40 0.1209 1.8533 C 0.9386 0.1058 A

DIF items in bold (p < 0.05); A, B, and C are the codes of effect size (i.e., the
absolute value of deltaMH), where A means negligible effect, B means moderate
effect, and C means large effect.

TABLE 8 | Descriptive statistics of raw scores in the formal tests.

Formal
test

Average
score

Mode Median Minimum Maximum

A 7.24 (4.95) 2 6 0 18

B 7.36 (5.03) 3 6 0 18

C 7.31 (4.98) 2 and 3 6 0 18

Note that the standard deviation is indicated in parentheses. The tests have a
full mark of 18.

Frontiers in Psychology | www.frontiersin.org 6 September 2020 | Volume 11 | Article 2246

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-11-02246 September 1, 2020 Time: 9:8 # 7

Tang and Zhan An Instrument for Longitudinal Learning Diagnosis

TABLE 9 | Relative and absolute model–data fit indices.

Formal test Model AIC BIC RMSEA SRMSR MADcor MADQ3

A DINA 4646.96 4918.76 0.038 0.057 0.041 0.055

DINO 4822.67 5094.47 0.050 0.096 0.066 0.071

GDINA 4635.77 4994.55 0.057 0.046 0.032 0.057

B DINA 4843.47 5115.27 0.065 0.061 0.046 0.064

DINO 4994.34 5266.14 0.048 0.094 0.069 0.067

GDINA 4834.38 5193.15 0.064 0.054 0.039 0.063

C DINA 4877.31 5149.11 0.041 0.070 0.048 0.062

DINO 4975.42 5247.22 0.040 0.093 0.065 0.066

GDINA 4822.55 5182.24 0.060 0.049 0.049 0.063

TABLE 10 | Revision suggestion based on the empirical validation of the initial Q-matrix.

Formal test Item Initial required attribute pattern Revision suggestion

A1 A2 A3 A4 A5 A6 A1 A2 A3 A4 A5 A6

A 9 0 0 0 1 0 0 0 0 1 1 1 1

B 9 0 0 0 1 0 0 0 1 1 1 1 0

C 9 0 0 0 1 0 0 0 0 1 1 0 0

TABLE 11 | Classification accuracy and consistency indices based
on the DINA model.

Attributes Formal test A Formal test B Formal test C

Pa Pc Pa Pc Pa Pc

A1 0.96 0.93 0.95 0.92 0.94 0.90

A2 0.93 0.88 0.98 0.97 0.97 0.94

A3 0.94 0.89 0.96 0.93 0.93 0.87

A4 1.00 1.00 1.00 1.00 1.00 1.00

A5 1.00 1.00 0.99 0.98 0.99 0.99

A6 1.00 1.00 1.00 0.99 1.00 0.99

Attribute pattern 0.85 0.74 0.89 0.84 0.85 0.77

TABLE 12 | Reliability of formal tests.

Formal test Cronbach’ α Split-half reliability

A 0.887 0.907

B 0.889 0.923

C 0.886 0.915

rAB 0.97**

rAC 0.96**

rBC 0.96**

Split-half reliability is calculated according to the items of odd and even numbers;
rAB = the parallel-forms reliability of tests A and B; rAC = the parallel-forms reliability
of tests A and C; rBC = the parallel-forms reliability of tests B and C; ∗∗p < 0.01.

and 142 females) were collected from each of the three
tests; the effective rate of the formal tests was 93.57%.
Table 8 presents the descriptive statistics of raw scores in the
formal tests. The average, standard deviation, mode, median,
minimum, and maximum of raw scores of the three tests were
the same.

TABLE 13 | Item parameter estimates in formal tests.

Items Formal test A Formal test B Formal test C

g s g s g s

1 0.4927 0.0861 0.3972 0.0433 0.3849 0.0348

2 0.0155 0.1101 0.3044 0.1604 0.3588 0.1948

3 0.1046 0.0978 0.0009 0.0412 0.0771 0.0775

4 0.0796 0.0770 0.1431 0.0510 0.1248 0.1016

5 0.1721 0.3809 0.1590 0.1940 0.1702 0.3689

6 0.2260 0.4177 0.2739 0.3422 0.2373 0.4373

7 0.2774 0.1514 0.2868 0.0431 0.2667 0.0669

8 0.1785 0.2215 0.2924 0.2209 0.2915 0.3311

9 0.2827 0.1860 0.2984 0.1746 0.3089 0.1629

10 0.2676 0.3429 0.2605 0.3315 0.2747 0.2124

11 0.2921 0.3247 0.3427 0.3018 0.2739 0.2673

12 0.1314 0.3891 0.2270 0.2827 0.2387 0.2271

13 0.0001 0.0001 0.0001 0.0119 0.0001 0.0468

14 0.0001 0.0233 0.0001 0.0468 0.0001 0.0119

15 0.0443 0.0001 0.0224 0.0417 0.0310 0.0001

16 0.0201 0.0001 0.0201 0.1881 0.0256 0.1310

17 0.0371 0.0711 0.0510 0.2085 0.0464 0.1626

18 0.0093 0.0532 0.0099 0.0403 0.0140 0.0583

Mean 0.1462 0.1630 0.1717 0.1513 0.1736 0.1607

g = guessing parameter; s = slip parameter.

Model–data fitting
The parameters in an LDM can be interpreted only when
the selected model fits the data. The fit indices presented in
Table 9 provide information about the data fit of three LDMs,
namely DINA, DINO, and GDINA, to determine the best-fitting
model. Absolute fit indices hold that values near zero indicate
an absolute fit (Oliveri and von Davier, 2011; Ravand, 2016).
The result indices indicated that all three models fitted the data
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TABLE 14 | Diagnostic classifications of students in formal test.

Attribute pattern Formal test A Formal test B Formal test C

Proportion Number of students Proportion Number of students Proportion Number of students

000000 20.06% 56 29.13% 81 19.02% 53

100000 0.00% 0 0.00% 0 6.89% 19

010000 19.38% 54 15.00% 42 6.82% 19

110000 6.59% 18 4.64% 13 11.43% 32

001000 6.16% 17 2.61% 7 5.35% 15

101000 0.00% 0 0.43% 1 1.50% 4

011000 0.92% 3 0.86% 2 1.81% 5

111000 12.99% 36 12.72% 35 14.01% 39

000100 1.53% 4 0.92% 3 0.00% 0

100100 0.00% 0 0.47% 1 2.09% 6

010100 0.75% 2 1.59% 4 1.80% 5

110100 2.58% 7 1.63% 5 1.50% 4

001100 0.00% 0 0.19% 1 0.30% 1

101100 1.09% 3 0.87% 2 0.84% 2

111100 0.50% 1 0.49% 1 1.05% 3

100010 0.23% 1 0.29% 1 0.00% 0

010010 0.49% 1 0.77% 2 0.42% 1

110010 0.56% 2 1.16% 3 0.71% 2

011010 0.00% 0 0.00% 0 0.26% 1

111010 1.56% 4 1.34% 4 0.72% 2

100110 2.06% 6 1.85% 5 1.09% 3

010110 0.00% 0 0.21% 1 0.32% 1

110110 0.51% 1 0.54% 1 0.00% 0

101110 0.00% 0 0.32% 1 0.00% 0

111110 0.98% 3 0.62% 2 0.71% 2

101111 0.48% 1 1.55% 4 0.00% 0

111111 20.56% 57 19.83% 55 21.34% 59

Attribute patterns with 0 person in all three tests are omitted.

well. For relative fit indices, smaller values indicate a better fit.
The DINA model was preferred based on the BIC, and the
GDINA model was preferred based on the AIC. According to the
parsimony principle (Beck, 1943), a simpler model is preferred
if its performance is not significantly worse than that of a more
complex model. Both AIC and BIC introduced a penalty for
model complexity. However, as the sample size was included in
the penalty in BIC, the penalty in BIC was larger than that in AIC.
The DINA model was chosen as the best-fitting model given the
small sample size of this study, which might not meet the needs of
an accurate parameter estimation of the GDINA model, and the
item parameters in the DINA model having more straightforward
interpretations. Therefore, the DINA model was used for the
follow-up model-based analyses.

Q-matrix validation
A misspecified Q-matrix can seriously affect the parameter
estimation and the results of diagnostic accuracy (de la Torre,
2008; Ma and de la Torre, 2019). Notice that the Q-matrix
validation can also be skipped when the model fits the data
well. Table 10 presents the revision suggestion based on the
empirical validation of the initial Q-matrix. In all three tests,
the revision suggestion was only for item 9. However, after the

subjective and empirical judgment of the experts (Ravand, 2016),
this revision suggestion was not recommended to be adopted.
Let us take item 9 (“Which number minus 7 is equal to −10?”)
in formal test A as an example. Clearly, this item does not
address the suggested changes in A3, A5, and A6. As the expert-
defined Q-matrix was consistent with the data-driven Q-matrix,
the initial Q-matrix was used as the confirmed Q-matrix in the
follow-up analyses.

Reliability and validity
Classification accuracy (Pa) and consistency (Pc) are two
important indicators for evaluating the reliability and validity of
classification results. According to Ravand and Robitzsch (2018),
values of at least 0.8 for the Pa index and 0.7 for the Pc index
can be considered acceptable classification rates. As shown in
Table 11, both pattern- and attribute-level classification accuracy
and consistency were within the acceptable range. Additionally,
Cronbach’s α, split-half reliability, and parallel form reliability
were also computed based on the raw scores (see Table 12).
The attribute framework of this study was reassessed by several
experts, and the Q-matrix was confirmed, indicating that the
content validity and the structural validity of this study were
good. To further verify the external validity, the correlation
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between the raw score of each formal test and the raw score of a
monthly exam (denoted as S; the content of this test is the chapter
on “rational numbers”) was computed (rAS = 0.95, p < 0.01;
rBS = 0.95, p < 0.01; rCS = 0.94, p < 0.01). The results indicated
that the reliability and validity of all three tests were good.

Parallel test checking
To determine whether there were significant differences in the
performance of the same group of students in the three tests,
the raw scores, estimated item parameters (Table 13), and
diagnostic classifications (Table 14) were analyzed by repeated
measures ANOVA. The results indicated no significant difference
in the raw scores [F(2,552) = 1.054, p = 0.349, BF10 = 0.0382],
estimated guessing parameters [F(2,34) = 1.686, p = 0.200,
BF10 = 0.463], estimated slip parameters [F(2,34) = 0.247,
p = 0.783, BF10 = 0.164], and diagnostic classifications [F(2,78)
≈ 0.000, p ≈ 1.000, BF10 = 0.078] in the same group of students
in the three tests.

As the three tests examined the same content knowledge,
contained the same Q-matrix, had high parallel-forms reliability,
and had no significant differences in the raw scores, estimated
item parameters, and diagnostic classifications, they could be
considered to meet the requirements of parallel tests.

CONCLUSION AND DISCUSSION

This study developed an instrument for longitudinal learning
diagnosis of rational number operations. In order to provide
a reference for practitioners to develop the instrument for
longitudinal learning diagnosis, the development process was
presented step by step. The development process contains three
main phases, the Q-matrix construction and item development,
the preliminary test for item quality monitoring, and the formal
test for test quality control. The results of this study indicate
that (a) both the overall quality of the tests and the quality of
each item are good enough and that (b) the three tests meet the
requirements of parallel tests, which can be used as an instrument
for longitudinal learning diagnosis to track students’ learning.

2 The Bayes factor (BF10) was calculated using the JASP software (Goss-Sampson,
2020) based on the Bayesian estimation. BF10 = 0.038 means that the current data
are 0.038 times more likely to occur under the alternative hypothesis (H1) being
true than under the null hypothesis (H0) being true. As suggested by Dienes (2014),
BF10 less than 1, 1/3, and 1/10 represents weak, moderate, and strong evidence for
the H0, respectively. By contrast, BF10 greater than 1, 3, and 10 represents weak,
moderate, and strong evidence for the H1, respectively.

However, there are still some limitations of this study. First, to
increase operability, only the binary attributes were adopted. As
the binary attribute can only divide students into two categories
(i.e., mastery and non-mastery), it may not meet the need for a
multiple levels division of practical teaching objectives (Bloom
et al., 1956). Polytomous attributes and the corresponding LDMs
(Karelitz, 2008; Zhan et al., 2020) can be adopted in future
studies. Second, the adopted instrument for longitudinal learning
diagnosis was based on parallel tests. However, in practice,
perfect parallel tests do not exist. In further studies, the anchor-
item design (e.g., Zhan et al., 2019) can be adopted to develop
an instrument for longitudinal learning diagnosis. Third, an
appropriate Q-matrix is one of the key factors in learning
diagnosis (de la Torre, 2008). However, the Q-matrix used
in the instrument may not strictly meet the requirements of
identification (Gu and Xu, 2019), which may affect the diagnostic
classification accuracy.
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