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One of the central debates in the cognitive science of language has revolved around

the nature of human linguistic competence. Whether syntactic competence should

be characterized by abstract hierarchical structures or reduced to surface linear

strings has been actively debated, but the nature of morphological competence

has been insufficiently appreciated despite the parallel question in the cognitive

science literature. In this paper, in order to investigate whether morphological

competence should be characterized by abstract hierarchical structures, we conducted

a crowdsourced acceptability judgment experiment on morphologically complex words

and evaluated five computational models of morphological competence against human

acceptability judgments: Character Markov Models (Character), Syllable Markov Models

(Syllable), Morpheme Markov Models (Morpheme), Hidden Markov Models (HMM),

and Probabilistic Context-Free Grammars (PCFG). Our psycholinguistic experimentation

and computational modeling demonstrated that “morphous” computational models

with morpheme units outperformed “amorphous” computational models without

morpheme units and, importantly, PCFG with hierarchical structures most accurately

explained human acceptability judgments on several evaluation metrics, especially for

morphologically complex words with nested morphological structures. Those results

strongly suggest that human morphological competence should be characterized by

abstract hierarchical structures internally generated by the grammar, not reduced to

surface linear strings externally attested in large corpora.

Keywords: morphology, grammaticality, acceptability, probability, psycholinguistics, computational modeling

1. INTRODUCTION

Chomsky (1957) seminally argued that the grammar categorically generates grammatical sentences
of the language, while speakers gradiently judge acceptable sentences of the language, as
summarized below:

“The fundamental aim in the linguistic analysis of a language L is to separate the grammatical sequences

which are the sentences of L from the ungrammatical sequences which are not sentences of L and to

study the structure of the grammatical sequences. The grammar of L will thus be a device that generates

all of the grammatical sequences of L and none of the ungrammatical ones.” (Chomsky, 1957, p. 13;

emphasis original)

On this internalist view, syntactic competence should be characterized by abstract hierarchical
structures internally generated by the grammar (Everaert et al., 2015; Ott, 2017), where

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://doi.org/10.3389/fpsyg.2020.513740
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyg.2020.513740&domain=pdf&date_stamp=2020-11-12
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:yohei.oseki@nyu.edu
https://doi.org/10.3389/fpsyg.2020.513740
https://www.frontiersin.org/articles/10.3389/fpsyg.2020.513740/full


Oseki and Marantz Modeling Human Morphological Competence

grammaticality and acceptability correspond to linguistic
representation and processing, respectively, hence the familiar
competence-performance distinction. The independence of
the grammar from probabilities over surface linear strings
was evidenced by the famous Colorless green ideas sleep
furiously sentence, which is grammatical despite vanishingly low
probabilities of linear strings (cf. Pereira, 2000; Berwick, 2018)1.

In contrast, Lau et al. (2016) recently claimed that the
grammar gradiently determines grammatical sentences of
the language through probabilities of linear strings without
hierarchical structures. On this externalist view, syntactic
competence should be reduced to surface linear strings externally
attested in large corpora, where grammaticality and acceptability
are isomorphic. Specifically, computational models proposed
in Natural Language Processing (NLP), such as Markov
Models and Hidden Markov Models (HMMs) were trained
on large corpora and evaluated against human acceptability
judgments via various acceptability measures, demonstrating
that probabilities of linear strings can accurately explain human
acceptability judgments without hierarchical structures. In
response, Sprouse et al. (2018) investigated several computational
models evaluated by Lau et al. (2016) with linguistically
motivated corpora and measures, and revealed that there are
cost-benefit tradeoffs, where computational models accurately
explained human acceptability judgments only at the expense
of the categorical grammaticality distinction. That is, whether
syntactic competence should be characterized by hierarchical
structures or reduced to linear strings has been actively debated
in the cognitive science literature.

Halle (1973) generalized the internalist view to morphology,
and proposed that the grammar (i.e., word formation rules)
categorically generates grammatical (“potential”) words of the
language, whereas humans gradiently judge acceptable (“actual”)
words of the language, as follows (cf. Aronoff, 1976)2:

“In other words, I am proposing that the list of morphemes

together with the rules of word formation define the set

of potential words of the language. It is the filter and the

information that is contained therein which turn this larger set

into the smaller subset of actual words. This set of actually

occurring words will be called the dictionary of the language.”

(Halle, 1973, p. 6; emphasis original)

Embick (2012) corroborated this internalist view of morphology,
and suggested that potential words such as confusal have the same
grammaticality status as the famous Colorless green ideas sleep
furiously sentence, in that those words are grammatical despite
never being attested in large corpora.

However, Bauer (2014) criticized the distinction between
grammaticality and acceptability in morphology, and

1Due to the ill-posed relationship between grammaticality and acceptability,

grammatical sentences may become unacceptable (e.g., garden-path

sentences), while ungrammatical sentences can become acceptable (e.g.,

grammatical illusions).
2Halle (1973) proposed that potential words such as confusal are assigned the

feature [– Lexical Insertion], so that those words can be generated by the grammar,

but never inserted into any actual sentences of the language.

alternatively defended the externalist view of morphology
with methodological emphasis on large corpora (cf. Bauer
et al., 2013). Indeed, words have been traditionally treated as
linear strings of morphemes without any hierarchical structures,
as in finite-state models of morphology (Kaplan and Kay,
1994; Beesley and Karttunen, 2003). Moreover, there has been
an implicit assumption that words are stored in the mental
lexicon without any morpheme units, as in dual-route models
of morphology (Pinker and Ullman, 2002) and “amorphous”
models of morphology (Baayen et al., 2011).

Nevertheless, there are abundant reasons to believe that
morphological competence cannot be reduced to linear strings
of morphemes, with apparent differences between syntax and
morphology attributed to linguistic performance (cf. Halle,
1973; Bauer, 2014): (i) recursion (e.g., anti-missile missile;
Bar-Hillel and Shamir, 1960), (ii) center-embedding (e.g.,
undeundestabilizablizeable; Carden, 1983), (iii) long-distance
dependency (e.g., enjoyable; Sproat, 1992), among other things.
Importantly, these morphologically complex words involve
nested morphological structures with both prefixes and suffixes
and formally require hierarchical structures beyond linear strings
(Bar-Hillel and Shamir, 1960; Langendoen, 1981; Carden, 1983).
Thus, the nature of morphological competence remains to be
empirically investigated.

In this paper, in order to investigate whether morphological
competence should be characterized by hierarchical structures
or reduced to linear strings, we conduct a crowdsourced
acceptability judgment experiment on morphologically complex
words and evaluate five computational models of morphological
competence against human acceptability judgments. Our
morphologically complex words are (i) unattested with zero
surface frequencies (i.e., potential but not necessarily actual
words), which increases the possibility that those words
have never been encountered by participants and are thus
computed from component morphemes, not retrieved from
the mental lexicon (cf. Hay, 2003), and (ii) trimorphemic
with linear (e.g., digit-al-ly) and nested (e.g., un-predict-able)
morphological structures, the latter of which can only be
modeled with hierarchical structures (cf. Libben, 2003, 2006).
The computational models investigated in this paper are 1.
Character Markov Models (Character) with character linear
strings, 2. Syllable Markov Models (Syllable) with syllable
linear strings, 3. Morpheme Markov Models (Morpheme) with
morpheme linear strings, 4. Hidden Markov Models (HMM)
with part-of-speech (POS) linear strings, and 5. Probabilistic
Context-Free Grammars (PCFG) with hierarchical structures3.
Moreover, those computational models are evaluated against
human acceptability judgments through the acceptability
measure called syntactic log-odds ratio (SLOR; Pauls and Klein,
2012) and the evaluation metrics including effect and deviance

3Recurrent neural networks (RNNs) were also investigated in the previous

literature (Lau et al., 2016; Sprouse et al., 2018), but whether RNNs can

implicitly represent hierarchical structures has been intensively debated with

mixed results (cf. Linzen et al., 2016; Sennhauser and Berwick, 2018). Thus,

as a first approximation, we start with classic but interpretable computational

models and leave state-of-the-art but uninterpretable models like RNNs for

future research.
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accuracies, as well as an evaluation metric called residual
accuracy proposed here to quantify the division of labor among
computational models.

This paper is organized as follows. Section 2 describes
the crowdsourced acceptability judgment experiment,
computational models of morphological competence, and
evaluation metrics to statistically compare acceptability
judgments and computational models. Section 3 presents
descriptive statistics of the acceptability judgment experiment
and accuracies of the computational models on several evaluation
metrics. Section 4 summarizes and interprets the results in the
broader theoretical context. Section 5 concludes this paper.

2. METHODS

2.1. Participants
The participants were 180 native English speakers crowdsourced
on Amazon Mechanical Turk (AMT). They provided electronic
informed consent and were paid $2/h for their participation. We
excluded 14 participants whose native language was not reported
to be English (n = 5) or whose birthplace was not reported to
be the USA (n = 9), resulting in 166 participants included in the
statistical analyses.

2.2. Stimuli
The stimuli were created based on the CELEX lexical database
(Baayen et al., 1995). The specific stimuli creation procedure
consisted of several steps. First, every word was extracted
from the English morphology lemma corpus (eml.cd)
available from the CELEX, hence 52,447 words. Second, the
words with stem allomorphy (“StrucAllo”), orthographic
substitution (“StrucSubst”), or semantic opacity (“StrucOpac”)
were excluded, hence 36,800 words. Third, morphological
structures (“StrucLab”) were transformed from the CELEX
format (e.g., ((teach)[V], (er)[N|V.])[N]) to the Penn Treebank
format (e.g., (N (V teach) er)). Fourth, the remaining words were
categorized into three types (“MorphStatus”): monomorphemic
words (M; n = 7,401), zero conversion words (Z; n = 7,375),
and morphologically complex words (C; n = 9,342), which were
further subcategorized into bimorphemic words (n = 7,383),
trimorphemic linear words (n= 1,668), and trimorphemic nested
words (n = 291). The three subcategories of morphologically
complex words were defined as [X [Y

√
Root] Suffix] or [X

Prefix [Y
√
Root]] (bimorphemic), [X [Y [Z

√
Root] Suffix]

Suffix] (trimorphemic linear), and [X Prefix [Y [Z
√
Root]

Suffix]] (trimorphemic nested), where prefixes are attached
higher than suffixes. Fifth, trimorphemic linear and nested
morphological structures were extracted from trimorphemic
linear and nested words, respectively. Specifically, for each outer
suffix in trimorphemic linear words (n = 48), the possible local
combinations with inner suffixes were computed, among which
the suffix-suffix combination with the highest type frequency
was accepted as trimorphemic linear morphological structure
if (i) type frequency ≥5 and (ii) the outer suffix is productive
(Plag and Baayen, 2009). In the same vein, for each outer
prefix in trimorphemic nested words (n = 58), the possible
non-local combinations with inner suffixes were computed,

among which the prefix-suffix combination with the highest type
frequency was accepted as trimorphemic nested morphological
structure if (i) type frequency ≥ 2 and (ii) the outer prefix
is productive (Zirkel, 2010)4. This procedure resulted in 10
linear morphological structures and eight nested morphological
structures, as summarized below (N = noun, V = verb, A =
adjective, B= adverb):

• Linear morphological structures

1. [A [N [V
√
ROOT] ion] al]

2. [N [A [V
√
ROOT] able] ity]

3. [N [N [V
√
ROOT] or] ship]

4. [N [V [A
√
ROOT] ize] er]

5. [V [A [N
√
ROOT] al] ize]

6. [B [A [N
√
ROOT] ic] ally]

7. [B [A [N
√
ROOT] al] ly]

8. [N [A [N
√
ROOT] y] ness]

9. [N [N [V
√
ROOT] ion] ist]

10. [N [A [N
√
ROOT] al] ism]

• Nested morphological structures

1. [N pre [N [V
√
ROOT] ion]]

2. [A sub [A [N
√
ROOT] al]]

3. [A super [A [N
√
ROOT] al]]

4. [A inter [A [N
√
ROOT] al]]

5. [A over [A [N
√
ROOT] ous]]

6. [N non [N [V
√
ROOT] ion]]

7. [V de [V [A
√
ROOT] ize]]

8. [A un [A [V
√
ROOT] able]]

Finally, novel morphologically complex words were created
based on the linear and nested morphological structures
generated above. Specifically, for each linear morphological
structure, the possible stems were extracted from the subcategory
of bimorphemic words whose token frequency is ≥20 and
whose inner suffix and syntactic category match with the
linear morphological structure. For example, for the linear
morphological structure [A [N [V

√
Root] ion] al], the

bimorphemic word computation with the structure [N [V
√

Compute] ion] is the possible stem. Then, one stem was
randomly selected from the possible stems and inserted
into the linear morphological structure with orthographic
adjustments performed (if necessary), and the resultant word
was accepted as a novel morphologically complex linear word
if unattested in (i) the CELEX lexical database and (ii) the
list of socially inappropriate words. Similarly, for each nested
morphological structure, the possible stems were extracted
from the subcategory of bimorphemic words whose token
frequency is ≥ 20 and whose inner suffix and syntactic
category match with the nested morphological structure. Then,
one stem was randomly selected from the possible stems
and inserted into the nested morphological structure with
orthographic adjustments performed (if necessary), and the

4The type frequency threshold for nested morphological structures was lower than

for linear morphological structures, because the trimorphemic nested words (n =
291) were inherently sparse relative to the trimorphemic linear words (n= 1,668).
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resultant word was accepted as a novel morphologically complex
nested word if unattested in (i) the CELEX lexical database
and (ii) the list of socially inappropriate words. Importantly,
syntactic (i.e., syntactic categories), morphological (i.e., affix
combinations), and phonological (i.e., orthographic adjustments)
selectional restrictions were explicitly considered, while semantic
selectional restrictions were not controlled because those novel
morphologically complex words are intended as potential but
not actual words, such as confusal (Halle, 1973; Embick, 2012)5.
This final step was repeated until 300 linear and 300 nested
trimorphemic words were created, while alternating between
linear and nested morphological structures, hence 600 words
in total. No roots were repeated in order to avoid potential
priming effects across two morphological structures, and those
algorithmically generated words were also double-checked by
three native English speakers6. The stimuli are summarized
in Table 1.

2.3. Procedure
The 600 novel morphologically complex words were distributed
into six different lists of 100 unique words (50 linear and 50
nested words). Each list was randomized and the corresponding
reversed list was created, resulting in 12 different lists. Each
participant (n = 180) was randomly assigned to one of the 12
lists, so that each list was completed by 15 different participants
with fixed order. Consequently, there are 30 trials for each word
(15 trials from the originally randomized list and 15 trials from
the reversed list), hence 18,000 trials (600 words * 30 trials) in
total. We excluded 14 participants (n = 14 * 100 = 1,400) and
incomplete trials (n = 61), resulting in 16,539 trials included in
the statistical analyses.

The experiment was an acceptability judgment paradigm
administered on Amazon Mechanical Turk (AMT) and
implemented in HTML, where the participants judged each
novel morphologically complex word on the Likert scale from
1 (“very bad”) to 7 (“very good”). In order to ensure that the
same participants do not complete the same experiment more
than once, the experiment was assigned a unique color code and
the AMT workers were asked not to complete the experiments
with the same color code more than once per day, given that
the entire experiment will be completed within 1 day. Before the
experiment, demographic information was collected including
gender, age, native language, and birthplace. The instructions are
shown below:

5Embick (2012) suggested that those potential words become acceptable if

they carve out new “semantic space,” which can be computationally modeled

via Functional Representations of Affixes in Compositional Semantic Space

(FRACCSS; Marelli and Baroni, 2015), the distributional semantic model

which computes meanings of novel morphologically complex words from their

component morphemes.
6As an anonymous reviewer suggested, the same roots in both morphological

structures would help cancel out differences in specific semantic selectional

restrictions between roots and inner suffixes across nested and linear

morphological structures (e.g., knowable vs. *seeable, as in unknowable vs.

*seeability). However, we prioritized not repeating roots within the experiment

against controlling this semantic factor across two morphological structures.

“In this experiment, you will read English words, and determine

whether you think they are possible English words. We are not

concerned with whether these words are actual English words

already listed in a dictionary. Instead, we are interested in whether

these words could be used by a native speaker of English. You will

rate the word on a scale from 1 (very bad) to 7 (very good). Here

are two examples: one that is very bad and one that is very good.”

Importantly, since several pilot experiments suggested that the
participants tend to judge novel morphologically complex words
based on whether they have ever seen those words before,
we explicitly emphasized the contrast between possible and
actual words (Halle, 1973), which encouraged the participants
to process the words even if they have never encountered
those words before. Then, “very good” (i.e., teacher) and “very
bad” (i.e., readize) bimorphemic examples were presented to
familiarize the participants with the Likert scale. Finally, after the
additional instruction “There are 100 words for you to rate. You
must rate all of them in order to be paid for the experiment,” the
experiment started where 100 words were presented with their
own Likert scales on the same HTML page. The experiment was
piloted with turktools (Erlewine and Kotek, 2016) in Python and
double-checked by three native English speakers. The experiment
lasted for about 10 min7.

2.4. Computational Models
Five computational models were implemented with Natural
Language Tool Kit package (Bird et al., 2009) in Python:
Character Markov Model with character linear strings,
Syllable Markov Model with syllable linear strings, Morpheme
Markov Model with morpheme linear strings, Hidden Markov
Model (HMM) with part-of-speech (POS) linear strings,
and Probabilistic Context-Free Grammar (PCFG) with
hierarchical structures. Those models were trained on the
entire CELEX lexical database (n = 52,477) via Maximum
Likelihood Estimation with token weighting and Lidstone
smoothing at α = 0.1, and evaluated against human acceptability
judgments of novel morphologically complex words (n = 600).
The architectures of Markov Model, HMM, and PCFG are
summarized below.

2.4.1. Markov Model
Markov Models (also called n-gram models) are defined by n-
order Markov processes that compute transition probabilities of
linguistic units (e.g., characters, syllables, morphemes) at position
i given i–n context (e.g., P(xi|xi−n, xi−1)). Since the length of
morphologically complex words is inherently limited relative to
syntactically complex sentences, Markov Models were defined
with n = 1 (i.e., bigram models), which compute transition
probabilities of linguistic units at position i given the immediately

7While this extended acceptability judgment paradigm might cause the

participants to perform meta-linguistic (as opposed to spontaneous) judgments,

we decided to adopt this design choice at the expense of spontaneous performance.

In addition, the possibility that the same words were re-judged by the same

participants multiple times can be safely excluded based on (i) average time per

assignment (i.e., 10 min 23 s) and (ii) the incentive of AMT workers (i.e., complete

as many assignments as possible).
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TABLE 1 | Novel morphologically complex words unattested with zero surface frequencies and trimorphemic with linear and nested morphological structures: 300 linear

words (with two inner and outer suffixes) and 300 nested words (with inner suffixes and outer prefixes), hence 600 words in total.

preceding unit (e.g., P(xi|xi−1))
8. For training, Markov Models

were unsupervisedly trained on character strings (Character
Markov Model), syllable strings (Syllable Markov Model), and
morpheme strings (Morpheme Markov Model), respectively,
where character and morpheme strings were available from the
CELEX lexical database, while syllable strings were generated
with the syllabify module implemented in Python by Kyle
Gorman through ARPABET transcriptions assigned by LOGIOS
Lexicon Tool in the Carnegie Mellon University Pronouncing
Dictionary. For testing, those trained Markov Models then
computed probabilities of morphologically complex words as
products of their component transition probabilities. Markov
Models are sequential models, which should accurately predict
local dependencies of linear words (e.g., digitally), but not non-
local dependencies of nested words (e.g., unpredictable) because
component local dependencies (e.g., *unpredict) are unattested in
the training data.

2.4.2. Hidden Markov Model (HMM)
HMMs generalize Markov Models with n-order Markov
processes defined over “hidden” linear strings. HMMs compute
transition probabilities of part-of-speech (POS) tags at position i
given i–n context (e.g., P(ti|ti−n, ti−1)), and emission probabilities
of morphemes at position i given POS tags at the same position i
(e.g., P(mi|ti)). Like Markov Models, HMMs were also defined
with n = 1, which compute transition probabilities of POS
tags at position i given the immediately preceding POS tag
(e.g., P(ti|ti−1)). For training, HMMs were supervisedly trained
on tagged morpheme strings generated from morphological
structures available from the CELEX lexical database (e.g.,
[(accident, N), (al, A), (ly, B)]). For testing, those trained HMMs
then computed probabilities of morphologically complex words
as products of component transition and emission probabilities
via the forward algorithm which computes the sum of path
probabilities of structurally ambiguous words (Rabinar, 1989)9.

8First-orderMarkovModels append oneword initial symbol<w> as the necessary

context to estimate transition probabilities of first morphemes.
9We also tested the Viterbi algorithm which computes the max of multiple paths

of structurally ambiguous words, but since most probability mass was allocated

HMMs are also sequential models, which should accurately
predict local dependencies of linear words (e.g., N-A-B for
digitally), but only approximate non-local dependencies of nested
words (e.g., unpredictable) if component local dependencies (e.g.,
A-V for *unpredict) are attested in the training data.

2.4.3. Probabilistic Context-Free Grammar (PCFG)
PCFGs generalize Context-Free Grammars (CFGs) with
probability distributions defined over hierarchical structures.
PCFGs compute non-terminal probabilities of right-hand
sides given left-hand sides of non-terminal production
rules (e.g., P(rhs|lhs)), and terminal probabilities of right-
hand side terminals given left-hand side non-terminals of
terminal production rules (e.g., P(mi|ti)), equivalent to HMM
emission probabilities. Non-terminal production rules are
head-lexicalized, which model syntactic selectional restrictions
of derivational affixes (e.g., N → A ness). For training, PCFGs
were supervisedly trained on morphological structures available
from the CELEX lexical database (e.g., [B [A [N accident]
al] ly]). For testing, those trained PCFGs then computed
probabilities of morphologically complex words as products
of component non-terminal and terminal probabilities via the
Earley parser which computes the sum of tree probabilities of
structurally ambiguous words (Earley, 1970; Stolcke, 1995)10.
PCFGs are hierarchical models, which should accurately predict
not only local dependencies of linear words (e.g., [[digit-al]-
ly]), but also non-local dependencies of nested words (e.g.,
[un-[predict-able]]).

2.5. Statistical Analyses
Mixed-effects regression models were implemented with the
lme4 package (Bates et al., 2015) in R. The baseline regression
model was first fitted with individual acceptability judgments
as the dependent variable (where the acceptability judgments

to the best path, there were no substantial differences between forward and

Viterbi algorithms.
10In the same vein, we also tested the Viterbi parser which computes the max of

multiple trees of structurally ambiguous words, but since most probability mass

was allocated to the best tree, there were no substantial differences between Earley

and Viterbi parsers.
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were z-score transformed to eliminate scale biases; Sprouse et al.,
2018) and by-subject, by-word, and by-order random intercepts
as random effects. Control variables, such as word length and
morpheme frequency will be explained by the acceptability
measure, thus not included in the baseline regression model.
Then, for each computational model, the target regression model
was fitted, where the acceptability measure was included as
the fixed effect and random effects were held constant. Mixed-
effects regression models were fitted via Maximum Likelihood
Estimation with nlminb optimizer in optimx package and
the maximum number of iterations R permits. Given that the
baseline and target regression models are minimally different
in the acceptability measure, computational models can be
evaluated with nested model comparisons via log-likelihood
ratio tests based on the χ2-distribution with df = 1, where
df is the difference in the number of parameters between two
nested models.

2.6. Evaluation Metrics
2.6.1. Syntactic Log-Odds Ratio (SLOR)
The acceptability measure called syntactic log-odds ratio (SLOR;
Pauls and Klein, 2012) is the linking hypothesis to bridge between
probability estimates computed by models and acceptability
judgments produced by humans (Lau et al., 2016; Sprouse et al.,
2018). SLOR is defined as Equation (1):

SLOR =
log pw(ζ )− log pm(ζ )

|ζ |
(1)

where ζ is the morphologically complex word, |ζ | is the
word length, pw(ζ ) is the word probability computed by
models, and pm(ζ ) is the morpheme probability defined as
pm(ζ )=

∏

m∈ζ p(m). SLOR was employed in this paper, rather
than the mere correlation metric between probability and
acceptability, in order to (i) control confounding factors, such
as word length (i.e., |ζ |) and morpheme frequency [i.e., pm(ζ )]
and focus exclusively on morphological structures, and (ii) keep
the evaluation procedure maximally comparable to the previous
literature (Lau et al., 2016; Sprouse et al., 2018).

2.6.2. Effect Accuracy
Three evaluation metrics can be derived from SLOR based on
effect sizes, deviance statistics, and residual errors. The first
evaluation metric called effect accuracy is defined as Equation (2):

EA(model) = |dhuman − dmodel| = |1d| (2)

where dhuman and dmodel are Cohen’s d estimated from human
acceptability judgments and model SLOR scores, respectively,
where Cohen’s d is defined as d = µ1−µ2

s . That is, the effect
accuracy measures the absolute difference in effect sizes between
human acceptability judgments and model SLOR scores, so
that the lower the effect accuracy is, the more accurate the
computational model is (i.e., the computational model with the
effect size more comparable to the humans’ is more accurate).

2.6.3. Deviance Accuracy
The second evaluation metric called deviance accuracy is defined
as Equation (3):

DA(model) = Dbase − Dmodel = 1D (3)

where Dbase and Dmodel are deviance statistics extracted from
baseline and target regression models with and without model
SLOR scores, respectively, where deviance statistics intuitively
quantify the global error between human acceptability judgments
and model SLOR scores for each computational model. That
is, the deviance accuracy measures the decrease in deviance
statistic from baseline to target models, so that the higher the
deviance accuracy is, the more accurate the computational model
is (i.e., the computational model with lower deviance statistic is
more accurate).

2.6.4. Residual Accuracy
The third new evaluation metric called residual accuracy is
proposed here as Equation (4):

RA(model) =
n

∑

i=1

|ǫbase(wi)| − |ǫmodel(wi)| =
n

∑

i=1

1|ǫ(wi)| (4)

where ǫbase and ǫmodel are residual errors extracted from baseline
and target regression models with and without model SLOR
scores, respectively, where residual errors intuitively quantify
the local error between human acceptability judgments and
model SLOR scores for each morphologically complex word.
That is, the residual accuracy can measure the division of labor
among computational models with respect to linear and nested
morphological structures, so that the higher the residual accuracy
is, the more accurate the computational model is (i.e., the
computational model with lower residual error is more accurate).

3. RESULTS

3.1. Descriptive Statistics
Descriptive statistics of the acceptability judgment experiment
are summarized in Figure 1, where the x-axis represents
individual acceptability judgments z-score transformed
for each participant, and the y-axis shows probability
densities. Descriptive statistics are separated into linear and
nested structures.

Importantly, descriptive statistics confirm that the
participants were not biased toward only the upper range
of the Likert scale, despite the fact that only morphologically
complex words (i.e., grammatical words) were tested in this
experiment without any morphologically complex nonwords
(i.e., ungrammatical words). In addition, the distributions of
two morphological structures seem to be bimodal as if both
grammatical and ungrammatical words are included in the
experiment (cf. Sprouse et al., 2018), suggesting that successful
computational models should be balanced and fitted equally well
to two morphological structures.
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FIGURE 1 | Descriptive statistics of the acceptability judgment experiment. The x-axis represents individual acceptability judgments z-score transformed for each

participant, while the y-axis shows probability densities. Descriptive statistics are separated into linear (blue) and nested (red) structures.

TABLE 2 | Effect accuracies of computational models.

Model Linear Nested t p d 1d

Human 4.67 4.39 3.39 <0.001*** 0.28 —

Character −6.17 −6.31 0.63 ns 0.05 0.23

Syllable −1.96 −2.22 0.98 ns 0.08 0.20

Morpheme 2.15 1.47 9.08 <0.001*** 0.74 0.46

HMM −0.85 −1.47 11.51 <0.001*** 0.94 0.66

PCFG 1.35 1.18 2.68 <0.01** 0.22 0.06

Mean acceptability judgments of linear and nested morphological structures, t-values,

p-values, Cohen’s d, and effect accuracies (i.e., absolute differences in Cohen’s d from

human acceptability judgments) are presented for each computational model; **p< 0.05,

**p < 0.01, ***p < 0.001; Bold value represents best performance.

3.2. Effect Accuracy
Effect accuracies of computational models are summarized in
Table 2, where mean acceptability judgments of linear and
nested morphological structures, t-values, p-values, Cohen’s d,
and effect accuracies (i.e., absolute differences in Cohen’s d
from human acceptability judgments) are presented for each
computational model.

Independent two-sample t-tests indicated that the mean
acceptability judgments were significantly different between
linear and nested morphological structures for Human (t = 3.39,
p < 0.001***, d = 0.28), Morpheme (t = 9.08, p < 0.001***, d =
0.74), HMM (t = 11.51, p < 0.001***, d = 0.94), and PCFG (t =
2.68, p< 0.01**, d= 0.22), where linear morphological structures

were judged as more acceptable than nested morphological
structures. Among those computational models, PCFG was most
accurate with the minimal absolute difference in Cohen’s d from
human acceptability judgments (1d = 0.06), while Morpheme
and HMM were less accurate with the overestimated absolute
differences in Cohen’s d from human acceptability judgments
(1d = 0.46, 1d = 0.66), respectively.

3.3. Deviance Accuracy
Deviance accuracies of computational models are summarized in
Figure 2, where the x-axis represents computational models, and
the y-axis shows deviance accuracies (i.e., decreases in deviance
statistics from the baseline model). The horizontal dashed line is
χ2 = 3.84, the critical χ2-statistic at p = 0.05 with df = 1.

Nested model comparisons revealed that the deviance
statistics were significantly different between the baseline model
and the target models for Morpheme (χ2 = 4.55, p < 0.05*),
HMM (χ2 = 6.3, p < 0.05*), and PCFG (χ2 = 18.04, p
< 0.001***). Among those computational models, PCFG was
most accurate with the maximal decrease in deviance statistics
from the baseline model, while Morpheme and HMM were
less accurate with smaller decreases in deviance statistics from
the baseline model. In addition, nested model comparisons
among computational models confirmed that PCFG significantly
outperformed Morpheme (χ2 = 13.82, p < 0.001***) and HMM
(χ2 = 11.75, p < 0.001***), respectively.
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FIGURE 2 | Deviance accuracies of computational models. The x-axis represents computational models, while the y-axis shows deviance accuracies (i.e., decreases

in deviance statistics from the baseline model). Colors indicate computational models: blue = Character Markov Model, orange = Syllable Markov Model, yellow =
Morpheme Markov Model, green = Hidden Markov Model, brown = Probabilistic Context-Free Grammar. The horizontal dashed line is χ2 = 3.84, the critical

χ2-statistic at p = 0.05 with df = 1.

3.4. Residual Accuracy
In order to analyze and interpret the three “morphous”
computational models statistically significant on deviance
accuracy (i.e., Morpheme Markov Model, HMM, and PCFG),
residual accuracies of computational models are summarized
in Figure 3, where the x-axis represents computational models
(without Character and Syllable Markov Models, which were
not statistically significant on deviance accuracy), and the
y-axis shows residual accuracies (i.e., decreases in absolute
residual errors from the baseline model). Residual accuracies are
categorized into linear and nested morphological structures and
averaged across individual derivational affixes. The horizontal
dashed line is a “tie” borderline where computational models
make the same predictions as the baseline model. Positive and
negative residual accuracies mean better and worse predictions
relative to the baseline model, respectively.

An interesting mirror image emerged between linear and
nested morphological structures. For linear morphological
structures, sequential models, such as Morpheme Markov
Model and HMM showed higher residual accuracies than
the hierarchical model. In contrast, for nested morphological
structures, the hierarchical model, namely PCFG, was relatively
better than sequential models, although residual accuracies
were absolutely negative for all three computational models,
potentially suggesting that those computational models were
overfitted to linear morphological structures and thus worsened
the baseline model.

4. DISCUSSION

In summary, we have conducted a crowdsourced acceptability
judgment experiment on novel morphologically complex
words and then evaluated five computational models of
morphological competence against human acceptability
judgments via three evaluation metrics. Consequently, both
effect and deviance accuracies consistently demonstrated that
“morphous” computational models with morpheme units
(Morpheme Markov Models, HMM, and PCFG) were more
accurate than “amorphous” computational models without
morpheme units (Character and Syllable Markov Models). For
effect accuracies, “morphous” models correctly predicted the
significant differences in effect sizes between linear and nested
morphological structures like humans, while “amorphous”
models underestimated the differences between those two
morphological structures. In the same vein, for deviance
accuracies, “morphous” models outperformed “amorphous”
models which failed to even reach statistical significance relative
to the baseline model. Taken together, these results strongly
suggest that morphemes are psychologically real (Marantz,
2013), contrary to “amorphous” models of morphology (Baayen
et al., 2011; Ackerman and Malouf, 2013).

More importantly, among those “morphous” models, the
hierarchical model, namely PCFG with abstract hierarchical
structures, was most accurate on both effect and deviance
evaluationmetrics as compared to sequential models (Morpheme
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FIGURE 3 | Residual accuracies of computational models. The x-axis represents computational models, while the y-axis shows residual accuracies (i.e., decreases in

absolute residual errors from the baseline model). Residual accuracies are categorized into linear (left) and nested (right) morphological structures. The horizontal

dashed line is a “tie” borderline where computational models make the same predictions as the baseline model. Positive and negative residual accuracies mean better

and worse predictions relative to the baseline model, respectively.

Markov Model and HMM). For effect accuracies, PCFG
most accurately approximated the human effect size between
linear and nested morphological structures, whereas sequential
models overestimated the effect sizes between those two
morphological structures. Similarly, for deviance accuracies,
PCFG outperformed sequential models by a large margin.
Overall, these results indicate that PCFG is the most “human-
like” computational model of morphological competence,
contrary to finite-state models of morphology (Kaplan and Kay,
1994; Beesley and Karttunen, 2003)11.

Moreover, residual accuracies revealed that there is a division
of labor among computational models with respect to linear
and nested morphological structures. For instance, sequential
models, such as Morpheme Markov Model and HMM accurately
explained linear morphological structures at the expense of
nestedmorphological structures. In other words, those sequential
models were optimized to linear morphological structures, which
naturally follows from their architecture where morphologically
complex words are processed incrementally from left to right:
linear morphological structures (e.g., digit-al-ly) can be predicted

11As an anonymous reviewer correctly pointed out, this conclusion only applies to

finite-state acceptormodels of morphology, but crucially not finite-state transducer

models of morphology (Kaplan and Kay, 1994; Beesley and Karttunen, 2003),

because finite-state transducers can approximate context-free languages of finite

length (cf. Langendoen, 1975), such as morphologically complex nested words

tested in this paper.

from morpheme bigrams of first-second morphemes (e.g., digit-
al) and second-third morphemes (e.g., al-ly) both attested in the
training data, while nested morphological structures (e.g., un-
predict-able) cannot, because morpheme bigrams of first-second
morphemes (e.g., *un-predict) never appear in the training data.
In contract, the hierarchical model is better balanced and fitted
equally well to both linear and nested morphological structures,
hence the greater deviance accuracy. Methodologically, this
new evaluation metric remains to be adopted in the sentence
processing literature to explore the division of labor among
computational models for various syntactic constructions (Frank
and Bod, 2011; Fossum and Levy, 2012).

Furthermore, remember that novel morphologically complex
words were created as potential but not necessarily actual words
(Halle, 1973; Bauer, 2014) with zero surface frequencies in the
CELEX lexical database (Baayen et al., 1995) and semantic
selectional restrictions not explicitly controlled. To the extent
that those morphologically complex words are not stored in the
mental lexicon, but rather computed online from component
morphemes (cf. Hay, 2003), the fact that humans judged nested
morphological structures as acceptable itself constitutes evidence
in favor of abstract hierarchical structures.

Finally, we conclude from the results above that there is

no fundamental distinction between syntax and morphology,
as advocated by the framework of Distributed Morphology
(Halle and Marantz, 1993). In formal language theory,
given the naive intuition that actual words are stored in the
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finite lexicon, morphology has been claimed to be finite (in
linguistic performance) with respect to weak generative capacity
(i.e., string sets generated by the grammar; Langendoen,
1981; Heinz and Idsardi, 2011) and, correspondingly,
computationally implemented as finite-state models (Kaplan
and Kay, 1994; Beesley and Karttunen, 2003). However, as
Carden (1983) correctly pointed out, switching emphasis
to strong generative capacity as being only relevant for
linguistic theory (i.e., structure sets generated by the grammar;
Everaert et al., 2015; Fukui, 2015), morphology turned out
to be infinite (in linguistic competence), as exemplified by
recursion (e.g., anti-missile missile) and center-embedding
(e.g., undeundestabilizablizeable)12. Relatedly, the apparent
finite-stateness of morphology gave the impression that
morphology is specially sensitive to linear order, but hierarchical
structure plays an important role both in syntactic and
morphological processing, especially when resolving long-
distance dependencies, such as subject-verb agreement in syntax
(e.g., apples on the table are. . . vs. *the table are. . . ) and prefix-
suffix potentiation in morphology (e.g., enjoyable, *joyable).
Namely, morphological processing can be regarded as syntactic
processing within words.

To recapitulate, going back to the original research question,
the results of our psycholinguistic experimentation and
computational modeling converged on the conclusion that
human morphological competence should be characterized
by abstract hierarchical structures, and cannot be reduced to
surface linear strings. This conclusion clearly corroborates
the internalist view that the grammar generates hierarchical
structures (Sprouse et al., 2018), but does not deny probabilities
traditionally associated with linear strings (Lau et al., 2016) on
the assumption that probability distributions can be defined over
hierarchical structures like PCFGs (Yang, 2008). Importantly
for the debate between internalist vs. externalist positions, here
we advocate the middle position on the spectrum between
the extreme internalist (“only grammars, no probabilities”)
and extreme externalist (“only probabilities, no grammars”)
positions in favor of the eclectic view (Yang, 2004) that
grammars (competence) categorically define grammaticality,
while probabilities (performance) gradiently affect acceptability.

Nevertheless, there remain several issues with our
psycholinguistic experiments and computational models. First,
for psycholinguistic experiments, only morphologically complex
words (i.e., grammatical words) were tested in this paper,
but morphologically complex nonwords (i.e., ungrammatical
words) must be developed and tested in order to make the
results maximally comparable to the previous literature (Lau

12Interestingly, Carden (1983) provided the elaborate context for the example

undeundestabilizablizeable in order to “assist our feeble performance to reach

something closer to the power of the underlying competence” as follows: “At

present, gentlemen, we live with an apparently stable balance of terror. But that

balance may at any time be de-stabilized by our opponents. As the leaders of

a peace-loving state, our objective must be an un-destabilize-able balance. But

now, just as we have begun to un-destabilize=able-ize the situation, our opponents

have bent all their efforts to de-un=destabilize=able-ize our precarious balance. In

our current negotiations, it will not be enough to require an un-destabilize-able

balance; we must aim to create an un-de=undestabilizable=ize-able balance.”

et al., 2016; Sprouse et al., 2018). Second, for computational
models, Character and Syllable Markov Models were evaluated
as instances of “amorphous” models in this paper, but state-
of-the-art “amorphous” models, such as Naive Discriminative
Learning (Baayen et al., 2011) and Recurrent Neural Network
(Kirov and Cotterell, 2018) should be employed and evaluated
against human acceptability judgments. Finally, acceptability
judgment is known as an offline time-insensitive experimental
measure, which only reflects the output of language processing
including extra-linguistic factors like working memory and
world knowledge (Sprouse, 2007). In order to complement
this methodological limitation, novel morphologically complex
words developed in this paper must be tested with online
time-sensitive experimental measures, such as lexical decision
(cf. Oseki et al., 2019).

5. CONCLUSION

In conclusion, we investigated whether human morphological
competence should be characterized by abstract hierarchical
structures internally generated by the grammar or reduced
to surface linear strings externally attested in large corpora.
Specifically, we performed a crowdsourced acceptability
judgment experiment on morphologically complex words
that are (i) unattested with zero surface frequencies and (ii)
trimorphemic with linear and nested morphological structures.
Then, five computational models of morphological competence
were constructed and evaluated against human acceptability
judgments via the acceptability measure called syntactic log-odds
ratio: Character Markov Model (Character), Syllable Markov
Model (Syllable), Morpheme Markov Model (Morpheme),
Hidden Markov Model (HMM), and Probabilistic Context-Free
Grammar (PCFG). Our psycholinguistic experimentation and
computational modeling converged on the conclusion that
“morphous” computational models with morpheme units
outperformed “amorphous” computational models without
morpheme units and, importantly, PCFG with hierarchical
structures most accurately explained human acceptability
judgments via several evaluation metrics, especially for
morphologically complex words with nested morphological
structures. Those results strongly suggest that PCFG with
hierarchical structures is the most “human-like” computational
model of morphological competence and, therefore, human
morphological competence should be characterized by abstract
hierarchical structures internally generated by the grammar.
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