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The scientific and practical fields—especially high-performance sports—increasingly
request a stronger focus be placed on individual athletes in human movement science
research. Machine learning methods have shown efficacy in this context by identifying
the unique movement patterns of individuals and distinguishing their intra-individual
changes over time. The objective of this investigation is to analyze biomechanically
described movement patterns during the fatigue-related accumulation process within
a single training session of a high number of repeated executions of a ballistic sports
movement—specifically, the frontal foot kick (mae-geri) in karate—in expert athletes. The
two leading research questions presented for consideration are (1) Can characteristics of
individual movement patterns be observed throughout the entire training session despite
continuous changes, i.e., even as fatigue-related processes increase? and (2) How
do intra-individual movement patterns change as fatigue-related processes increase
throughout a training session? Sixteen expert karatekas performed 606 frontal foot
kicks directed toward an imaginary target. The kicks were performed in nine sets at
80% (K-80) of the self-experienced maximal intensity. In addition, six kicks at maximal
intensity (K-100) were performed after each of the nine sets. Between the sets, the
participants took a 90-s break. Three-dimensional full-body kinematic data of all kicks
were recorded with 10 infrared cameras. The normalized waveforms of nine upper- and
lower-body joint angles were classified using a supervised machine learning method
(support vector machine). The results of the classification revealed a disjunct distinction
between the kinematic movement patterns of individual athletes. The identification of
unique movement patterns of individual athletes was independent of the intensity and
the degree of fatigue-related processes. In other words, even with the accumulation of
fatigue-related processes, the unique movement patterns of an individual athlete can
be clearly identified. During the training session, changes in intra-individual movement
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patterns could also be detected, indicating the occurrence of adaptations in individual
movement patterns throughout the fatigue-related accumulation process. The results
suggest that these adaptations can be modeled in terms of changes in patterns rather
than increasing variance. Practical consequences are critically discussed.

Keywords: situatedness, individuality, kinematic data, optimal movement, fatigue, support vector machine,
machine learning, movement classification

INTRODUCTION

Since the beginnings of sports science in the eastern and western
hemispheres, quantitative analyses of the athletes’ momentary
performance have been performed, targeted toward attaining
future improvements and optimization (Matwejew, 1972; Hay,
1978). Following the quantification trend in biomechanics and
learning psychology since the 1960s, versatile attempts were made
to continuously approach previously established target values by
applying control loop models (Anochin, 1935; Miller et al., 1960).
Typically for this purpose, group averages of the world’s best
athletes were chosen to serve as target values and, thus, as a
collective orientation for sports training. Medically (Hollmann
and Hettinger, 2000; Kjaer et al., 2003) and biomechanically (Hay,
1978) based conditioning and coordination profiles were drawn
up, which had to be copied by athletes with extensive numbers
of executions of the movement tasks and correction processes
(Harre, 1969; Matwejew, 1972; Letzelter, 1978; Martin et al.,
1991). Driven by the idea to improve the monitoring and control
of sports training, increasingly precise measurement methods for
describing human movements were developed. Consequently,
fluctuations in movement data also became more obvious.
Although anecdotal evidence (Bernstein, 1967) and theoretical
considerations (Hatze, 1986) presented early on pointed to
the non-repeatability of movements, fluctuations between and
within individuals were, for a long time, mostly regarded as
measurement errors or as destructive noise. Changes in sports
training philosophies were rarely observed.

Over time, however, increasing doubts (Nubar and Contini,
1961; Beckett and Chang, 1968; Hatze, 1973, 1984, 1986)
about the orientation of collective (person-independent) profiles
eventually led to the development of more group-specific profiles
as a basis for orientation for sports training—for example,
profiles established according to age, gender, or anthropometry.
Later, the availability of more powerful computers enabled the
biomechanical simulation of coordination profiles optimized for
individual athletes, including those based on person-specific
anthropometric characteristics and/or isometric force values
(Winter, 1980; Gutewort and Sust, 1989; Liu, 1992; van Soest
et al., 1993; Nigg, 1994). The effort to orientate sports training
more toward assisting individual athletes rather than toward
benefiting the collective (person-independent) average profiles
was supported by findings that allowed researchers to distinguish
world-class athletes based on their metabolic adaptation behavior
(Bouchard and Rankinen, 2001), their muscle-related strength
abilities (Sust and Jung, 1990; Weiss et al., 1995), and their
movement patterns (Bauer and Schöllhorn, 1997; Schöllhorn and
Bauer, 1997, 1998). However, two challenges that were considered

to help maintain a persistent gap between theory and practice
were not resolved: one concerned the question of whether and
how athletes are able to perform according to profiles that
were theoretically predicted as being optimal for them, while
the other related to the enormous adaptability of the human
movement system and the permanent fluctuations of human
movement behavior.

An integrated approach was suggested to address these
challenges by linking two previously largely separated fields
of research, sports biomechanics (Nigg, 1994; Winter, 2009)
and system dynamics (Schöner et al., 1986). This involved,
on the one hand, parallel observation of fluctuations of
various biomechanical variables that describe the behavior
of individual athletes in longitudinal studies (Schöllhorn,
1993; Schöllhorn and Bauer, 1997; Schöllhorn et al., 2001),
and, on the other hand, fluctuations as an essential feature
of dissipative systems in adaptation processes (Schöner et al.,
1986). Another contributing issue was related to a principle
of biomechanically supported training control (Farfel, 1977;
Ballreich et al., 1986), according to which the effect of a variable
identified as influencing the overall performance is estimated
by its systematic variation. Two major consequences were
connected to this linking of sports biomechanics and system
dynamics. On the one hand, fluctuations in biomechanically
controlled training became reinterpreted and were used for
initiating a self-organizing process through their amplification
(Schöllhorn, 2000). Variable exercises and deviations caused
by internal (e.g., fatigue, emotion, and kinematics), external
(e.g., ball weight, field size, and number of team mates),
and entangled (e.g., gravitational forces and perception)
influencing factors were no more considered as independent
or destructive but rather as tools for modifying the athlete’s
or learner’s potential. On the other hand, increased efforts
were observed toward realizing the application of pattern
recognition methods for a more detailed analysis of the
interdependence of individual movement patterns and its
fluctuations. Based on methods gleaned from the research areas
of artificial intelligence and machine learning, “patterns” should
be identified in the fluctuations of time-continuous waveforms
of biomechanical variables.

First applications of machine learning methods in the field
of sports and everyday movements resulted in the identification
of individuals based on their disjunct movement patterns
during gait (Nixon et al., 1999; Schöllhorn et al., 1999, 2002),
running (Simon and Schöllhorn, 1995), pole-vaulting (Jaitner
and Schöllhorn, 1995), discus-throwing (Bauer and Schöllhorn,
1997), and javelin-throwing (Schöllhorn and Bauer, 1998).
Besides the identification of individual movement patterns
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even within world-class athletes, who have already experienced
thousands of executions in their sports discipline and formerly
served as collective profiles for sports training, permanent
fluctuations in the biomechanical movement patterns, no matter
whether time-discrete or time-continuous, supported earlier
evidence of an extremely low probability of identical movement
patterns existing between multiple executions of a movement task
(Bauer and Schöllhorn, 1997; Schöllhorn and Bauer, 1997, 1998).

Following the differentiation of individual movement
patterns, emotion-specific (Janssen et al., 2008) or fatigue-
specific (Jäger et al., 2003; Janssen et al., 2011) subpatterns
could be identified within individual movement patterns.
However, classifications were made based on pre- and
post measurements, while the actual process of becoming
fatigued or the actual process of changes trending toward a
specific emotional state was not investigated. A further step
toward an even more differentiated analysis of fluctuations in
biomechanical variables can be assigned to recent findings of
highly time-dependent movement patterns. Disjunct changes
in individual movement patterns without any intervention
(Horst et al., 2016, 2017a) indicate permanent adaptations
of the movement system. For example, kinematic gait
patterns of the same person could be distinguished within
1 day after a 30-min break with a classification accuracy of
91% (Horst et al., 2017a), while the classification accuracy
between days was 98% (Horst et al., 2016). Despite permanent
disjunct changes in individual movement patterns over time
(Horst et al., 2016, 2017a) and the “non-repeatability” of
movement patterns overall (Bernstein, 1967; Hatze, 1986;
Newell and Corcos, 1993), unique movement patterns
of individual people could be identified even 1 year later
(Horst et al., 2017b).

Overall, the pattern-recognition approach introduced for
differentiated movement analysis using machine learning
methods provides promising insights not only regarding
individuals and whole-body movements on a rather coarse
scale of observation but, also, the analysis of fluctuations
within individuals on a finer scale. Neither emotion-
specific nor daily changes of movement patterns have found
equivalents in biomechanical simulation modeling so far
(Glazier and Mehdizadeh, 2019a,b).

To what extent and at what kind of timescale do the
fluctuations of movement patterns change or shift by means
of fatiguing training in such a way that the identification
of individuality is disturbed by a disjunct separation of the
variance-related distributions is the subject of this work.
Considering a typical karate training session (Funakoshi, 1973),
we conducted a biomechanical movement analysis of a large
number of executions of a frontal kick task during a fatiguing
process. Fatigue is a naturally occurring influence of movement
adjustments inherent in any training session or competition.
While the influence of fatigue on performance measures has
been well-described (Enoka and Stuart, 1992; Gandevia, 2001),
the detailed effects of fatigue on movement execution are only
partially elucidated. Most studies to date on the influence of
fatigue on movements have been conducted focusing on basic
cyclic movements (e.g., walking and cycling), while only a few

have focused on ballistic movements and considering just a
small number of actions. In these studies, the occurrence of
spontaneous movement adjustments under fatigue as a result of
multiple executions in various disciplines was reported, including
rope-skipping (Bruce et al., 2017), running (Mizrahi et al., 2000),
water polo (Oliveira et al., 2016), football (Amiri-Khorasani et al.,
2011), and karate (Quinzi et al., 2016).

Aragonés et al. (2018) investigated fatigue-related changes
of kinematics at different timescales during a karate training
session consisting of many frontal foot kicks. The resulting
data contained evidence of timescale-dependent adjustments
in kicking patterns occurring, particularly during the first 20
executions on a timescale of some tens of seconds (Quinzi
et al., 2016; Aragonés et al., 2018). On the same timescale,
mainly variables related to the speed of the movement and their
relative maxima changed, while variables related to the form
of the kicking movement were hardly affected. However, when
using the timescale of tens of minutes, exactly the opposite was
noticeable. Understanding fatigue-related movement changes
according to different timescales is of great relevance in
applied biomechanics since exercise-related fatigue is a source
of temporary change that introduces its own timescale into
performance dynamics (Newell et al., 2009). In sum, a clear
and current deficit in the understanding of timescale-dependent
changes in movements can be stated. Previous studies have
mostly considered discrete biomechanical variables at discrete
time points. To our knowledge, an analysis of sports movement
patterns based on time-continuous biomechanical variables over
many executions of the same movement task has not been
conducted so far.

In this study, the karate front kick is used exemplarily
to examine a ballistic whole-body movement by means of
pattern recognition procedures (i.e., support vector machine)
on the one hand with regard to its individuality and on
the other hand with regard to its situatedness over a
fatiguing process. Situatedness here refers to spatiotemporal
contingency as the momentary being that not only results
from environmental, but also from—for example—sociocultural,
geographical, historical, and biographical conditions as has
been introduced in phenomenology (Heidegger, 1927; Merleau-
Ponty, 1945). Thereby, the leading research questions of this
investigation are (1) can characteristics of individual movement
patterns be observed throughout the entire training session
despite continuous changes, i.e., even as fatigue-related processes
increase? and (2) how do intra-individual movement patterns
change as fatigue-related processes increase throughout a single
training session?

MATERIALS AND METHODS

The present analysis was conducted on data collected by
Aragonés et al. (2018). The application of machine learning
methods for classification offers an extended perspective on
the data and provides a more differentiated insight into the
development of the foot-kick kinematics of individual athletes
over two distinguishable timescales.
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Participants and Ethics Statement
The study participants were 16 Caucasian healthy adults (11 men
and five women) who practiced karate at least twice a week
(the group characteristics are shown in Table 1). All were right-
footed and were expert karatekas with brown and black belts
from the first to the fifth dan. The participants were recruited
from local karate clubs, and all were practicing karate at the time
of the examination for recreational and health purposes. Before
participating in the study, the participants signed informed
consent forms. All experimental procedures were conducted in
accordance with the Declaration of Helsinki and were approved
by the ethical committee of the medical association Rhineland-
Palatinate in Mainz. Each participant visited the biomechanics
laboratory once, where all kinematic measurements took place.

Experimental Protocol
The karate front kick (i.e., mae-geri-keage; see Figure 1) was
the movement to be performed before returning immediately
to the starting position. The kick was directed without impact
at a reference target (0.1 m × 0.1 m) supported by a plastic
rod placed 3 m in front of the participant and adjusted to the
participant’s abdominal height. Using a metronome, the actions
were prompted acoustically at a frequency corresponding to a
kick every 2 s (the participants changed from the orthodox to
the southpaw stance and vice versa for 2 s). The starting stance
was zenkutsu-dachi (Figure 1), that is, standing with one foot in
front of the other without lifting the heels from the mat. One
front and one rear martial arts mat (size: 0.9 m × 0.6 m; height:
0.02 m; material: foam rubber; surface: rice straw pattern) had
previously been attached to the floor in such a way that each foot
was placed on one of the mats. The participants were asked to
keep the angle between the thigh and lower leg segments of the
front leg at around 135◦, and to keep the rear leg extended as far
as possible. The lateral distance between both feet corresponded
to the width of the pelvis.

The test protocol was developed in the style of a common
karate training protocol (Funakoshi, 1973), where participants
are often asked to perform dozens of executions at submaximal
intensity before finally performing a few executions at maximal
intensity. Such bouts alternate with short intervals of inactivity,
during which time, the teacher gives corrections. As shown in
a schematic presentation of the test protocol in Figure 2, the
participants were asked to perform nine sets of kicks, each
consisting of 60 kicks with 80% of their self-perceived maximal

TABLE 1 | Participant characteristics.

M SD

Age (years) 39.69 12.81

Height (m) 1.75 0.08

Body mass (kg) 73.14 12.33

BMI (kg/m2) 24.54 3.11

Experience in karate (years) 16.00 6.60

Left leg length (m) 0.81 0.05

Right leg length (m) 0.81 0.05

Data are presented as mean (M) and standard deviation (SD), BMI, body mass
index.

intensity (K-80) (three blocks of 10 kicks alternately with each
leg, starting with the right leg), followed by one set of six kicks
at maximal intensity (K-100) (three with the right leg, then three
with the left leg). Before set 1 and after set 9, participants were
asked to perform a pre-set and a post-set of six kicks at maximal
intensity (K-100) (three with the right leg, then three with the
left leg). Between the sets, the participants rested for 90 s, except
between set 9 and the post-set, when they rested for 10 min.
The break of 90 s corresponds on the one hand to the typical
break length of karate training, and on the other hand, it was
needed to collect the physiological and psychological variables
as well as to readjust any markers that might have become loose
during prior sets.

After the participants arrived at the laboratory and before
the test was initiated, passive optical markers for the purpose of
biomechanical analysis were attached at anatomical landmarks.
In addition, discrete measurements of heart rate (HR), blood
lactate concentration, and the rating of perceived exertion (RPE)
were performed to collect baseline values. The participants were
then introduced to the test protocol and encouraged to warm up
by performing (1) 5 min of self-directed warm-up and (2) one set
of kicks while reporting the RPE (they were already familiar with
the appropriate scale) to become accustomed to the protocol.

Data Acquisition
Physiological: Heart Rate and Blood Lactate
Concentration
A heart rate (HR) monitor attached to a chest strap (HRM2-
SS; Garmin, Schaffhausen, Switzerland) and a blood lactate
concentration analyzer (h/p/cosmos sirius; SensLab, Leipzig,
Germany) were used.

Psychological: Borg’s Rating of Perceived Exertion
Borg’s rating of perceived exertion (RPE) on a scale of six to 20
points and corresponding instructions (Borg, 1998) was adopted.

Kinematics
Kinematic data were recorded with 10 infrared cameras (Oqus
310; Qualisys, Gothenburg, Sweden), which recorded at a
frequency of 333 Hz. Forty-two retroreflective markers were
attached to anatomical landmarks (Figure 1), including the left
and right anterior superior iliac spine, the left and right posterior
superior iliac spine, the right femur laterally and medially, the
left and right fibula tip of the lateral malleolus, the left and right
tibia tip of the medial malleolus, the left and right head of the
first metatarsus, the left and right head of the fifth metatarsus,
the tuberosity of the fifth metatarsus, the posterior surface of the
calcaneus, the left and right acromion, the sternum jugular notch,
the sternum xiphisternal joint, the seventh cervical vertebrae, and
the midpoint between the inferior angles of most caudal points
of the two scapulas. Two clusters of four markers were fixed to
the lateral sides of the left and right thighs and the left and right
shanks, respectively.

Data Processing
Physiological and Psychological Variables
Discrete HR values were recorded, blood lactate concentration
samples were taken from the earlobe, and RPE values were
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FIGURE 1 | Biomechanical model representing the zenkutsu-dachi starting stance (with 42 retroreflective markers fixed on anatomical landmarks) and the mae-geri
kick sequence performed with the right leg. Adapted from Aragonés et al. (2018).

FIGURE 2 | Schematic of the test protocol. The experimental procedure consisted of one pre-set (Pre-s) followed by nine sets (S1–S9) with 90-s rest intervals in
between and an additional post-set (Post-s) performed after a 10-min rest period. A deeper insight into the structure of the main elements is represented below. The
pre-set and post-set consisted of six mae-geri kicks performed at maximal intensity (K-100). Adapted from Aragonés et al. (2018).

reported by the participants before the warm-up phase (i.e.,
baseline values), after the pre-set, after each of the nine sets during
the rest period, and after the post-set, respectively. These variables
were selected to monitor fatigue development.

Kinematic Variables
The kicks were analyzed from the moment the kicking foot
moved forward on the x-axis to the maximum knee extension
angle just before the leg returned (Figure 1). The marker
trajectories were low-pass filtered with a sixth-order Butterworth
zero-phase filter with a cut-off frequency of 15 Hz. A partial body
model, based on the standard segments of the foot, shank, thigh,
thorax, and the CODA pelvis segment (Charnwood Dynamics,
Rothley, United Kingdom), was created for each participant in
the standing position using Visual 3D Standard version 4.86.0
(C-Motion, Germantown, MD, United States). The joint angles
were calculated with a Cardan sequence of rotation (Cole et al.,
1993). The data were processed with Matlab version R2015b
(The Mathworks, Natick, MA, United States). All variables were
time-normalized to 101 data points, z-normalized, and scaled to

the range (−1, 1). The following nine joint angle waveforms were
calculated in the x-, y-, and z-planes: the left and right ankle
joint angle, the left and right knee joint angle, the left and right
hip joint angle, the sternoclavicular joint angle, and the angles
between the left and the right thighs to the thorax.

Data Analysis
Data Classification
The classification of karate patterns was based on 606
kicks [606 = 2 (left kicks + right kicks) ∗ 303 (270 K-
80 + 33 K-100)] performed by each participant. For each kick,
a concatenated vector of all 27 kinematic variables [2727 = 27
joint angle waveforms (9 joint and segment angles in the
x-, y-, and z-planes) ∗ 101 data points] was built and used
for classification purposes. The classification was based on a
support vector machine, supervised machine-learning classifier
(Boser et al., 1992; Cortes and Vapnik, 1995; Müller et al., 2001;
Schölkopf and Smola, 2002) using a linear kernel and a
grid search to determine the best cost parameter (C = 2−5,
2−4.75, . . . , 215). The ability to distinguish karate patterns
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between participants (16-class classification) and within a
participant between different combinations of blocks and sets
(27-class classification), sets (nine-class classification), and blocks
(three-class classification) was investigated in a multiclass
classification setting. As presented in Table 2, due to the
different classification tasks, the size of the matrices used for the
classifications differed. Therefore, the prediction accuracies, F1
scores, precision, and recall were calculated over a k-fold cross-
validation depending on the minimal number of kicks included
in a block in each classification task. Furthermore, for every
classification task, the data were divided into training and test
groups. The data in the test group were evenly distributed across
all classes. This splitting of the data was stratified repeatedly
depending on the number of sets [i.e., by participant (K-80 and
K-100) and block-within-set classifications] and the minimal
number of kicks in one block (i.e., block and set classifications)
to obtain meaningful results. This procedure ensured that each
kick was included in every classification task exactly once in the
test set, thereby avoiding random imbalances in the prediction
and making the results more reproducible. The classification
was performed within Python version 3.6.3 (Python Software
Foundation, Wilmington, DE, United States) using the scikit-
learn toolbox (version 0.22.1) (Pedregosa et al., 2011).

Statistical Analysis of Movement Variance,
Physiological, and Psychological Variables
To determine the variance of movement patterns over time,
the coefficient of variation (CV) was calculated over the joint
angle waveforms of each participant (Winter, 1984). The exact
same data were used to calculate the CV as those used for the
classification analysis described above. The CV was calculated

according to each classification task. This means that, according
to the inter-individual classification, the CV was calculated over
the waveforms of all participants; in other words, according
to intra-individual classification tasks in the block and set
classifications over one block or one set of a participant as well
as in the block-within-set classification over all three blocks
within the sets.

The CV according to each classification problem, the HR,
the lactate blood concentration, and the RPE were tested for
normal distribution using the Shapiro–Wilk test. For data that
did not deviate significantly from the normal distribution,
descriptive statistics are presented in means and standard
deviations (SDs). Statistical analysis was performed using
repeated-measures analysis of variance (RM-ANOVA) with
post hoc paired t-tests with Holm–Bonferroni correction. Data
that deviated significantly from the normal distribution were
statistically tested with Friedman ANOVA; post hoc analysis
was performed with the Wilcoxon paired-rank test with Holm–
Bonferroni correction. The results were considered significant
at p < 0.05. Effect size was tested with η2 eta-squared for the
RM-ANOVA, Cohen’s d for the t-test, and r-effect size for the
Wilcoxon test, respectively. The analyses were performed using
the Statistical Package for the Social Sciences version 23 software
program (IBM Corporation, Armonk, NY, United States).

RESULTS

Inter-Individual Classification
As presented in Table 3, the classification of movement patterns
between the participants achieved 100% accuracy at both the

TABLE 2 | Description of the input data and validation procedure depending on the different classification tasks.

Classification task
and intensity

Size of matrix Description of x-vector
length

Training and test groups Cross-validation *
stratified splitting

Number of classes

Participant K-80 4320× 2727
4320 = 16 participants
* 270 kicks

Training: 16 participants * 30 kicks
* 8 sets (= 3840 kicks)
Test: 16 participants * 30 kicks
* 1 set (= 480 kicks)

9-fold * 9 16

Participant K-100 528 × 2727
528 = 16 participants
* 33 kicks

Training: 16 participants * 3 kicks
* 10 sets (= 480 kicks)

3-fold * 11 16
Test: 16 participants * 3 kicks
* 1 set (= 48 kicks)

Block K-80 270 × 2727

270 = 27 combinations of sets
and blocks (9 sets * 3 blocks)
* 10 kicks

Training: 9 kicks * 27 blocks
(= 243 kicks)
Test: 1 kick * 27 blocks (= 27 kicks)

9-fold * 9 27

Set K-80 270 × 2727 270 = 9 sets * 30 kicks

Training: 27 kicks (9 per block)
* 9 sets (= 243 kicks)

9-fold * 9 9
Test: 3 kicks (1 per block)
* 9 sets (27 kicks)

Block-within-set K-80 270 × 2727
270 = 3 Blocks * 9 sets
* 10 kicks

Training: 10 kicks * 3 blocks
* 8 sets (= 270 kicks) 9-fold * 9 3
Test: 10 kicks * 3 blocks * 1 set

Kicks for classification are based on the left- or the right-footed kicks; 2727 = 1 leg ∗ 27 joint angle waveforms ( x-, y-, and z-plane ∗ 9 joint angles) ∗ 101 data points.
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TABLE 3 | Mean percentage values of accuracies, F1 scores, precision scores, and recall scores of the different classification tasks and corresponding CVs.

Accuracy (%) F1 Score (%) Precision (%) Recall (%) Number of
classes

Random baseline
accuracy (%)

CV (%)

Classification task and
kick intensity

Leg M SD M SD M SD M SD M SD

Participant K-80
Left 100.0 0.1 100.0 0.1 100.0 0.1 100.0 0.1 16 6.3 31.6

Right 100.0 0.1 100.0 0.1 100.0 0.1 100.0 0.1 16 6.3 32.2

Participant K-100
Left 100.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0 16 6.3 32.1

Right 100.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0 16 6.3 33.3

Block K-80
Left 42.9 2.3 52.3 2.4 48.1 2.5 62.0 2.5 27 3.7 16.3 2.4

Right 42.9 1.8 52.2 1.9 47.7 1.6 62.5 2.7 27 3.7 16.6 2.2

Set K-80
Left 66.2 2.7 66.0 2.9 69.2 3.5 67.4 2.6 9 11.1 16.7 2.2

Right 65.1 2.6 64.7 2.8 68.7 3.1 66.2 2.7 9 11.1 17.2 1.9

Block-within-set K-80
Left 55.6 3.6 54.5 4.0 57.3 3.9 56.3 3.0 3 33.3 17.9 1.9

Right 66.0 1.3 64.9 1.8 68.1 1.1 66.3 1.4 3 33.3 18.3 1.7

Mean (M) and standard deviation (SD) values of the classification rates calculated over the different training–test splits (Table 2). M and SD values of the CV over the
waveforms for each classification task; for block, set, and block-within-set classification, M and SD values for all participants and classes are presented.

maximal (K-100) and submaximal (K-80) intensities during
the karate training process. The movement patterns of the
participants can, therefore, be clearly distinguished. Only one
left kick (1/4,320) and one right kick (1/4,320) at submaximal
intensity were not correctly classified.

Intra-Individual Classification
As shown in Table 3, the classification of movement patterns
over the 27 blocks in all sets (27 classes) resulted in a
prediction accuracy of 42.9% ± 2.3% for the left kicks and
42.9% ± 1.8% for the right kicks; the classification of the
movement patterns of the nine sets (nine classes) resulted in
a prediction accuracy of 66.2% ± 2.7% for the left kicks and
65.1% ± 2.6 for the right kicks, and the classification of the
movement patterns of the three blocks within the sets (three
classes) resulted in a prediction accuracy of 55.6% ± 3.6%
for the left kicks and 66.0% ± 1.3% for the right kicks.
Figure 3 shows the confusion matrices of the right and left
kicks for all intra-individual classifications. It is noticeable
that the true class has always been predicted more often and
that the misclassifications are mainly distributed among the
classes nearby.

This is also displayed in Figure 4, where the mean prediction
accuracy is shown as a function of the distance to the true
class. For both the left and right kicks, the true class was
the most probable class, and the probability of prediction
tends to decrease with increasing distance from the class. It is
noticeable, however, that groups with a distance of three and
multiples of three blocks again exhibit a higher probability than
that of the class closer to them. A distance of three classes
means that the class corresponds to the same block in the
nearby set. Six classes correspond accordingly to the same block
only with the distance of two sets between them. However,
the set classification clearly shows that the probability of a
misclassification decreases significantly with increasing distance
of a class from the true class.

Inter- and Intra-Individual CV
As presented in Table 3, the inter-individual CVs of the
waveforms of kicks with 80% intensity were 31.6% for the left
kicks and 32.2% for the right kicks. The CVs of the waveforms
of the kicks performed with maximal intensity using the left
leg (32.1%) and the right leg (33.3%) are slightly higher. The
mean CVs of the waveforms of the intra-individual comparisons,
therefore, are lower, with values between 16.3 and 18.3%. What
is noticeable here is that the CV of the waveforms of the right
kicks is always slightly higher than that of the left kicks. Figure 5
shows the CVs of waveforms dependent on blocks, sets, or blocks
within sets. It was noticeable that the CV values of waveforms
did not increase in any case during the fatigue-accumulating
process. As shown in Table 4, the statistical comparisons of the
CVs within the blocks and within the sets reveal a significant
difference for the waveforms of the right kicks, while the CVs
of the waveforms of the left kicks do not differ significantly. In
paired post hoc comparisons only between sets 4 and 5, there
was a statistically significant difference noted among the right
kicks. Based on the descriptive CV values for the waveforms of
the blocks and sets, it may be stated that the values for the first
block and set do not increase.

Changes in Physical and Psychological
Variables Between Sets
The baseline values [median (interquartile range)] for HR, lactate
blood concentration and RPE were 67 (61.75–71.25) beats ∗
min−1, 1.30 (1.20–1.53) mmol ∗ l−1, and 6 (6–6). Both HR
[χ2(11) = 133.520; p < 0.001], lactate blood concentration
[χ2(11) = 77.768; p < 0.001], and RPE [χ2(11) = 161.988;
p < 0.001] showed statistically significant differences over
the course of the experiment with fatigue accumulation from
baseline through the time points immediately following each
set (Figure 6). All results of Friedman ANOVAs and Wilcoxon
signed-rank post hoc tests are presented in Supplementary
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FIGURE 3 | Normalized confusion matrices of the classification’s movement patterns of the left and right kicks depending on the different classification tasks.
(A) Block classification, (B) set classification, and (C) block-within-set classification.
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FIGURE 4 | Distances to true classes of the classification of the movement patterns of the left and right kicks depending on the classification task. Presented here
are the means and SDs for each distance. A distance of zero to the true class refers to the prediction accuracy of the true class (e.g., a distance of two means that
the predicted class is two classes next to the true class). (A) Block classification. Consider that distances of 14 and higher will not occur in all cases (e.g., block 14
has only 13 blocks before and 13 after). (B) Set classification. Consider that distances of five and higher will not occur in all cases.

Table S1. It was noticeable that the HR increased steadily over
the course of a set and decreased by about 30–40 beats ∗min−1 in
the 90-s set pauses. The maximum HR reached a median of 169
(150.25–175.50) beats ∗ min−1 after the ninth set. A statistical
comparison of the times directly after the completion of each
set and the baseline measurement showed a significant increase
until after the third set. There were no statistical differences
between the third and ninth set, with the median HR over the
course of the test increasing from 165 to 169 beats ∗ min−1.
The analysis of the blood lactate concentration showed only
statistical differences between pairs of baseline measurements
and all further sets. No statistical differences were found between
the individual sets. However, up to the end of set 8, a trend can
be observed that the mean lactate value increased continuously
and reached a maximum of 4.95 (3.83–5.20) mmol ∗ l−1.
In pairwise comparisons of the RPE, a steady increase was
observed until the end of the ninth set. It is shown that the
RPE increases significantly at the next, the next but one, or at

the latest the third following set and reaches a maximum of
16 (14.75–17.25).

DISCUSSION

In this study, the biomechanical movement patterns of experts in
karate were investigated by executing the front kick, constituting
a movement performed with a high level of expertise, multiple
times, and through a fatigue-accumulating process in a training
session. In relation to the first hypothesis, the results show
that an individual’s movement patterns can be clearly identified
independently of fatigue-accumulating training. Regarding the
second hypothesis, it was found that changes in the intra-
individual movement patterns, which are not attributable to
changes in variance, can be clearly identified within a training
session. In detail, these changes in movement patterns appear to
be dependent on different timescales. Whether these timescales
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FIGURE 5 | Coefficient of variations of the joint angle waveform of the left and right kicks depending on each block and set. Presented here are the box plots for all
participants; the x-axis shows the classes, and the y-axis shows the CV. Values are considered as outliers if they are outside the interval [Q1 – 1.5 * (Q3 – Q1),
Q3 + 1.5 * (Q3 – Q1)]. × = Outlier (each × stands for one outlier); *Statistically significant difference in pairwise post hoc test. (A) CV of the waveforms of the blocks
of each participant. There was a statistically significant result for right kicks. (B) CV of the waveforms of the sets of each participant. There was a statistically
significant result for right kicks. (C) CV of the waveforms of the blocks within sets for all participants.
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TABLE 4 | Statistical analysis of the intra-personal CV of the joint angle waveforms
of the K-80 kicks.

Classification
task

Leg RM-ANOVA or
Friedman ANOVA

Post hoc analysis

Block

Left χ2(26) = 37.881,
p = 0.062

Right χ2(26) = 54.696,
p = 0.001a

Set

Left F (3.933,59) = 2.212,
p = 0.080, η2 = 0.129 Sets 4–5

Right F (8,120) = 4.462,
p < 0.001a, η2 = 0.229

[p(15) = 0.0003b, d = 0.499]

Block-within-set

Left F (2,30) = 0.607,
p = 0.552, η2 = 0.039

Right F (2,30) = 0.119,
p = 0.888, η2 = 0.008

Presented here are the results of the RM-ANOVA or the Friedman ANOVA to
determine differences among all classes. Only the significant post hoc paired-
samples t-test or Wilcoxon signed-rank test results are shown. aSignificance level:
α = 0.05. bHolm–Bonferroni-corrected significance level: α0 = 0.0016.

are independent of each other, contain self-similar features, or
correspond to timescales related to adaptation, warming up, and
learning (Newell et al., 2001) will challenge future research.

Individuality of Movement Patterns
The results of the classification analysis showed that the
movement patterns of all 16 participants could be clearly
distinguished from each other, although all tried to imitate
the same profile of the frontal foot kick (mae-geri). Unique
movement patterns could be distinguished for each participant
for both kicks performed at both maximal (K-100) and
submaximal (K-80) intensities as well as with regard to the
respective leg performing the kick. Interestingly, the unique
characteristics of the individual movement patterns could be
identified throughout the entire training session, despite breaks
and the accumulation of fatigue. The results support the
idea that detailed adaptations of movement patterns to new
situations should only be sought on an individual level and
not on the basis of a collective, person-independent profiles
(Schöllhorn, 1993; Schöllhorn and Bauer, 1998; Janssen et al.,
2011; Eekhoff et al., 2016; Horst et al., 2017b; Glazier and
Mehdizadeh, 2019a,b). Despite all the fluctuations apparent in
the kinematic variable waveforms, which were superimposed
in this context by exercise-related fatigue accumulation during
the 606 kicks performed by each person, individual foot-
kicking patterns at the maximal and submaximal intensities
could be clearly distinguished. Although all participants applied
training approaches that were oriented on a collective (person-
independent) profile, all ended up adopting their own individual
kicking patterns that appeared to be fairly resistant against
perturbations like fatigue-related changes. This indicates that, in
the sense of the theory of system dynamics (Schöner and Kelso,
1988), each individual participant developed individual kicking
patterns via a rather less–self-organized process. Individual
movement patterns could be reproduced with a certain degree
of fluctuations in different situations and influences. However,

because the movement patterns were described by means of
kinematic variables, no information about the kinetic changes
was available. Further insight into whether the movement pattern
adaptations become more or less effective by taking more or less
advantage of gravitational and inertial forces is required.

Fatigue-Related Changes in Individual
Movement Patterns Across Different
Timescales
Within the range of individual movement patterns, fatigue-
related changes in terms of disjunct changes could be
distinguished using classification analysis. Despite a large inter-
individual variance in physiological and psychological variables,
all participants showed significant increases in these variables
over the period under study. Recurrent HR values were
above 90% of the theoretical HR maximum, blood lactate
concentrations were at a maximum of almost 5 mmol ∗ l−1

and the RPE fell between “hard” and “very hard.” These results
confirm that the participants were highly motivated and that
fatigue accumulated during the exploration. The classification of
the 27 blocks (three blocks within each of the nine sets), which
represent the entire fatigue-accumulating process continuously,
showed a prediction accuracy of 42.9% each for the kicks with
the left and the right legs. The prediction accuracies reached
well above the random baseline accuracy of 3.7% and thereby
suggested that the movement patterns of the respective 27 blocks
could be distinguished from each other. When comparing the
predicted and true blocks, shown in Figure 3A, it is noticeable
that, for most misclassifications, a directly adjacent block was
predicted. The increased misclassification of movement patterns
of adjacent blocks of the true block further indicates that the
movement patterns of kicks of adjacent blocks exhibit more
similar patterns than those of kicks of more distant blocks. This
observation is illustrated in Figure 4A, where the quantification
of misclassifications is represented by the distance to the true
class. Here, a distance of one means that, for example, the
movement patterns of a kick within the sixth block was predicted
to also be found in the fifth or seventh block, while, if the distance
is three, the third or ninth block was similar accordingly. The
misclassifications of the movement patterns of the kicks of a
block decrease the further away the block is from the true block.
Surprisingly, however, this general trend is interrupted by a brief
increase in misclassifications for those blocks that are three or
multiples of three blocks away from the true block. Interestingly,
a distance of three blocks corresponds to the same block only in
the adjacent set (e.g., the first block in set 3 to the first block in
set 2 and the first block in set 4) and a distance of six accordingly
corresponds to the same block in the sets after next (e.g., the first
block in set 3 to the first block in set 1 and the first block in set 5).

The results of the classification, therefore, suggest that the
movement patterns of the blocks contain common patterns
within the sets, although the movement patterns seem to evolve
over the entire course of the sets. Nevertheless, differentiating
the movement patterns of the blocks was possible, despite that
the time interval between two blocks was very short (Figure 2).
However, it remains unclear how the movement patterns, which
occur on timescales of a few tens of seconds, originate. An
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FIGURE 6 | Development of HR, lactate blood concentration, and RPE over the duration of the examination. Values are considered as outliers if they are outside the
interval [Q1 – 1.5 * (Q3 – Q1), Q3 + 1.5 * (Q3 – Q1)]. × = outlier (each × stands for one outlier); *Statistically significant difference in pairwise post hoc test. (A–C)
Shown are the box plots of HR, lactate blood concentration, and RPE from baseline measurement and according to the respective sets. HR, lactate blood
concentration, and RPE showed significant results. For reasons of clarity, only significant adjacent pairs of post hoc comparisons are shown. If the difference to the
nearest neighbor was not significant, the difference to the next but one neighbor was shown. If this difference was not significant either, the next neighbor was
shown. An overview of all post hoc comparisons is presented in Supplementary Table S1. (D) The mean values and SDs of the continuous HR curve are shown.

explanation of the recovery of the movement system seems highly
unlikely since the 90-s break provides some recovery but was not
sufficient for a full recovery. An explanation of the rhythm of
movement would be more likely. These breaks within the rhythm
could be caused by executing the kicks with maximal intensity
at the end of each set, which could cause a kind of “reset” of the
submaximal kicks. It is also possible, however, that the 90-s break
alone would be enough to achieve a similar effect. A short break

in rhythm could allow the subsystems of the body responsible
for changing the movement patterns on timescales of tens of
seconds to recover or rebuild (MacPherson et al., 2009). In this
context, the influence of interruptions in the rhythmic structure
on the adaptations of movement patterns, as well as their effects
on training processes and outcomes, requires further research.

The trend on a timescale of tens of minutes is confirmed by
the results of the classification of the movement patterns of the
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nine sets. The prediction accuracy values of 66.2% for left kicks
and 65.1% for right kicks indicate that the movement patterns
within a person can be fairly distinguished between sets (random
baseline accuracy: 11.1%). Furthermore, the classifications in
relation to the distance to the true set (Figure 4B) show that the
misclassifications clearly decrease with the increasing distance of
the set from the true set. With an error tolerance of one set, the
prediction rates would already be around 90%. The similarities
on a timescale of several tens of seconds, that is, the similarity
of movement patterns of the blocks within different sets, are also
confirmed by the classification of the three blocks within all sets.
Prediction accuracy values of 55.6% for the left kicks and 66.0%
for the right kicks also point to a common pattern inherent in
movement patterns, although the significantly higher random
baseline accuracy (33.3%) should be taken into account here.

The results of the classification analysis suggest that, during
a single training session, the execution of movements seems to
adapt immediately to changing psycho-physiological conditions
(increasing fatigue-related changes). More specifically, even
with experts, it seems that repeated executions of a ballistic
sports movement (associated with exercise-related fatigue
accumulation) lead to disjunct changes within individual
movement patterns on different timescales (Newell et al., 2006;
Schöllhorn et al., 2009; Horst et al., 2017a). The disjunct
changes of individual movement patterns during exercise-
related fatigue accumulation in a training session indicate
continuous dynamic adaptation processes of the movement
system (Schöner and Kelso, 1988). In consequence, a continuous
change of the intrinsic dynamics can be assumed in parallel.
While prior studies have shown emotion-specific (Janssen et al.,
2008) or time-specific (Horst et al., 2016, 2017a) movement
patterns, these results indicate that the movement patterns
of individuals are highly dependent on the situation. Due
to the situative adaptation of the movement patterns of a
single individual, the findings support the perspective that it is
difficult—if even possible at all—to determine a single (time-
independent) person-specific optimal movement pattern (Hatze,
1986; Glazier and Mehdizadeh, 2019a,b).

Fatigue-Related Changes in Movement
Patterns, Not Variance
The present results showed that individual participants, despite
practicing at an expert level of performance, were unable to repeat
the kinematics of a karate front kick movement identically. As
shown in Figure 5, there were slight changes in the time course
of the CVs of the joint angle waveforms of the blocks and sets,
although no specific trend could be identified. The variance in
the movement kinematics of individuals, therefore, constantly
fluctuates within a certain range. A statistically significant
difference was noticed only in a period of tens of minutes (sets),
between sets 4 and 5, where a decrease in the variance could be
observed. However, due to the individual variance in movements
across the sets, it is difficult to speak of a global trend but rather
of local fluctuation. An increase in the short-term movement
variance due to fatigue accumulation could not be shown within
the sets. Together with the results of the classification, this leads
to the conclusion that fatigue accumulation does not change the
short-term movement-patterns variance but, more importantly,

does change the overall kinematic movement patterns of a
participant. This finding contradicts the results of previous
studies (Côté, 2014; Mudie et al., 2017).

With additional evidence sourced from other research about
the individuality of gait (Horst et al., 2017b, 2019), the optimal
term should be considered to be individual. However, the results
do show clear intra-individual shifts in movement patterns
during training, which also calls into question the existence
of a person-specific optimal movement pattern (Glazier and
Mehdizadeh, 2019a,b). The results confirm the findings of
the study by Aragonés et al. (2018), which already indicated
altered movement patterns exist within individual kinematic
variables. The results also are aligned with Quinzi et al.
(2016) finding that there are movement pattern variations
that occur even during the first 20 executions. Our results
support the idea that, in this type of sportive action, the
kinematic changes that occur with the accumulation of
fatigue are temporary changes that span different timescales
(Aragonés et al., 2013; Balagué et al., 2014). Aligned with
changes at the task level, products of an evolving set of
dynamic subsystems occur at multiple levels of analysis,
each of which has its own timescale (Newell et al., 2009).
Furthermore, the results of this study support the many findings
of previous assessments of the stability and adaptability of
movement concerning biomechanical forces (Newell et al., 1989;
Schneider et al., 1989; Van Emmerik and Van Wegen, 2000;
Bartlett, 2007). That is, the kinematic movement patterns of
expert athletes are characterized by their ability to constantly
adapt to new situations or intrinsic and extrinsic influences.
Moreover, despite the situatedness, the movement patterns of
an athlete are so individual that they clearly differ from those
of other athletes.

Practical Implications
The findings of this study support far-reaching practical
implications for sports science and training. The results delivered
a fairly good separation of the movement patterns of blocks,
which became even clearer with increasing time. This can be
associated with different fluctuations at two different timescales.
One timescale is related to the duration of blocks, while the
other is linked to the duration of the whole series. An additional
timescale has been associated with shifts of individual movement
patterns at the timescale of years (Bauer and Schöllhorn, 1997;
Horst et al., 2017b) and further timescales up to ontogenetic
maturation and aging can be assumed. Looking at the timescales
as outcome of naturally occurring fluctuations of different
amplitudes and structure resulting from repeated executions
of the same movement task, it can be derived as a practical
consequence that repetitive (Gaulhofer and Streicher, 1924;
Anochin, 1935; Miller et al., 1960; Gentile, 1972) and variable
(Schmidt, 1975; Shea and Morgan, 1979; Newell, 1986; Davids
et al., 2008) sports training approaches, which are understood
in terms of person and time-independent fluctuations, need
to be reconsidered carefully. This reconsideration concerns the
definition of target profiles as orientation for movement learning
and sports training, the diagnoses of the athlete’s momentary
performance, and their approximation to each other during the
training process.
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While the search for optimal movement solutions as target
profiles in majority has been associated with a static, albeit
individual, optimum movement pattern that seems to be
impossible to define and to achieve (Hatze, 1986; Loeb, 2012;
Glazier and Mehdizadeh, 2019a,b), one could imagine a dynamic
optimum that has to be adjusted at every moment by measuring
all available variables again and again. The idea of a dynamic
optimum, however, also leads to the difficulty that even if the
initial conditions are “completely” identified, the subsequent
movement will modify the individual’s variables due to the
biological memory (Walker, 1972) of the movement system and,
consequently, the outcome can no more be validated due to
the irreversibility of biological systems. Moreover, a dynamic,
time-dependent optimum would raise ample difficulties related
to the target profile and the training athlete. In the first case,
the difficulty is to decide which of the fluctuating patterns
should serve as an orientation for training, and in the second
case, the low probability of coherent fluctuations between the
dynamic target profile and the athlete’s fluctuating movement
patterns will hardly allow to find a reliable intervention strategy.
With regard to these issues, approaches that foster self-organized
learning such as, for example, the differential learning approach
(Schöllhorn, 2000), which take into account person-specific
and timescale-dependent fluctuations and introduce variations
without direct or indirect target profiles seem advantageous. The
differential learning approach suggests increasing fluctuations
in order to destabilize the movement system, thereby enabling
self-organizing optimization processes (that do not require
information about target profiles) (Schöllhorn et al., 2001). In this
context, Schöllhorn et al. (2001) were able to find first indications
of a greater extent of individualization in a group of juvenile
sprinters after 6 months of training with increased fluctuations
[according to the differential learning approach (Schöllhorn,
2000)] and without information about the ideal execution of
movements, compared to a control group that trained according
to a collective profile with error correction [according to the
repetitive training approach (Jonath et al., 1995)].

The identified timescales also provide evidence of a
continuously changing movement system that can be associated
with the arrow of time. Apparently, athletes not only become
accustomed to certain movements and, therefore, experience
incremental learning over time, but also they can acclimate to a
certain amount of fluctuations that blunt the sensitivity to the
applied movement learning and training approach. In sports
practice, it is speculated that, after a certain time of variable
training, a period of repetitive training makes the movement
system more sensitive to variable training again. In this context,
special attention should be paid to the difference between finding
an adequate description variable and assessing its impact on the
training process by means of versatile types of interventions.

The amount of naturally occurring fluctuations during
repetitive movements have already been considered for
predicting the success of learning progress (Wu et al., 2014;
Dhawale et al., 2017, 2019; Pacheco et al., 2020). Those
fluctuations, however, are associated with a kind of passive
dependence on the fluctuations momentarily produced by the
athlete. Alternatively, the active application of subthreshold

fluctuations at the foot soles led to improved posture
performance (Collins et al., 1995; Priplata et al., 2002). Another
type of active intervention that is based on the amplification
of observed fluctuations according to the dynamic principles
of systems provides promising results useful toward attaining
a shortened training process (Schöllhorn, 1999) and boosting
the potential for good sustainability after the intervention
(Frank et al., 2008; Schöllhorn et al., 2009). How to take
advantage of the passively occurring fluctuations to optimize
the active fluctuations in the form of interventions demands
more investigation.

In addition, the observed fluctuations in different timescales
should lead us to reconsider the often-interpreted disadvantage
of fatigue for movement learning. For example, the movement
fluctuations that occur during the fatigue process in training
could be used beneficially for movement learning. From a
system dynamics view, fatigue could be considered as a type of
fluctuation occurring across different timescales. With a growing
focus on the individuality of movements and the sensitivity of
training approaches, the situation of athletes engaged in profile-
oriented sports training particularly is repeatedly disregarded and
should experience an increased focus (Schöllhorn and Horst,
2019). Thereby, the detrimental effect of endurance-like training
on the biomechanics of fast-contracting muscles may not be
forgotten (Wilson et al., 2012).

Concerning the latent assumptions of acquisition of
movement patterns, the individual, as well as the constantly
fluctuating and shifting movement patterns, strongly tests
the validity of the philosophy underlying repetitive sports
training that is guided by collective profiles (Gaulhofer and
Streicher, 1924; Anochin, 1935; Miller et al., 1960; Gentile, 1972).
Theoretically, the orientation on target profiles per se could
be detrimental for learning, regardless of whether the profiles
are individual or collective. More differentiated intervention
studies are required to decide whether the underlying training
philosophy of collective (person-independent) profiles is
deficient or whether the mostly accompanied repetitive learning
approach is questionable. In the same context, whether training
targeted toward an individually optimized profile will lead to
individual movement patterns or at least will achieve those
with less effort deserves attention. Having profiles in mind
supports the disposition for comparison, which drags mental
resources and increases the probability of frustration (Fillauer
et al., 2020). As a consequence, this could suggest the need to
move toward an alternative approach that is not oriented on set
targets as in the closed-loop approach to learning (Adams, 1987)
but instead fosters constant changes that support approaches
originating from Far Eastern philosophy (Purser et al., 2016;
Gallicchio and Ring, 2019) and which help one to be in the
moment in order to achieve a brain state that is optimal for
performing and learning (Henz and Schöllhorn, 2018). Being in
the moment can be associated with the term situatedness as it
is understood in pragmatism under contextuality (Dewey et al.,
1982) or in phenomenology under situativity (Heidegger, 1927;
Merleau-Ponty, 1945).

It can be expected that, with increasing the precision of
measurement, tools for analysis of the unknown complexity
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(from a physics point of view) will be continuously decomposed
and deployed in other regions or levels of interest. In combination
with the knowledge about the sensitive dependence of a complex
system’s (from a physics point of view) development on its initial
boundary conditions, we should be careful not to reawaken the
Laplace demon and accumulate endless constraints. Considering
the vast amount of possible variables of influence, reaching
from historical and sociocultural up to physiological and genetic
conditions as well as considering their interactions according
to gravitational forces and epigenetics only provides a coarse
impression in the undertaking to find key variables or key
exercises that are independent of individuals and timescales as
held out the prospect by movement learning approaches such as
the constraints-led approach (Handford et al., 1997; Davids et al.,
2004, 2008; Renshaw et al., 2019).

In consequence, on a rather biological level, the goal of
training practices is to focus more on adaptation processes
and consider the stabilization of movement patterns rather
as a byproduct. Instead of discussing stability and flexibility
colloquially as complementary opposites that the athlete and
coach must balance (Hamill et al., 1999; Schöllhorn, 2000;
Van Emmerik and Van Wegen, 2000; Schmidt and Lee, 2005;
Bartlett et al., 2007; Glazier and Davids, 2009; Schöllhorn
et al., 2009; Preatoni et al., 2013), a differentiated focus related
to the description of a multitude of adaptation processes
dependent on different timescales (Kelso et al., 1987; Newell
et al., 2001) seems more adequate to the applied problems. An
increased emphasis on timescale-dependent adaptation processes
in training could also have a positive effect on competition
practice. The assumption is likely that highly variable and varied
training also improves adaptability in competition, whether it is
quick adaptation to opponents, environmental conditions, or the
compensation of fatigue through changes in movement patterns.

Limitations and Future Work
This study examined changes in the kinematic movement
patterns of expert athletes who performed the karate front
kick multiple times during a single training session under an
accumulation of fatigue. Whether these results can be transferred
to other whole-body movements requires further research.
Due to the biomechanical basis of this study, the multiple
underlying physiological or psychological fatigue processes can
only be speculated about (Pyne and Martin, 2011; Halson, 2014).
Whether the identified changes provoked by the accumulated
fatigue are caused by muscular, neuronal, metabolism, or
psychological mechanisms or—most probably—a mixture of
everything on different timescales demands further research.
However, alterations in metabolic parameters like the increased
lactate and HR levels by the end of the training session indicate
at least fatiguing processes occurred in all athletes. Even if the
lactate values of a maximum median of almost 5 mmol ∗ l−1 are
not excessively high, the HR and the RPE clearly showed that the
training was carried out at a high level of intensity and that fatigue
accumulated over time. An interesting problem to pursue thereby
would be the possibility of an assignment or decomposition of
the situative fluctuations of the movement patterns to different
timescales to specific fatigue mechanisms.

An additional limitation is related to the kicks having been
performed in the air. In training and competitive karate, two
major forms are executed. One is the fight against a virtual
opponent, called kata, and mainly consists of a series of
prescribed defense and offense movements, whereas, in the
second form, called kumite, a fight against a real opponent where
selected hits are scored is performed. Because of the original
intention to ensure high external validity with the kata form, no
transfer to kicks toward an object that would be related to kumite
could be made. Consistent with the research by Błaszczyszyn et al.
(2019), it can be speculated that kicking against resistance has
a considerable effect on muscle contractions, especially by the
end of the movement. Further research is necessary to discern
whether this also influences inter- and intra-personal differences
in the fatigue-related temporal change of the karate front kick.

The present study also examined the joint angle waveforms,
mainly of the lower extremities. Additional attention should be
paid to discern to what extent the upper extremities also have
an effect on the movement pattern recognition by experts and
thus possibly improve the intra-individual recognition. However,
based on the selected variables from lower extremities, similar to
in gait studies (Schöllhorn et al., 2002; Janssen et al., 2008; Horst
et al., 2016), clear individual movement patterns already could be
found. Furthermore, it was also determined that these individual
patterns change from tiring out during training. To what extent
these individual movement patterns change over longer periods
of tiring out during training, and the nature of possible drifts
outside the individual solution spaces requires further research.

CONCLUSION

Based on the classification of kinematic joint angle waveforms
of karate front kicks during a training session (accompanied by
increased fatiguing), unique movement patterns can be identified
for individual athletes. In this research, unique movement
patterns of the study individuals could be identified persistently
at different execution intensities (maximal and submaximal) and
with increasing fatigue. Fatigue-induced changes in individual
movement patterns of the athletes could be observed in the
sense of disjunctive adjustments in kinematic patterns rather than
an increase in variance. These fatigue-related changes occur on
different timescales (i.e., blocks in tens of seconds vs. sets in tens
of minutes). The findings raise the question of to what extent the
targeting of sports training on profiles, no matter whether these
are derived collectively or individually, is rather a theoretical
consideration (search) than a practically achievable solution. The
orientation of sports training toward adaptation processes and
variable situations instead of achieving and automating profiles
could be a promising alternative in this context.
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