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Reinforcement learning systems usually assume that a value function is defined over all

states (or state-action pairs) that can immediately give the value of a particular state

or action. These values are used by a selection mechanism to decide which action

to take. In contrast, when humans and animals make decisions, they collect evidence

for different alternatives over time and take action only when sufficient evidence has

been accumulated. We have previously developed a model of memory processing that

includes semantic, episodic and working memory in a comprehensive architecture.

Here, we describe how this memory mechanism can support decision making when

the alternatives cannot be evaluated based on immediate sensory information alone.

Instead we first imagine, and then evaluate a possible future that will result from choosing

one of the alternatives. Here we present an extended model that can be used as a

model for decision making that depends on accumulating evidence over time, whether

that information comes from the sequential attention to different sensory properties or

from internal simulation of the consequences of making a particular choice. We show

how the new model explains both simple immediate choices, choices that depend on

multiple sensory factors and complicated selections between alternatives that require

forward looking simulations based on episodic and semantic memory structures. In this

framework, vicarious trial and error is explained as an internal simulation that accumulates

evidence for a particular choice. We argue that a system like this forms the “missing link”

between more traditional ideas of semantic and episodic memory, and the associative

nature of reinforcement learning.

Keywords: memory model, decision making, accumulator model, episodic memory, semantic memory

1. INTRODUCTION

Vignette 1: Pat is visiting Sam for the first time in her country home. Pat loves searching for
mushrooms, in particular chanterelles. Sam knows nothing about mushrooms, but she has heard
that there are chanterelles in a nearby forest so she offers to take Pat there. When they arrive, Pat
starts looking around for suitable biotopes. To the left, there are some alder trees so Pat immediately
knows that the ground there is too wet for chanterelles. To the right, there is a spruce plantation
and that is normally too dark for chanterelles. But straight ahead is an open beech forest with dry
leaves on the ground. So Pat heads in that direction.

Vignette 2: Sam is arriving in her car late in the evening to a small town in France and is looking
for a hotel. Her mobile phone is out of battery and the car does not have a GPS. The streets are
narrow and winding and there is nobody to ask. Suddenly she remembers the old rule of thumb
“Cherchez léglise”—search for the church—and as she sees the church tower now and then from
the streets, she manages to find the church. Close to the church there is a hotel.
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This article is about how memories from earlier events may
influence choice tasks. The central idea is that memories induce
correlations in the form of semantic and episodic associations
that may be useful in a new choice situation. From earlier
mushroom expeditions, Pat has learned about correlations
between the type of vegetation and the likelihood of finding
different kinds of mushrooms. Such correlation is part of the
semantic memory. Sam knows from experiences of other small
towns that it is probable that there is a hotel close to the church,
a form of episodic memory. She may even explicitly remember
a previous episode from a specific hotel and its proximity
to a church. In decision making, humans and other animals
frequently exploit knowledge of correlations that they have learnt
from earlier, similar problems.

Reinforcement learning is one of the major models of how to
act in an environment so that reward is maximized. There are two
main components in a standard reinforcement learning system
(Sutton and Barto, 2018). The first is a component that estimates
the value of an action in a particular state. This component
can be a simple table, as in the original Q-learning algorithm
for reinforcement learning (Watkins and Dayan, 1992), or some
form of function estimator that is able to compute the value
also in new states and for new actions based on their similarity
to previously trained states and actions (Baird, 1995; Xu et al.,
2014). The second component is a decision mechanism that
selects a particular action depending on the estimated value of
the different actions. The simplest strategy is to always select the
action with the largest value, but in order to promote exploration
and learning, it is necessary to at least sometimes select other
actions where the value is not known or is uncertain. Regardless
of what decision mechanism is used, the reinforcement learning
framework assumes that the value of an action is a function of
the present state and the possible actions. This may be sufficient
to explain routine decisions but in general, we often collect
evidence for different alternatives over time and take action
only when sufficient evidence has been accumulated (Ratcliff
et al., 2016). Such a strategy can be seen both in humans and
in animals.

Consider a situation where we have to choose between two
products, two packages of pasta, in the store. Each package has
a number of visual features such as shape, size, color, price tag,
and branding that together suggest the properties of its content.
There is even a list of ingredients in small print that may give
additional information. The value of the item is not available
directly but results from a process that integrates the different
pieces of information on the package. As we scan the different
alternatives, we gradually get a picture of which item to choose.
In simple cases, each visible attribute of the package may add to
the evaluation in a direct way. However, in most cases, we need to
consult our semantic memory tomake amore informed decision.
We may associate the pasta brand name with other groceries
that we have bought previously, like tomato sauce, or Parmesan
cheese; or we may come to think of other properties related to
the packaging of the pasta. For example, colorful cardboard boxes
may associate to a fancy Italian restaurant, and so to better quality
pasta than a simple plastic packaging. Through our semantic
memory, experiences with other related groceries will influence

our evaluation of the packages on the shelf. Even the location of
the item on the shelf, how hard it is to reach, or whether the shelf
is full or not, may influence the decision.

Decisions can also take into account our previous experiences
stored as episodic memories. We may recall our earlier
experience with this brand. Perhaps we recall that the last time
we bought a product in a similar package, it was very hard to
open, or maybe we remember eating this particular item as part
of a fantastic dinner. Such recalled episodes contribute to the
evaluation in a positive or negative way. Episodic memories can
also be used to forecast what will happen in the future (Atance
and O’Neill, 2001; Hassabis et al., 2007; Schacter et al., 2017). We
may imagine combining the item in front of us with something
in the fridge at home.

We want to propose that decisions like these are made
not by direct evaluation of the item in front of us, but
by imagining a future where we have made a particular
choice (Atance and O’Neill, 2001; Schacter et al., 2017).
It is this future state that is evaluated, rather than the
direct properties of the item. This contrasts with standard
reinforcement learning that is not forward looking in this way.
Instead, decisions made by a reinforcement learning model
depend on the estimated value having propagated backwards
from the final experienced rewarding state and this requires
repeated testing of many successive decisions leading to the
eventual goal.

In the model we propose, the future state may never have been
experienced and can potentially be imagined for the first time
during the decision-making process (See Balkenius et al., 2018).
Our proposal may superficially look like a planning process, but is
fundamentally different. It is not used to test a sequence of actions
and evaluate the result, rather, the decision process imagines
different future states and uses the evaluation of those to make
a decision about a choice here and now. It is not necessary to
come up with all the steps needed to reach the imagined future
state, but the choice we finally make should be critical to that
future state for the decision to be useful. That is, it should make
a discernible positive difference. This means that we may also
decide that it does not matter which particular choice is made.
Hence in the example with shopping for an Italian dinner, we
may conclude that the particular brand of pasta we buy is not
important. There is no qualitative difference in projected value
between scenarios involving different pasta types. The sauce may
make a much larger difference, and so we can choose the cheapest
pasta and reserve money for the sauce instead. This would be
a case of satisfying rather than optimizing in decision making
(Simon, 1972).

One can find extensive evidence from both psychology
and neuroscience for the type of mechanisms we propose.
Firstly, there is a long history of sequential decision making
models in psychology (Usher and McClelland, 2004; Mather and
Sutherland, 2011; Johnson and Ratcliff, 2014; Mather et al., 2016;
Ratcliff et al., 2016; Evans andWagenmakers, 2019), but they have
mostly been applied to the type of immediate choices outlined
above and not to choices based onmemory processes. Their main
component is an accumulator that collects evidence for different
alternatives until a decision criterion is reached.
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Secondly, in computational neuroscience, the idea of neural
competition is a cornerstone of many theories of brain
function (Amari, 1977; Grossberg et al., 1978; Erlhagen
and Schöner, 2002). For decision making, such competition
mechanisms are central to making choices and below we
outline an accumulator model that includes several types
of competition mechanisms. Of particular interest are leaky
competing accumulator models that incorporate aspects of both
the psychological and neurophysiological models (Usher and
McClelland, 2001, 2004; Johnson and Ratcliff, 2014). Such
competitive processes in the brain are modulated by arousal that
can make the competition more or less random (Aston-Jones
et al., 1999; Usher et al., 1999; Mather et al., 2016) and shift
between exploration and exploitation (Gilzenrat et al., 2010).

In addition to including memory processes in a decision
model, we also want to address how attention is used both
for perceptual selection and as an indexing system into the
accumulator component of the model. The currently attended
spatial location of the attention system is used to index separate
accumulators that are associated with different spatial locations.
Empirical evidence suggest that humans use spatial locations
as hooks for working memories to store information about a
particular stimulus or object (Richardson and Spivey, 2000). This
is a form of deictic coding that allows different choices to be
equated with different spatial locations (Ballard et al., 1997).

Our aim in this paper is to show how a memory mechanism
that handles episodic and semantic memories can be combined
with a decision mechanism to make choices based on perceptual
features. We present a computational model where we combine
a perceptual system that can scan different choices while using
a memory component to process both semantic and episodic
associations that help evaluate the different choices. A spatial
attention component directs attention to the different choices
and is also used to index different value accumulators that add
up evidence for each alternative. The system-level computational
model demonstrates how perception, attention, memory, and
choice mechanisms can interact in decision-making processes.
The focus here is on the interaction of these components rather
than on learning of values or on initial storage in memory. In
particular, the simulated model described below contains only
pre-set associations.

2. A SYSTEM-LEVEL MODEL OF MEMORY
BASED DECISION MAKING

System level models of the brain aim at explaining which different
components are needed for a particular cognitive function. They
aim at answering a number of questions about the architecture
behind an ability (Balkenius et al., 2010): Which are the required
components and what are their functions? How do they interact?
What information is transferred between the components and
which is it coded? An overreaching assumption of system
level modeling is that it presents the overall organization of
the different components and their dynamic interactions that
determine many of the properties of the system. Many of these
properties will be present even when each of the components are

modeled in a minimal way. The model we present here is based
on this assumption in the sense that each component is as simple
as possible to exhibit the desired properties.

The model consists of five main components (Figure 1).
The first is the perceptual system that produces a sequence of
“feature descriptors” from an attended object. Second, a memory
system receives these feature vectors and generates associations
from them, including direct “emotional” associations coding for
value, semantic associations to similar or associated stimuli, and
episodic associations that are used to imagine future states. Third,
a value system is activated when “emotional” associations are
triggered and produces value estimations for each memory state.
These are finally accumulated in the fourth component until a
decision criterion is met and the system produces a choice as
output. There is also a spatial attention system that is responsible
for directing attention to the different choices, indexing the
accumulators based on the current spatial attention, and for
locking on to the chosen object. A more formal description of
each of the components is presented below.

2.1. Perceptual Scanning
The perceptual system transforms a visual input into a sequence
of feature vectors that describe the perceived scene. As the
perceptual system attends to a particular object, different feature
vectors are produced over time as different attributes of the
objects are processed. Note that we use the word “feature” for the
individual elements of the perceptual feature vectors rather than
as synonyms for attributes or properties.

Each object is considered to contain several attributes that
can be perceived and each attribute gives rise to a particular
feature vector when perceived. An object Oi is modeled as a
set of attributes {aij} where each attribute is associated with a
binary feature vector of size n, aij =

〈

fij1 . . . fijn
〉

. Figure 2 shows
a schematic image of how two objects are coded.

In the minimal case, attention is randomly directed to
the different objects, but the model also allows for attention
to be based on perceptual salience through the bidirectional
connections with the spatial attention component. Furthermore,
top-down attention from the accumulators can also bias attention
toward the hitherto most valued object and finally lock attention
to the selected object.

In the model that is presented below, attention is directed to
one object at a time, and during that time, the perceptual system
is allowed to randomly process each attribute of the object for
a number of simulation cycles, allowing the memory system to
produce a sequence of associations from the processed attribute.

2.2. Memory
The second component of the model is the memory system
(Figure 3). This component takes the current feature vector
from the perceptual system as input and produces sequences of
memory states based on previously learned associations. We base
the memory component on an earlier memory model (Balkenius
et al., 2018). However, here we use a unified memory state rather
than distinguishing between the “what” and “where” systems of
the earlier model. The memory associations can be of one of
three types.
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FIGURE 1 | Overview of the proposed model. The system-level model combines components for perception, memory, valuation, value accumulation, and spatial

attention. The black arrows represent non-learnable connections between the components. The diamond arrowheads represent feedback and forward associations

that have been previously learned. The square arrowhead represents a facilitating input, in this case the selection of a particular accumulator. The gray arrows

represent interactions that we do not address in this paper. See text for further explanation.

FIGURE 2 | The observed scene is modeled as a set of objects Oi that each

has a number of attributes aij . When an attribute is attended, it will produce a

binary feature vector that describes the attribute.

The first can be called “emotional” or “value” associations.
These produce the output from the memory that is sent to the
value component and then on to the accumulator stage. For
the purpose of making choices, these are the associations that
determine which choice will eventually be made.

The second association type is used for low latency
associations that allow the memory system to reach attractor
states as usual in recurrent networks (Hopfield, 1982). To
produce semantic memory transitions we assume that synaptic
depression limits the time the memory state stays at an attractor
(Abbott et al., 1997; Tsodyks et al., 2006). Once the effect of
synaptic depression kicks in, the attractor will collapse and

transition to a semantically related state and another attractor.
This is sometimes called latching dynamics (Lerner et al., 2010;
Aguilar et al., 2017) and is the mechanism of free association.

Associations of the third type have a longer latency and they
produce episodic memory transitions (Herrmann et al., 1993).
The basis for this mechanism is a delay imposed on the recurrent
connections of the episodic memory (Sompolinsky and Kanter,
1986). This forces the memory state out of the current attractor
and into a predicted future state.

Considering the case with a single delay τji for each recurrent
connection, the state x of the memory network is governed by the
following equation, where I is the input, w are the weights of the
connections, dji is the synaptic depression and f is the activation
function of the nodes.

d

dt
xi(t) = Ii(t)+ (1− dji)wji

∑

j

f (xj(t − τji)) (1)

Synaptic depression is assumed to increase as a function of the
signal flowing through the corresponding connection (Lerner
et al., 2010; Aguilar et al., 2017; Balkenius et al., 2018).
The processes of the memory system are also influenced by
modulating signals from arousal systems that can determine the
level of randomness of the state transitions (Aston-Jones et al.,
1999; Chance et al., 2002; Aston-Jones and Cohen, 2005). For
simplicity, we have not included these inputs in the equations
here. Amore detailed description of this memory component can
be found elsewhere (Balkenius et al., 2018).

Here, we do not consider learning in the memory system but
assume that this has happened earlier. We are only concerned
with the retrieval of previously stored associations and how
they influence the decision process. For the purpose of this
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FIGURE 3 | The memory and value components. A recurrent connectionist network uses two types of connections to implement semantic and episodic memory. The

semantic associations are fast and allow the network to settle in attractor states. The episodic associations have a longer time constant τ that makes the network

jump between states.

paper, the important aspect of the memory model is that any
input will produce a sequence of memory states, each of which
may or may not be associated with value. It is this indirect
connection between perceptual input and value accumulation
that is responsible for the properties of the model described in
section 4. Another useful property of the memory model is that
it can not only recall earlier episodes, but also produce new
combinations of previous memories using random transitions
between similar memory states (Balkenius et al., 2018). We do,
however, not explore this feature of the memory system further.

2.3. Value
The value component is responsible for associating memory
states with value and is the first stage of the actual evaluation
process. As the memory system transitions through a sequence of
states, the value system calculates the value of each state and sends
the result to the accumulator described below. Eachmemory state
vector m, where mi = f (xi), is associated with a scalar value V
through a linear mapping v, that is,

V = vm⊺. (2)

The vector v contains the value for each of the elements of the
memory state. This function is similar to the value function in
reinforcement learning when a linear function approximation
from a binary state representation is used (Xu et al., 2014). The
values can be learned through classical conditioning (Rescorla
and Wagner, 1972; Balkenius and Morén, 1998), often expressed

in the form of TD-learning (O’Doherty et al., 2003; Sutton and
Barto, 2018).

However, since value is used here in a sequential accumulation
process (described below), it is not necessary that the value
component supports higher order conditioning, which is
otherwise the basis for chaining in reinforcement learning. A
simple learning rule, like the delta rule (Widrow and Hoff, 1960)
is sufficient for the model to train on external reinforcers. Note
that we do not claim that higher order conditioning does not
occur, or that value learning by classical conditioning is not more
complicated. The present model is indeed compatible with more
elaborate models of classical conditioning.

2.4. Accumulator
The accumulator consists of integrators indexed by spatial
attention. These integrate value for the currently attended object.
When the integration process reaches a particular criterion, the
winning alternative in a decision layer is chosen (Figure 4).
By assuming that spatial attention is responsible for selecting
the appropriate accumulator, the same model will work for an
arbitrary number of objects and it gives spatial attention a central
role in decision making.

The model allows for four types of connections weighed
by individual gains: forward excitation (α), forward
inhibition (β), feedback excitation (γ ), and feedback
inhibition (δ). The state of the accumulators is called
x and the dynamics of the model is controlled by,
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FIGURE 4 | Competition between two accumulators A and B. One of the

accumulators is selected by the spatial index a or b by their facilitation of the

connections from the value input V (as explained in section 3.3) to the two

accumulators. The excitatory value input is weighed by α before it reaches the

accumulator. The selected input is also weighed by β before it connects to an

inhibitory inter-node (in red). This implements forward inhibition of the

accumulators. There is also recurrent excitation weighted by γ and recurrent

inhibition weighted by δ. The decision layer detects when one of the

accumulators has reached the decision threshold and activates the

corresponding output.

d

dt
xi = −λxi + αIi +

∑

j 6=i

βIj + γ f (xi)+
∑

j 6=i

δf (xj)+N(σ ) (3)

where Ii is the value from the value component when i is the
accumulator selected by the input from the spatial attention
system, and 0 otherwise. λ is a decay constant and N(σ ) is a
normally distributed noise term. f is the activation function of
the nodes (ReLU). The decision layer consists of a winner-takes -
all network that only reacts once one of the accumulators reaches
its decision threshold. For all simulations reported below, a fixed
value of 1 was used. Once the threshold is reached, the decision
layer will reset the accumulators.

2.5. Spatial Attention
The spatial attention system is responsible for shifting attention
to each object. It is controlled by bottom up salience as well as
top-down feedback from the decision mechanisms and selects
which object is attended. It is also used as a spatial index in the

memory system and to select the appropriate accumulator for
each choice.

The activity of the accumulators can be made to influence the
selection in the attention component. In this case, the complete
system will allocate more time to the alternative that looks best so
far in the evaluation. As a consequence, it is more likely to win the
competition and will also do so more quickly. The probability of
switching attention to stimulusOi at location i at each time step is

pi =
ǫ(si + ϕgni )

∑

j(sj + ϕgnj )
(4)

where si is the salience input from the perceptual system and gi
is feedback from the decision process. The parameter ϕ controls
the influence on the attention of top-down feedback and n sets
the contrast enhancement between the different alternatives. In
the simulations reported below, the si are set to 0 or 1 to indicate
the presence of an object at the corresponding location, but
could in principle code for the visual salience of each object. The
constant n is here set to 2. The parameter ǫ sets the base rate for
attentional shifts.

3. PROPERTIES OF THE MODEL

In this section we present a number of computer simulations of
the model. It was implemented using the Ikaros framework for
system-level brain modeling (Balkenius et al., 2010, 2020). The
purpose of the simulations is to illustrate the properties of the
system model in different situations rather than to find optimal
parameters to reproduce any particular empirical study.

3.1. Choosing Between Two Objects
Like other models of choice, the model can handle a situation
where there are two objects with one attribute each. Going
back to our pasta example, this could be choosing between two
different pasta shapes from the same manufacturer or brand.
Here only the shape of the pasta differs, otherwise the packaging
is approximately the same, and one shape is preferred over the
other. Another alternative would be selecting a product solely
based on price. A lower price may be preferred, or alternatively, a
higher price may be preferred based on perceived higher quality,
although in reality such a correlation is weak (Faulds and Lonial,
2001). An advantage of the model is that it can handle either
case since the value of an object is coded by an association
with the value system that can be set up to reflect price as
something increasing or decreasing the value of a product. The
model does not sample the value of the product directly. Instead it
samples one or several attributes of the product that are indirectly
associated with a value.

Figure 5 shows some basic properties of the model. By
varying the noise level, decisions can be modulated from
always taking the one with highest value to fully random
selection (Figures 5A,B). An increased noise level also reduces
the reaction time.

The difference in value between the two choices influences
the process in such a way that a choice between two alternatives
that are more similar will take longer time than when their
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FIGURE 5 | Choosing between two objects with one attribute each. The graphs show the probability of choosing object A or B, and the average response time for

each object for different conditions. Since there is only one attribute, the value of the object is given by that single attribute. (A) Increased noise (sigma) gives more

random choices (left) and faster reaction time (right) for the two objects A and B where the value of A is 0.4 and the value of B is 0.6. (B) Increased noise (sigma) gives

more random choices (left) and faster reaction time (right) for two objects A and B where the value of A is 0.2 and the value of B is 0.8. (C) The probability of selecting

each object depends on how different the values V(A) and V(B) are for the two objects. Here values are assumed to sum up to one. The value of A on the x-axis thus

represents the similarity of the two objects where V(A) = 0.5 means that the value of both objects are identical. The reaction time increases when the values of the two

objects V(A) and V(B) are more similar as the activation of the accumulators takes longer when the values are lower (right). (D) Increased forward inhibition (beta) gives

slower reaction time and more choices of the alternative with higher value. (E) Feedback excitation increases response time and has a smaller effect on choice

probabilities. (F) Feedback inhibition slightly increases the difference in response probability and reduced response time. All parameters for the simulations are given in

the Supplementary Material.

values are very different (Oud et al., 2016) (Figure 5C). It has
been observed that many organisms use an excessive amount of
time to make decisions between similar alternatives, where too
much time is allocated to a choice relative to what is gained by
making the correct choice (Oud et al., 2016). In the simulation,
the input to each accumulator decreased as the values become
more similar, because they are assumed to sum to 1 which makes
the decision slower. This can be contrasted with a situation where
the preferred alternative stays at 1 while the value of the other is
increased. In this case, the reaction time will instead decrease as
the total input to the accumulators increases.

The effect of feed-forward inhibition is illustrated in
Figure 5D. When this effect is increased, the model is more
likely to choose the highest valued alternative, thus, to make a
more accurate choice. However, a higher level of feed-forward
inhibition will also lead to a longer reaction time. This suggests
that the amount of feed-forward inhibition can be used to
control a trade-off between accuracy and speed in decision

making (Wickelgren, 1977). The explanation for this effect is that
increased feed-forward inhibition slows down the accumulation
of value and allows the effect of noise to decrease because it is
integrated over a longer time. A slower accumulation decreases
the probability the decision process will reach the decision
threshold as a result of noise.

Feedback excitation has the effect of decreasing response time
because it will produce a positive feedback to the accumulators
(Figure 5E). Feedback inhibition also decreases the response
time, but slightly increases the probability of choosing the more
valued object (Figure 5F).

Figures 5D–F can be together considered as showing
different phasic aspects of the selection mechanism. Given
that accumulator units A and B shown in Figure 4 have
some activation threshold, feed-forward inhibition will be more
influential before activation occurs, while feedback connections
tend to become more dominant after activation. Positive
feedback tends to force dynamic systems into quickly settling
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FIGURE 6 | Response time distributions for different noise levels (sigma) for a choice between A,B where the value of A is 0.4 and the value of B is 0.6. Note that the

choice distribution as well as the response time distribution changes. For lower noise, the more highly valued alternative is chosen nearly always but with more noise

the choices of the two alternatives become more equal and are made more quickly. The noise level thus modulates a dimension from exploitation to exploration.

into new states (DeAngelis et al., 2012) and minimize the
transition period, as can be seen in Figure 5E for response time.
If considered together with lateral feedback inhibition as in
Figure 5F, where competitors are inhibited, the total effect is
to enhance contrast between alternatives and optimize response
time. Since contrast enhancement is associated with the effect of
noradrenaline (NA) (Waterhouse and Woodward, 1980; Usher
et al., 1999), this is in agreement with research indicating that NA
is involved in decision making. For example, Frank et al. (2001)
did simulations on NA deficits in a computational model of
ADHD decision making, and found that reaction times became
more variable with low phasic NA stimulation. They cite also
empirical evidence of higher response time variability in children
with ADHD (Leth-Steensen et al., 2000; Castellanos et al., 2005).

It is also possible to change to what extent the model uses later
information more than earlier by setting λ lower than one. In
this case, the accumulators will leak and ‘forget’ earlier input over
time (Tsetsos et al., 2010).

Figure 6 shows the response time distributions for different
levels of noise. These distributions resemble what is empirically
found (Ratcliff et al., 2016). In particular, the longer the reaction
time, the wider the distribution for the less preferred alternative
becomes. Another feature is that choices are made faster but less
correctly when the level of noise increases.

3.2. Choosing Between Two Objects With
Multiple Attributes
Now let us consider choosing between pasta types that are not
only differently shaped, but also from different brands. The
packaging now differs, as does the price. The main difference
compared to the previous case is that the input to the memory
component, and subsequently to the value and accumulator
components, fluctuates greatly during the evaluation of the two
alternatives as attention is moved between the two objects.

We tested a situation in which alternative A and B both
have two attributes. For alternative A, the values for the two
attributes are 0.2 and 0.3 while for alternative B, the values are
reversed. We tested the model’s ability to sum contributions from

individual attributes, and as expected the model selected each of
the alternatives with probability 0.5 (Figure 7).

3.3. Semantic Associations
When the perceivable attributes of an alternative are not
associated with any value, we can use our semantic memory to
obtain more information about the alternatives. It can also be
used to activate associations that in turn may have positive or
negative valuations. Let us go back to the example with different
pasta shapes from the same manufacturer. One shape is the
pipe-like penne, while the other is the sea-shell-like conchiglie.
The latter reminds you of white seashells on an summer beach.
This yields pleasurable associations to warmth and relaxation
and these positive associations will influence the choice. The
two alternatives do not have any immediate evaluation but they
associate to situations that do have value. This value is used
instead. There may also be other types of semantic associations.
Looking at one of the packages you may recall the list of
ingredients that you read at an earlier time. The penne is made
from durum wheat that you recall as something positive.

Each time you gaze at one of the packages, an associative
process will start that make the memory component transition
between a number of states (Figure 8). The semantic associations
within the memory component makes up a form of semantic
network through which the memory state can travel.

In the model, semantic associations depend on two
mechanisms. The first is direct low latency associations
represented by the wji with a low value of τji in Equation (1). The
other mechanism is the transition between semantically similar
attractors caused by synaptic depression (dji in Equation 1). The
details of these semantic memory transitions were described in
an earlier paper (Balkenius et al., 2018). Their main feature is
that any sensory input will give rise to a sequence of internal
memory states that starts from the features of the attended
object. Every memory state is potentially associated with a value
that will influence the accumulators.

Although free associations can lead memory astray, the
memory state will quickly return to relevant states when attention
is shifted to the other package, or when a decision threshold is
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FIGURE 7 | Processing multiple attributes. (A) The output from the value component while processing the different attributes of the attended object. (B,C) The spatial

index from the attention system is used as a selection mechanism that directs the value to one accumulator per object. (D) The accumulation of value over time while

scanning the different alternatives. (No noise was present to make the plots clearer).

reached. The rather disorganized associative memory can thus
support a well-controlled decision process.

3.4. Episodic Associations
Continuing with our pasta example, you now happen to see a
third pasta shape, the butterfly-like farfalle. This particular shape
yields fond childhood memories of eating pasta at home where
farfalle was the pasta of choice. This is an episodic memory
association that may conjure up scenes from your childhood
where each part of the scene has its own associations that
contribute to the decision. In contrast to semantic memory
transitions, the episodic memories play out as learned sequences

that reproduce experiences as a sequence of memory states. Each
of the states in the sequence can have its own semantic or
value associations.

In addition, the episodic associations can also be used to
imagine future events after a particular choice was made.
You imagine cooking conchiglie while having an amusing
discussion about sea shells with you family. The combination of
semantic and episodic associations together with noise-induced
randomness can produce novel episodic predictions of this kind
(Balkenius et al., 2018).

Such a forward looking use of the episodic memory is
similar to the forward sweeps found in animal brains as they
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FIGURE 8 | Semantic memory transitions in the valuation process. Looking at a pasta package triggers a chain of semantic associations that may eventually lead to a

memory state with value that will influence the decision process. V+ here represents an association with positive value.

consider different alternatives (Redish, 2016). The brain activity
quickly plays out a possible route through a maze if a particular
direction is selected at a choice point. In an influential study,
Hassabis et al. (2007) showed that patients with hippocampal
lesions impairing episodic memory were unable to usefully
simulate future scenarios. In particular, projected scenarios
lacked spatial coherence. Together, this indicates the importance
of spatial processing and episodic memory in decision making
and planning.

Another aspect of the episodic memory is that it will
automatically lead to discounting future value based on the
number of episodic transitions that are necessary to reach the
valued memory state. Figure 9A shows the decision between two
stimuli where one has an immediate value and the other is only
indirectly associated with a value through a number of episodic
associations, ranging from none to nine steps. As can be seen, the
probability of choosing the immediate value (or reward) increases
with the length of the associative sequence needed to find the
value of the alternative choice. The main reason for this is that
a longer episodic sequence with a value at the end will update
its corresponding accumulator less often and will consequently
be less likely to win. However, the shifting of attention also
influences the process since it will be more likely to interrupt a
longer episodic sequence before it reaches a state with value.

Unlike a planning process, there is not necessarily any
systematic evaluation of different possible future action
sequences. The decision process aims at making a decision
between alternatives that are available here and now. However,
the mechanisms proposed here are compatible with such a more
systematic search through memory.

The episodic recall mechanism can also be used to select
a delayed larger reward over an immediate smaller reward.
Figure 9B shows an example with stimulus A having value 0.9
and stimulus B having value 1. When both values are available
immediately, the model will mostly select stimulus B, but as the
number of memory transitions needed increases, the model will
become more likely to select the immediate lower reward. This is
entirely a system property of the model as there is no explicitly
set discount factor.

3.5. Top-Down Feedback to Attention
System
The model also includes top-down feedback from the decision
process to the attention system. When the gain of this feedback
is increased, choices are faster and the system will look
more at the alternative that will finally be chosen (Figure 10).
This is an effect that has also been found in empirical
studies (Gidlöf et al., 2017).

4. DISCUSSION

We have presented a new system-level model of decision making
that combines components for attention, perception, semantic,
and episodic memory with an accumulator stage that adds up
value over time until a choice can be made. The model has a
number of attractive properties:

When perceptual states are directly associated with value
through the memory component, the model reduces to the
value function of a reinforcement learning system (Sutton
and Barto, 2018), or critic of an actor-critic architecture

Frontiers in Psychology | www.frontiersin.org 10 December 2020 | Volume 11 | Article 560080

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Balkenius et al. The Missing Link

FIGURE 9 | Implicit discounting. Choice probabilities and reaction times for different sequences of episodic transitions. (A) A goal that is closer in time is reached

through fewer episodic transitions and wins more often. Both goals have value 1. The value for stimulus A is received directly but the value for stimulus B is received

only after 0–9 episodic memory transitions. The number of transitions needed to reach a valued memory state depends on how the episodic associations are set up in

memory (B) Because of the discounting of future value, the model can relate a smaller immediate reward, 0.9 for B, to a future larger reward, 1 for A. For the particular

values used in the simulation, the break-off point where the two stimuli are equally valued occurs at two episodic transitions for the higher valued stimulus. See

Supplementary Material for additional parameters.

(Joel et al., 2002). Since we do not model different actions
here, the system is assumed to interact with whatever object
is selected. The accumulator and decision mechanisms thus
implement a selection policy over the different perceived objects
in the environment.

The model explains how attention, memory and decision
making interact through the use of spatial indices that bind the
different processes together. A single alternative is processed at a
time in the flow from perception to valuation, while the spatial
attention component keeps track of the different alternatives
and makes sure that their values are separately processed by
the accumulators.

Another property of the model is that is explains how different
kinds of memory structures can be used to support decision
making and how different kinds of associations with different
time constants can all contribute to a decision. An unexpected
consequence of episodic associations is that its interaction with
the accumulator will cause future values to be discounted. The

model suggests that the discounting of future value is not
governed by a decaying process during learning but is the
result of episodic memories that are slower to influence the
accumulators the more memory transitions are made before
reaching a valued state. Shorter episodic sequences will thus
have an advantage over longer sequences if they lead to the
state with the same value. There is thus no specific discounting
mechanism in the model. Instead, discounting is a consequence
of how thememory, value and accumulator components interact.
This leads to the prediction that an alternative that contains
less details and thus produces less transitions should be favored
over an alternative that produces many transitions given that
the values are the same. As far as we know, this has not been
studied empirically.

We can compare the decision mechanism proposed here to
two other main alternatives that have been proposed in the
literature. In classical learning theory, stimulus-response chains
are learned at the goal and gradually extended to a sequence

Frontiers in Psychology | www.frontiersin.org 11 December 2020 | Volume 11 | Article 560080

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Balkenius et al. The Missing Link

FIGURE 10 | Decreased reaction time with top-down feedback from the decision component. (A) The two stimuli had value V (A) = 0.4 and V (B) = 0.6. The value of ϕ

was moved from 0 to 1,000 and as can be seen, a higher influence from top-down attention decreased the reaction time as more time is spent looking the alternative

that will eventually be chosen. There is a negligible effect on the choice probabilities. (B) A similar effect can be seen for a larger difference in values (V (A) = 0.2 and

V (B) = 0.8). See Supplementary Material for additional parameters.

leading from start to goal. By higher order conditioning the
reward at the goal is propagated backwards in the sequence
during training, setting up a goal gradient toward the goal (Hull,
1932). The value of each association is assumed to be weaker
the earlier in the sequence it occurs. This is the idea that is
also used in modern reinforcement learning (Sutton and Barto,
2018). The reinforcement is discounted at each step to make
the system prefer shorter sequences from start to goal. In its
simplest form, reinforcement learning models only learn when
they receive primary or higher order reinforcement and learning
is tied to a specific reinforcing goal.

The second alternative is to learn a cognitive map in the
form of associations between states (or locations). One such
computational model was proposed by Schmajuk and Thieme
(1992). Unlike in traditional reinforcement learning, the goal
gradient is here set up dynamically by activating the goal state
and the activity is then propagated to other states depending on
how closely associated they are with the goal. This is similar to
the classical grassfire algorithm for path planning. An advantage
of this type of model is that the learned model is independent
of any particular goal and that it does not need reinforcement to
learn. It is thus suitable for explaining latent learning (Tolman
and Honzik, 1930). This method is similar to backward search in
state space planning (Ghallab et al., 2004).

What we have proposed here is a third alternative that focuses
on choosing between alternatives that are available here and
now. Instead of using a learned gradient of discounted value
as in reinforcement learning, or a gradient set up by a specific
goal as cognitive map models, the process starts with scanning
the different alternatives and works toward a state with value
(such as a goal state) through associating the properties of the
observed alternatives with value of other memory states that
have value. This method is similar to forward search in state
space planning (Ghallab et al., 2004) but is much less systematic
since it depends on the exact chains of associations that have
been previously learned. In the future, we want to investigate
how efficient this method is as a planning and problem solving
mechanism. This will require additional components to control
metaparameters, such as the level of noise in the both in the
memory and accumulator components.

In the simulations, we used a binary model of object salience,
but the model is compatible with a more developed saliency map
approach where target object are initially selected based on the
visual salience. Such bottom up salience can interact with top
down stimulus bias from the accumulator component to select
which objects to consider.

There are a number of venues for future research. In the
future, we want to analyze the model from a learning perspective
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to see how it compares on reinforcement learning tasks. This
entails setting up simulations where the model is allowed to
interact with an environment where it can learn semantic,
episodic and value associations. It would also be interesting to
further analyze the properties of the implicit discounting that
occurs as a result of the episodic associations.

Another extension is to include additional mechanisms that
were not included in the current version of the model. This
includes adaptive gain control for memory retrieval (Mather
and Sutherland, 2011) and value accumulation (Aston-Jones and
Cohen, 2005). It would also be possible to include a number
of additional associative connections. One can add a number
of possible interactions between the different components that
were not included in the present model but have been explored
elsewhere. These are drawn in gray in Figure 1. The memory
component could influence perception and produce priming
effects. The value component could influence memory recall and
indirectly also the perceptual processes (Billing and Balkenius,
2014). Associations between value and spatial attention could
bias the search process to particular locations and interactions
between memory and spatial attention may enhance memory
storage and recall (Balkenius et al., 2018). Mechanisms for
context processing could also be included to make the associative
process more efficient and goal directed.

A final line of development will be to adapt the parameters
of the model to empirical data to see how well it can explain
more quantitative aspects of decision making. Even though each
of the components of the model are relatively simple, there are
still a large number of parameters that interact to produce the
different properties of the model. It will be interesting to see if
there is a consistent set of parameters that can reproduce the
empirical results.

In summary, we have presented a novel system-level model of
decision making that describes how components for attention,
perception, memory, evaluation, and value accumulation can
interact in a natural way. The model describes how semantic and
episodic memory can be combined with a decision mechanism to
choose between alternatives.
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