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The aim of cognitive diagnosis is to classify respondents’ mastery status of latent

attributes from their responses on multiple items. Since respondents may answer some

but not all items, item-level missing data often occur. Even if the primary interest is

to provide diagnostic classification of respondents, misspecification of missing data

mechanism may lead to biased conclusions. This paper proposes a joint cognitive

diagnosis modeling of item responses and item-level missing data mechanism. A

Bayesian Markov chain Monte Carlo (MCMC) method is developed for model parameter

estimation. Our simulation studies examine the parameter recovery under different

missing data mechanisms. The parameters could be recovered well with correct use

of missing data mechanism for model fit, and missing that is not at random is less

sensitive to incorrect use. The Program for International Student Assessment (PISA) 2015

computer-based mathematics data are applied to demonstrate the practical value of the

proposed method.
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1. INTRODUCTION

Cognitive diagnosis has recently received increasing concern in psychological and educational
assessment, which can provide fine-grained classifications and diagnostic feedback for respondents
from their performance on test items (Leighton and Gierl, 2007; Rupp et al., 2010). It is a useful tool
to identify students’ mastery status of different latent skills based on their responses to test items and
to evaluate patients’ presence of mental disorders based on their responses to diagnostic questions.
More specifically, cognitive diagnosis has been used to study fraction subtraction (de la Torre
and Douglas, 2004), language proficiency (von Davier, 2008; Chiu and Köhn, 2016), psychological
disorders (Templin and Henson, 2006; Peng et al., 2019), and so forth.

Various cognitive diagnosis models (CDMs), also called diagnosis classification models, have
been developed, such as the deterministic inputs, noisy “and” gate (DINA) model (Macready and
Dayton, 1977; Junker and Sijtsma, 2001) and the deterministic inputs, noisy “or” gate (DINO)
model (Templin and Henson, 2006). Most CDMs are parametric and model the probability of item
response as a function of latent attributes. The simplicity and interpretability make the parametric
CDMs popular in practice. More general CDMs, such as the log-linear cognitive diagnosis model
(LCDM; Henson et al., 2009) and the generalized DINA model (de la Torre, 2011), assume a more
flexible relationship between the item responses and latent attributes. Moreover, higher-order latent
trait models for cognitive diagnosis (de la Torre and Douglas, 2004) have been introduced to link
the correlated latent traits by a general high-order ability.
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Multiple items are often used for cognitive diagnosis. When
respondents choose to answer some but not all items, item-level
missing data occur (Chen et al., 2020). Respondents may refuse
to answer items that they deem too difficult, quit the test early
because it is too long, or just skip items because of carelessness.
Missing data lead to loss of information and may result in biased
conclusions (Glas and Pimentel, 2008; Köhler et al., 2015; Kuha
et al., 2018).Many studies have employed a complete case analysis
that only use subjects without missing data (e.g., Xu and Zhang,
2016; Chen et al., 2017; Zhan et al., 2019a). In this case, the
subjects withmissing data cannot receive any diagnostic feedback
and, more importantly, may produce biased results when subjects
with complete data are systematically different from those with
missing data (Pan and Zhan, 2020).

In the literature, three missing data mechanisms should be
distinguished: missing completely at random (MCAR), missing
at random (MAR), and missing not at random (MNAR)
(Rubin, 1976; Little and Rubin, 2020). The MCAR holds if the
probability of missingness is independent of both the observed
and unobserved responses, whereas the MAR holds if the
probability of missingness is independent of the unobserved
responses given the observed responses. If either of these two
conditions cannot be satisfied, i.e., the probability of missingness
depends on the unobserved responses, the MNAR occurs. If the
missing data mechanism is MCAR or MAR, unbiased estimation
can be obtained from the observed data; if the missing data
mechanism is MNAR, a model for the missing data mechanism
should be included to obtain valid estimations of the primary
parameters. Limited approaches have been proposed in CDMs
incorporating missing data mechanisms. Ömür Sünbül (2018)
considered MCAR and MAR in the DINA model. Recently,
Ma et al. (2020) have used the sequential process model to
accommodate omitted items due to MNAR, where the first
internal task, i.e., making the decision to either skip the item or
respond to it, is assumed to be affected by a latent categorical
variable representing the response tendency. As stated by Heller
et al. (2015), CDMs have connections to knowledge space theory
(KST), which has been developed by Doignon and Falmagne
(1985) (see also Doignon and Falmagne, 1999; Falmagne and
Doignon, 2011). de Chiusole et al. (2015) and Anselmi et al.
(2016) have developed models for the analysis of MCAR, MAR,
and MNAR data in the framework of KST. In their work, the
MCAR holds if the missing response pattern is independent of
the individual’s knowledge state (i.e., the collection of all items
that an individual is capable of solving in a certain disciplinary
domain) and of the observed responses; the MAR holds if the
missing response pattern is conditionally independent of the
knowledge state given the observed responses; and the MNAR
holds if the missing response pattern depends on the knowledge
state. In CDMs, the attribute profile (i.e., the collection of all
attributes that an individual masters in a certain disciplinary
domain) is similar to the knowledge state in KST. In our study,
an additional latent categorical variable is introduced to indicate
missingness propensity. This latent categorical variable affects the
probability of missingness for each item and, in the meantime,
may affect the latent attributes through the influence of the
general high-order ability. The missing data mechanism can then

be incorporated into cognitive diagnosis. Similar ideas can be
seen in Holman and Glas (2005), Rose et al. (2015), and Kuha
et al. (2018).

In this paper, we propose a joint cognitive diagnosis modeling
including a higher-order latent trait model for item responses
and a missingness propensity model for item-level missing
data mechanism. We take the DINA model as an example
for illustration because of its popular use, and the latent
traits are linked by a general high-order ability. For a flexible
specification of the missingness propensity model, the latent
missingness propensity is represented by a categorical variable.
The MNAR holds if the distribution of the general high-order
ability depends on the latent classes, whereas the MCAR holds if
the distribution of the general high-order ability is independent
of the latent classes.

The rest of this paper is organized as follows. Section 2
presents the proposed joint model for item responses and
item-level missing data mechanism. The Bayesian approach is
then developed for model parameter estimation using JAGS.
In section 3, simulation studies are conducted to compare the
performance of the parameter recovery under different missing
data mechanisms. Real data analysis using the PISA 2015
computer-based mathematics data is given in section 4. Some
concluding remarks are given in section 5.

2. JOINT MODELING INCORPORATING
ITEM-LEVEL MISSING DATA MECHANISM

We consider N subjects taking a test of I items, and there are
K latent attributes to be evaluated. Let Yni be the response for
subject n(n = 1, · · · ,N) to item i(i = 1, · · · , I). Let Rni be a
missingness indicator corresponding to Yni, where Rni = 1 if Yni

is observed and Rni = 0 if Yni is missing.

2.1. The Missingness Propensity Model
Let ξn denote the latent missingness propensity for subject n. ξn
is unobserved and has C categories, which we refer to as latent
missingness classes. The missingess probability of (Rn1, · · · ,RnI)
is given by

p(Rn1, · · · ,RnI) =
C

∑

c=1

{

I
∏

i=1

p(Rni|ξn = c)
}

p(ξn = c), (1)

where p(Rn1, · · · ,RnI) is the joint probability of (Rn1, · · · ,RnI),
p(Rni|ξn = c) is the conditional probability of Rni given ξn = c
and p(ξn = c) is the probability of ξn = c.

The latent missingness propensity ξn is specified as the
categorical distribution

ξn ∼ Categorical(π), (2)

where π = (π1, · · · ,πC) and 6C
c=1πc = 1. The conditional

probability of Rni is specified as the logistic function

logit{p(Rni = 1|ξn = c)} = τ0i +

C
∑

c=2

τciξ(c), (3)
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where τ0i and τci(c = 2, · · · ,C) are the intercept and slope
parameters, and ξ(c)(c = 2, · · · ,C) are dummy variables for the
missingness classes. A positive slope parameter τci is assumed,
which means that the missingness probability reduces in the
latter missingness class compared to the first class. Denote τ 0 =

(τ01, · · · , τ0I) and τ c = (τc1, · · · , τcI) for c = 2, · · · ,C. The
idea of introducing latent variables to model the non-response
mechanism have been proposed previously by, for example, Lin
et al. (2004) and Hafez et al. (2015). The missingness propensity
model is identifiable when C ≤ 2I/(1+ I).

2.2. The High-Order DINA Model
The DINA model describes the probability of item response as a
function of latent attributes as follows:

p(Yni = 1) = gi + (1− si − gi)
K

∏

k=1

α
qik
nk
, (4)

where p(Yni = 1) is the probability of a correct response for
subject n to item i; si and gi are the slipping and guessing
probability for item i respectively, and 1 − si − gi is the item
discrimination index for item i (IDIi; de la Torre, 2008), αnk is
the kth (k = 1, · · · ,K) latent attribute for subject n, with αnk = 1
if subject n masters attribute k and αnk = 0 otherwise. The Q
matrix is a I × K matrix with binary entries qik (Tatsuoka, 1983).
For each i and k, qik = 1 indicates that attribute k is required to
answer item i correctly and qik = 0 otherwise.

Equation (4) can be reparameterized, and it is called the
reparameterized DINA model (DeCarlo, 2011) as

logit(p(Yni = 1)) = βi + δi

K
∏

k=1

α
qik
nk
, (5)

where βi = logit(gi) and δi = logit(1 − si) − logit(gi) are called
item intercept and interaction parameter, respectively.

As stated in the literature (de la Torre and Douglas, 2004;
Zhan et al., 2018a), attributes in a test are often correlated, and
a higher-order structure for the attributes can be formulated by

logit(p(αnk = 1)) = γkθn − λk, (6)

where p(αnk = 1) is the probability of subject n’s mastery of
attribute k; θn is a general (higher-order) ability for subject n; and
γk and λk are the slope and intercept parameter for attribute k.
Denote γ = (γ1, · · · , γK) and λ = (λ1, · · · , λK). Following Zhan
et al. (2018a), a positive slope parameter is assumed, whichmeans
the probability of mastery of attribute k increases as the general
ability θn grows. Including a higher-order structure for cognitive
diagnosis can not only reduce the number of model parameters
for correlated latent attributes but also obtain an assessment for
subjects’ overall ability.

The distribution of the general ability θn may be affected by
the latent missingness classes of ξn, and we suppose that

θn|ξn = c ∼ N(µc, σ
2
c ), (7)

for n = 1, · · · ,N and c = 1, · · · ,C. If µc or σ 2
c (c = 1, · · · ,C)

may vary between different classes, the missing data mechanism

isMNAR, andwe setµ1 = 0 and σ 2
1 = 1 formodel identification.

If µc and σ 2
c remain unchanged for different c, the probability of

missingness does not depend on the responses and MCAR holds,
and this is where we set θn ∼ N(0, 1) for identification.

2.3. Bayesian Parameter Estimation
The parameters of the proposed model can be estimated using
the Bayesian MCMC approach. JAGS (version 4.2.0; Plummer,
2015) and the R2jags package (Su and Yajima, 2020) in R (R Core
Team, 2019) were used for estimation, and the JAGS code can be
found in the Supplementary Material. The priors of the model
parameters are given below. For the majority of the parameters,
the conjugate priors are used. The priors and the hyper priors
for the item parameters are assigned the same as those given
in Zhan et al. (2018a), please find them for details. Moreover,
the noninformative prior is used for Dirichlet distribution.
The (truncated) normal distribution and the inverted gamma
distribution priors are chosen to obtain dispersed values for each
corresponding parameter.

(π1, · · · ,πC) ∼ Dirichlet(1, · · · , 1),

µc ∼ N(0, 4), σ 2
c ∼ InvGamma(1, 1), (c = 2, · · · ,C),

γk ∼ N(0, 4)I(γk > 0), λk ∼ N(0, 4), (k = 1, · · · ,K),

τ0i ∼ N(0, 4), τci ∼ N(0, 4)I(τci > 0),

(i = 1, · · · , I; c = 2, · · · ,C),

(

βi

δi

)

∼ N

((

µβ

µδ

)

,6item

)

, (i = 1, · · · , I).

The hyper priors are specified:

µβ ∼ N(−2.197, 2), µδ ∼ N(4.394, 2)I(µδ > 0), 6item

∼ InvWishart(I, 2),

where I is a 2× 2 identity matrix. In this case, the mean guessing
and slipping probabilities are approximately equal to 0.1.

In this paper, the number of latentmissingess classesC is taken
as fixed. In fact, C can be selected by some information criterion,
for example, deviance information criterion (DIC; Spiegelhalter
et al., 2002), which can result in a statistically optimal number.
In practice, it is efficient to determine C beforehand, using latent
class analysis (Linzer and Lewis, 2011) just for the missingness
indicators. In the following simulation studies, the number of
latent missingess classes C is fixed to 2 for simplicity. For the
values of C >2, the results are similar and we report some results
for C = 3 in the Supplementary Material.

3. SIMULATION STUDY

Two simulation studies were conducted to evaluate the empirical
performance of the proposed method. Simulation 1 aimed to
examine the parameter recovery using the Bayesian MCMC
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FIGURE 1 | K-by-I Q matrix for simulation study 1. Blank means “0,” gray means “1”; “*” denotes items used in I = 15 conditions; K = the number of attributes; I =

test length.

FIGURE 2 | Recovery of the parameters in the item mean vector and the item covariance matrix. HM, high missingness; LM, low missingness.

algorithm when the simulated data were generated under
MNAR. Under different conditions, models with MCAR and
MNAR were fitted to the simulated data, respectively, where the
distribution of the general higher-order ability was unrelated or
related to the latent missingness classes in MCAR or MNAR.
In Simulation 2, our purpose was to study the sensitivity
of incorrect use of MNAR for model fit. Parameter recovery
related to diagnostic classification are reported here. The
other parameters about the missing data mechanisms can be
recovered well but not reported here since they are not our
primary interest.

3.1. Simulation Study 1
In Simulation 1, three factors were manipulated, including (a)
sample sizes (N) at two levels of 500 and 1,000; (b) test length (I)
at two levels of 15 and 30; and (c) the probability of missingness
for each item, high missingness (HM) and lowmissingness (LM).

Five attributes (K = 5) were measured and the simulated Q
matrices for two test length I = 15 and I = 30 were given
in Figure 1, which were used in Zhan et al. (2018b). Most of
the model parameters were assigned by referring to the real
data analysis presented in Zhan et al. (2018a). Specifically, π =

(0.3, 0.7), representing unequal probabilities for each latent class;
τ2i = 1.2 for all items, τ 0 = (0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5,
0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0) for high missingness with I = 15,
τ 0 = (0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5,
0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5)
for high missingness with I = 30, τ 0 =(1.0, 1.5, 1.0, 1.5, 1.0, 1.5,
1.0, 1.5, 1.0, 1.5, 1.0, 1.5, 1.0, 1.5, 1.0) for low missingness with
I = 15 and τ 0 =(1.0, 1.5, 1.0, 1.5, 1.0, 1.5, 1.0, 1.5, 1.0, 1.5, 1.0,
1.5, 1.0, 1.5, 1.0, 1.5, 1.0, 1.5, 1.0, 1.5, 1.0, 1.5, 1.0, 1.5, 1.0, 1.5, 1.0,
1.5, 1.0, 1.5) for low miss -ingness with I = 30, corresponding
to the missingness probability for each item between 0.22 and
0.31 in the case of high missingness and between 0.1 and 0.22 in
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the case of low missingness; µ2 = 1.0 and σ 2
2 = 0.5; γk = 1.5

for all attributes and λ = (−1.0,−0.5, 0.0, 0.5, 1.0), indicating
moderate correlations between attributes; µitem = (µβ ,µδ) =

(−2.197, 4.394) and

6item =

(

611 612

612 622

)

=

(

1.0 -0.8
-0.8 1.0

)

,

which was the mean vector and the covariance matrix for
a bivariate normal distribution generating βi and δi. Other
assignments for the model parameters, for example, equal
probabilities for each latent class as those used in Ma et al.
(2020), also make sense, and the results are similar to the above
parameter settings.

In each of the eight conditions, models with MCAR and
MNAR were fitted to the simulated data, respectively. Thirty
replications were implemented for each fitted model. Pilot runs
showed that the algorithm converged using 20, 000 iterations
with a burn-in phase of 10, 000 iterations. The convergence of the
chains was monitored by multivariate potential scale reduction
factor, which were < 1.1 (Gelman and Rubin, 1992). The
bias and the root mean square error (RMSE) of the Bayesian
estimates were computed to assess the parameter recovery.
For evaluating the classification of each attribute and attribute
profiles, the attribute correct classification rate (ACCR) and the
pattern correct classification rate (PCCR) were computed. More
formally, if the kth (k = 1, · · · ,K) latent attribute for subject n
(n = 1, · · · ,N), denoted as αk,n, is estimated by α̂k,n, ACCR for
the kth latent attribute and PCCR can be expressed as ACCR =
∑N

n=1 I(α̂k,n = αk,n)/N and PCCR =
∑N

n=1[
∏K

k=1 I(α̂k,n =

αk,n)]/N, respectively. Here I(α̂k,n = αk,n) is an indicator
function such that I(α̂k,n = αk,n) = 1 if α̂k,n = αk,n and
zero otherwise.

Figure 2 presents the recovery of the item mean vector and
the item covariance matrix for the models with MCAR and
MNAR in all eight conditions. First, the patterns of the item
parameter recovery were similar between MCAR and MNAR,
especially the RMSEs of MCAR and MNAR were close in each
condition. The item mean vector can be well recovered, as the
bias were small and the RMSEs were relatively smaller than
those of the item covariance matrix. The bias of the item mean
vector under MNAR were smaller than those under MCAR at
a higher sample size N = 1, 000. The RMSEs of the item
mean vector decreased as test length increased. The bias and
RMSEs of the item covariance matrix were relatively higher,
and decreased as test length increased. The sample size had no
consistent impact on the estimates of the item covariance matrix.
Moreover, the missingness probabilities had little impact on the
item parameter recovery.

Table 1 summarizes the item parameter recovery for models
with MCAR and MNAR in high missingness conditions. The
results for low missingness are similar and presented in
Supplementary Figure 1. The mean absolute value (MAV) of the
bias and RMSE are reported. In each condition, the MAVs of the
bias and RMSE under MCAR and MNAR were close. Detailed
information about the recovery of each item parameter with
MCAR and MNAR was similar and not reported here.

TABLE 1 | Summary of the item parameters for high missingness conditions.

β δ

Bias RMSE Bias RMSE

I N MAR MNAR MAR MNAR MAR MNAR MAR MNAR

15 500 0.058 0.067 0.398 0.400 0.062 0.070 0.500 0.502

1,000 0.056 0.047 0.355 0.355 0.063 0.057 0.407 0.407

30 500 0.053 0.054 0.319 0.318 0.061 0.059 0.406 0.405

1,000 0.043 0.037 0.241 0.239 0.049 0.045 0.306 0.304

Table 2 summarizes the estimation of general ability
parameter in high missingness conditions. The results
for low missingness are similar and presented in
Supplementary Figure 2. The MAV and Range of the bias
and RMSE are reported. The correlation between the true and
the estimated general abilities is also given. The MAVs of the bias
under MCAR were much higher than those under MNAR, and
the bias under MCAR were all negative, which can be seen from
their Ranges. The MAVs of the RMSEs under MCAR were also
higher than those under MNAR. The correlations under MNAR
were higher than those under MAR. From the above results, we
find that when data are generated with MNAR, incorrect use of
missing data mechanism could lead to biased estimation of the
general abilities.

Figures 3, 4 presents the recovery of higher-order parameters
between the attributes and the general ability in each condition.
For the attribute slope parameters, the bias was closer to zero
and the RMSEs were relatively small. For the attribute intercept
parameters, their recovery under MNAR were good with small
bias and RMSEs. Under MCAR, the bias and RMSEs for attribute
intercept parameters were large, with absolute values >1.0, and
all the bias were negative.

Figure 5 shows the correct classification rates for each
attribute and attribute profiles in all conditions. All ACCRs were
> 0.90 and all PCCRs were > 0.70, which indicated a good
recovery of the mastery status of attributes. ACCRs and PCCRs
raised as test length increased and changed little as sample size
increased. The correct classification rates of MCAR and MNAR
were very close in each condition. These results may be caused
by the fact that the impact of the missing data mechanism on
the latent attributes is indirect through the general high-order
ability, and we assume the same model for item response under
both missing data mechanisms.

3.2. Simulation Study 2
The aim of Simulation 2 was to empirically examine the
sensitivity of incorrect use of MNAR for model fit. In this
study, the simulated data were generated with MCAR, i.e., the
distribution of the general higher-order ability is independent
of the latent missingness classes, and we set θn ∼ N(0, 1) for
identification. The other settings were the same as those used for
N = 500, J = 15 and low missingness in Simulation 1, which is a
weak condition studied in Simulation Study 1.
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TABLE 2 | Summary of the general ability for high missingness conditions.

Bias RMSE Cor

MAV Range MAV Range

I N MCAR MNAR MCAR MNAR MCAR MNAR MCAR MNAR MCAR MNAR

15 500 0.702 0.094 (−1.130, −0.311) (−0.342, 0.387) 0.966 0.656 (0.680, 1.286) (0.382, 1.012) 0.691 0.782

1,000 0.699 0.095 (−1.036, −0.291) (−0.283, 0.366) 0.965 0.647 (0.674, 1.335) (0.347, 1.045) 0.690 0.728

30 500 0.707 0.090 (−1.066, −0.328) (−0.283, 0.382) 0.943 0.610 (0.610, 1.272) (0.403, 0.873) 0.730 0.766

1,000 0.707 0.085 (−1.078, −0.344) (−0.404, 0.323) 0.939 0.588 (0.649, 1.230) (0.346, 0.899 0.742 0.776

MAV, mean absolute value; Range = (minimum, maximum).

FIGURE 3 | Recovery of the attribute intercept parameters. HM, high missingness; LM, low missingness.

Table 3 presents the bias and RMSE for the item mean
vector, the item covariance matrix and the higher-order structure
parameters. The recovery of the item parameter mean vector
and covariance matrix were similar under MCAR and MNAR.
For the higher-order structure parameters, unlike the results in
Simulation Study 1, the recovery of the parameters under MNAR
were as good as those under MCAR.

Table 4 summarizes the recovery of the item and the
general ability parameter, where the mean, standard deviation,
minimum, and maximum of the bias and RMSE are reported.
It also shows the correct classification rates for each attribute
and attribute profiles. The results under MCAR and MNAR were
similar, with mean bias close to zero and approximately equal
correct classification rates for the recovery of each attribute and

attribute profile. From Tables 3, 4, we found that when the data
were generated under MCAR, the missing data mechanism used
in the model fit had little impact on the results for diagnostic
classification in our framework.

4. REAL DATA ANALYSIS

To illustrate the application of the proposed method, the PISA
2015 computer-based mathematics data were used. The data
include item scores and response times for each item, and
we only select dichotomous item scores for illustration. Four
attributes belonging to the mathematical content knowledge
were evaluated, i.e., change and relationship (α1), quantity (α2),
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FIGURE 4 | Recovery of the attribute slope parameters. HM, high missingness; LM, low missingness.

space and shape (α3) and uncertainty and data (α4). I = 9
items with dichotomous responses were selected, with items IDs
CM033Q01, CM474Q01, CM155Q01, CM155Q04, CM411Q01,
CM411Q02, CM803Q01, CM442Q02, and CM034Q01. The Q
matrix was shown in Table 5. Item responses with code 0 (no
credit), code 1 (full credit), and code 9 (noresponse) were
considered here. The responses “nonresponse” (code 9) were
treated as missing data andmight be due to aMNARmechanism.
N = 758 test-takers from Albania with responses 0, 1, and 9 to
each of the nine items were used for analysis. The missing rate
(i.e., the proportion of “nonresponse”) for each item ranged from
0 to 14.78%. The models with missing data mechanisms MCAR
and MNAR were both fitted to the data. The number of latent
missingess classes C = 2 was determined by latent class analysis.
Then, the analysis was specified in the same way as the simulation
study. The DIC was applied to compare model fit for models
under different missing data mechanisms.

The DIC values under MCAR and MNAR were 11454.2
and 10406.3, respectively, which indicated that MNAR was
preferred with a lower DIC value. We were only interested in the
results concerning diagnostic classification. Table 6 reports the
estimated parameters and its corresponding standard deviations
for the item mean vector, the item covariance matrix, and the
attribute intercept and slope parameters. The results for the item
mean vector and covariance matrix were similar under different
missing data mechanisms, and the estimated 612 was −1.069,
which indicated that items with a higher intercept corresponded

to a lower interaction. µβ was estimated to be −2.033, which
means that the mean guessing probability was approximate
0.12. All estimated attribute intercept and slope parameters were
positive. The estimations for the item covariance matrix and
the attribute intercept and slope parameters were poor, which
were consistent with previous studies (de la Torre and Douglas,
2004; Zhan et al., 2018a). Table 7 reports the estimated item
parameters. All δi were positive, whichmeans that all items satisfy
gi < 1−si. Only βi for CM033Q01was positive, whichmeans that
the guessing probability of this item is higher than 0.5.

Though there were 16 possible attribute patterns for four
attributes, 15 attribute patterns except (0101) were found in the
estimated attributes under both MCAR and MNAR. Figure 6
presents the top five most frequent attribute patterns in the real
data under MCAR and MNAR. The most prevalent attribute
pattern was (0000) and the second most prevalent pattern was
(1111) under both MCAR and MNAR, where the corresponding
proportions were slightly different. The third and the fourth most
prevalent patterns under MCAR and MNAR were reverse. The
above results indicate that the missing data mechanisms have
some influences on the estimated attribute patterns.

5. CONCLUSIONS

When multiple items are used to classify subjects’ mastery
status of latent attributes, it is almost inevitable that item-level
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FIGURE 5 | The correct classification rates for each attribute and attribute profiles. HM, high missingness; LM, low missingness.

TABLE 3 | Recovery of the item mean vector, the item covariance matrix, the attribute slope, and intercept.

Index µβ µδ 611 612 622 λ1 λ2 λ3 λ4 λ5 γ1 γ2 γ3 γ4 γ5

MAR Bias 0.043 −0.005 0.080 0.028 0.158 0.001 −0.083 0.025 0.046 0.055 0.092 0.096 0.136 0.095 0.114

RMSE 0.265 0.263 0.394 0.357 0.454 0.271 0.221 0.232 0.278 0.230 0.487 0.552 0.438 0.372 0.367

MNAR Bias 0.045 −0.008 0.084 0.020 0.168 −0.052 −0.122 −0.028 0.019 0.024 0.070 0.062 0.104 0.067 0.095

RMSE 0.263 0.261 0.399 0.368 0.469 0.346 0.280 0.299 0.342 0.317 0.494 0.624 0.462 0.384 0.386

missing data will occur. It is possible that the missing data
mechanism is related to the item responses, and without very
strong assumptions, item-level non-response can be thought
to depend on some latent variables. Motivated by this idea,
we have proposed a joint modeling method incorporating
item responses and missing data mechanism for cognitive
diagnosis. A latent categorical variable is employed to describe
the latent missingness propensity, which can avoid distributional
assumptions and result in a more flexible model. Then, the latent
missingness classes are linked to each item missingness indicator
by the logistic function. Applying the hierarchical modeling
framework, the general higher-order ability’s distribution is
affected by the latent missingness class in the case of MNAR
and is independent of the latent missingness class in the case
of MCAR.

A Bayesian MCMC method is used to estimate the model
parameters under the missing data mechanisms MCAR and
MNAR. The simulation study demonstrates that when the data
are generated under MNAR, the estimated general ability and

the attribute intercept parameters have higher bias if an incorrect
missing data mechanism is used for model fit; when the data are
generated under MCAR, the results between different missing
data mechanisms do not have much difference. Similar results
about the impact of the missing data mechanisms have been
found by de Chiusole et al. (2015) in the framework of KST. The
PISA 2015 computer-based mathematics data are used to explore
the magnitude and direction of item and person parameters, and
the results support the MNAR in the real data analysis.

Our proposed method can be further investigated in several
aspects. First, the proposed model has good performance with
DINAmodel used for illustration, and the joint modelingmethod
can be extended to other types of CDMs for further studies.
Second, this study assumes that each latent attribute is a binary
variable. When polytomous attributes are involved in CDMs
(Zhan et al., 2019b), modified higher-order CDMs could be
utilized in the framework of our model. Third, multiple sources
of data about a subject behavior, for example, response time
and other process data, can be combined to build up a more
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TABLE 4 | Summary of the item parameter, general ability, and attributes.

Index β δ θ α1 α2 α3 α4 α5

MAR Bias Mean 0.036 0.054 0.100 ACCR 0.863 0.891 0.876 0.885 0.920

SD 0.040 0.062 0.126 PCCR 0.595

Min. −0.030 −0.077 −0.388

Max. 0.110 0.138 0.464

RMSE Mean 0.343 0.510 0.683

SD 0.177 0.131 0.097

Min. 0.175 0.401 0.431

Max. 0.853 0.909 1.060

Cor. 0.722

MNAR Bias Mean 0.028 0.027 0.111 ACCR 0.864 0.891 0.875 0.885 0.921

SD 0.045 0.067 0.129 PCCR 0.594

Min. −0.041 −0.091 −0.425

Max. 0.112 0.141 0.476

RMSE Mean 0.340 0.509 0.716

SD 0.171 0.124 0.097

Min. 0.171 0.399 0.462

Max. 0.823 0.871 1.049

Cor. 0.720

SD, standard deviation; Min., minimum; Max., maximum; Cor., correlation between true and estimated values.

TABLE 5 | The Q matrix in the real data.

Attribute CM033Q01 CM474Q01 CM155Q01 CM155Q04 CM411Q01 CM411Q02 CM803Q01 CM442Q02 CM034Q01

α1 0 0 1 1 0 0 0 0 0

α2 1 0 0 0 0 0 0 0 1

α3 0 1 0 0 1 0 0 1 0

α4 0 0 0 0 0 1 1 0 0

TABLE 6 | Estimates and standard errors of the parameters for the real data.

DIC Index µβ µδ 611 612 622 λ1 λ2 λ3 λ4 γ1 γ2 γ3 γ4

MCAR 11454.2 Est. −2.033 2.548 3.383 −1.069 1.451 0.677 2.051 1.421 1.888 3.843 3.795 4.208 3.259

SD 0.587 0.426 2.341 1.411 1.195 0.688 0.845 0.710 0.866 1.082 0.891 0.990 0.912

MNAR 10406.3 Est. −2.073 2.419 3.313 −1.105 1.269 2.828 2.653 3.055 3.852 2.261 1.787 2.099 1.675

SD 0.572 0.391 2.280 1.305 1.087 0.966 0.901 0.994 1.317 0.862 0.778 0.683 0.702

Est., Estimated values; SD, standard deviation of the posterior distribution.

TABLE 7 | Estimates and standard errors of the parameters for the real data.

Par. 033Q01 474Q01 155Q01 155Q04 411Q01 411Q02 803Q01 442Q02 034Q01

MCAR βi 0.155 −0.501 −0.665 −1.445 −1.737 −1.355 −4.227 −4.587 −2.945

(0.139) (0.156) (0.289) (0.185) (0.256) (0.166) (0.811) (0.846) (0.412)

δi 2.447 1.589 3.342 1.588 2.508 0.788 3.458 3.219 2.775

(0.588) (0.256) (0.678) (0.262) (0.333) (0.304) (0.824) (0.869) (0.456)

MNAR βi 0.019 −0.579 −0.676 −1.452 −1.761 −1.321 −4.073 −4.543 −3.347

(0.151) (0.145) (0.245) (0.164) (0.244) (0.139) (0.795) (0.740) (0.575)

δi 2.081 1.655 3.068 1.588 2.316 0.733 3.308 3.042 2.881

(0.432) (0.233) (0.500) (0.228) (0.295) (0.277) (0.809) (0.747) (0.570)

Par., estimated parameter; the first two letters for item IDs (i.e., “CM”) are omitted to save space.
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FIGURE 6 | Posterior mixing proportions for top 5 most frequent attribute patterns under MCAR and MNAR in the real data.

general model, which could provide a more comprehensive
reflection of individual behavior. Finally, the number of latent
missingness classes can be varied. For selecting it, Akaike
information criterion (AIC), Bayesian information criterion
(BIC) or DIC, can be utilized to compare different models under
various choices.
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