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Causal processes can give rise to distinctive distributions in the linguistic variables

that they affect. Consequently, a secure understanding of a variable’s distribution

can hold a key to understanding the forces that have causally shaped it. A storied

distribution in linguistics has been Zipf’s law, a kind of power law. In the wake of a

major debate in the sciences around power-law hypotheses and the unreliability of

earlier methods of evaluating them, here we re-evaluate the distributions claimed to

characterize phoneme frequencies. We infer the fit of power laws and three alternative

distributions to 166 Australian languages, using a maximum likelihood framework. We

find evidence supporting earlier results, but also nuancing them and increasing our

understanding of them. Most notably, phonemic inventories appear to have a Zipfian-like

frequency structure among their most-frequent members (though perhaps also a

lognormal structure) but a geometric (or exponential) structure among the least-frequent.

We compare these new insights the kinds of causal processes that affect the evolution

of phonemic inventories over time, and identify a potential account for why, despite

there being an important role for phonetic substance in phonemic change, we could

still expect inventories with highly diverse phonetic content to share similar distributions

of phoneme frequencies. We conclude with priorities for future work in this promising

program of research.

Keywords: power laws, Zipf’s law, phoneme inventories, distributions, maximum likelihood, Australian languages,

phonology

INTRODUCTION

Linguistic theorists seek to reveal causal mechanisms which explain the observable diversity of
human language. Good causal hypotheses are often suggested by themathematical distribution that
a linguistic variable is described by, owing to the fact that the distribution can be understood as an
emergent outcome of some underlying causal process, and that a given mathematical distribution
will be consistent with only certain mathematical kinds of underlying processes. Consequently, it
is important for the development of theory that proposed claims about distributions be as sound as
possible. For instance, one of themost famous distributions in linguistics is the Zipfian distribution,
which technically speaking is a kind of power law. Recently, however, the evaluation of putative
power laws across the sciences have come under intense scrutiny and often been found wanting. In
response, methodologists have developed more rigorous and secure methods for diagnosing power
laws and for distinguishing them from similar but significantly different distributions. For linguists,
this creates an opportunity, to re-examine our own putative power law distributions, and by doing
so to improve the pathway to sound explanatory theorizing.
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Here, we re-evaluate the status of mathematical distributions
for characterizing phoneme frequencies. Previous studies have
proposed that phoneme frequencies follow a particular member
of the power law family, the Yule-Simon distribution (Martindale
et al., 1996; Tambovtsev and Martindale, 2007). But in the wake
of a recent, major debate across the sciences regarding power
laws, a reconsideration of this earlier research is timely. In this
paper, we apply state-of-the-art maximum likelihood methods
for the detection and assessment of power laws, to derive a better
understanding of the distributions that do and do not describe
phoneme frequencies well. Our results clear the way for more
informed research into the ultimate, processual causes behind the
frequency patterns of phonemes in human language.

Our focus here is on distributions and their potential for
shedding light on language. Distributions are properties of
variables. A variable can be defined as the set of values that
characterize something, be it a sample (e.g., a set of languages),
or a real population that the sample is drawn from (e.g., the set
of all current languages), or even an idealized population which
the real population is believed to approximate (e.g., the set of
all possible languages). Often, the ultimate object of scientific
interest is an idealized population, and thus its distribution. In
empirical work, we cannot directly access this ultimate object
of interest, and so we rely on real populations, or very often,
a sample. Consequently, although we may have direct access
only to the literal distribution of a sample, with its many
idiosyncrasies, we tend to be more concerned with an overall
pattern which we believe it approximates, one which often is
elegantly characterized by a distribution which mathematically is
relatively simple.

With these motivations in mind, how can an investigator
decide that a certain distribution characterizes a variable
satisfactorily? One method is visual inspection. This typically
involves observing a close match between two histogram plots:
one of the data and one of the candidate distribution, or plotting
a regression of the data against the candidate distribution. In
work on phoneme frequencies, visual inspection has been the
primary method of assessing candidate distributions. A more
rigorous alternative is to apply quantitative, statistical tests to
evaluate how well a particular distribution model (such as the
normal distribution) fits a data sample. The purpose of these tests
is not to prove definitively that some variable follows a particular
distribution, but rather to quantify the degree to which a sample’s
distribution is consistent with its having been drawn from a
population of a particular distribution1. Some of these tests will
be the subject of the sections that follow.

A strong motivation for testing the consistency of observed
data with a particular distribution, is that many distributions
can be described as the outcome of certain kinds of processes

1Within frequentist statistics, there are tests which test against the null hypothesis

that data are drawn from a particular distribution (Shapiro-Wilk, Kolmogorov-

Smirnov, Pearson’s chi-squared test, to name a few). Within a Bayesian framework

(Spiegelhalter, 1980; Farrell and Rogers-Stewart, 2006), the approach is to calculate

the likelihood of observing the data given a distribution and a set of the

distribution’s parameters. Bayes factors can be computed to compare the relative

likelihoods of observing the data given competing kinds of distributions and

parameter sets.

(Frank, 2014). Thus, there is a direct link between the quality
of our evaluation of distributions, and the reasonableness of
the causal, explanatory hypotheses we subsequently entertain.
Consider for example a so-called preferential attachment process,
also known as a Yule process or rich-get-richer process. This
can be imagined as having a set of urns, into which balls are
added one at a time. Specifically, the urn to which a new ball is
added is selected with a probability proportional to the number
of balls already in the urn. This simple process has an interesting
outcome. Initially, each urn is equally likely to be selected, but the
distribution will soon skew, as urns with more balls accumulate
additional balls faster than the others. If we rank the urns in
terms of which has themost balls, then with time, the relationship
between an urn’s rank and how many balls it contains will
come to obey a power law. A power law is a mathematical a
relationship between two quantities where one varies as a power
of the other. Consequently, if a variable can be shown to be
consistent with a power law distribution, then this is consistent
with there existing a preferential attachment process as the causal
mechanism underlying the behavior of variable. Yule (1925; see
also Albert et al., 2011) made this connection a century ago. Yule
showed that among flowering plants the level of species richness
within a genus follows a power law, and linked that observation
to a preferential attachment mechanism.

Since Yule’s first demonstration of the link between power law
distributions and preferential attachment processes, power laws
have been used to characterize the distributions of a diverse array
of phenomena in the natural and physical world and in human
society (Clauset et al., 2009, p. 661). City populations (Gabaix,
1999; Levy, 2009; Malevergne et al., 2011), authorship of scientific
publications (Simon, 1955), income distribution (Simon, 1955),
the superstar phenomenon in the music industry (Chung and
Cox, 1994), and the network topology of the Internet (Faloutsos
et al., 1999) are but a few of the phenomena for which power laws
have been proposed (see Newman, 2005, p. 327–329 for further
examples). And in linguistics, the Zipfian distribution has been
used to characterize word frequencies in text corpora (Estoup,
1916; Zipf, 1932, 1949).

Given the apparent pervasiveness of power laws in a diverse
range of unrelated contexts, it is little surprise that there is
a rich vein of literature dedicated to evaluating power laws
(Clauset et al., 2009, p. 662) as well as a century of theorizing
on the mechanistic processes by which they arise (see Newman,
2005, p. 336–348; Mitzenmacher, 2004, p. 230–243). However,
verifying the presence of a power law is not a straightforward task
(Stumpf and Porter, 2012, p. 666), and validation of earlier power
law proposals using increasingly robust and powerful statistical
methods is an active line of inquiry across many fields of science
(Malevergne et al., 2011)2.

2The question of whether certain phenomena are characterized best by a power law

model or some other distribution can be contentious. See, for example, the debate

between Eeckhout (2004) and Levy (2009) on the distribution of city population

sizes (the former favoring a lognormal model, the latter favoring a power law).

Another example concerns the distribution of computer file sizes, where Barford

and Crovella (1998) and Barford et al. (1999) argue in favor of a power law model

and Downey (2001) argues in favor of a lognormal model.
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The traditional approach to power law validation, following
Pareto’s (1897) work on wealth distribution, was visual
inspection. When visually inspecting a histogram plotted on log-
log scales, a straight line would suggest the presence of a power
law. The defining shape parameter (see below), α, could then
be obtained by calculating the slope of the straight line using
standard linear regression (Clauset et al., 2009, p. 665; Urzúa,
2011, p. 254) and the R2 statistic could give an indication of
the goodness of fit of the model. However, it has since been
demonstrated that this traditional approach can be systematically
unreliable (Clauset et al., 2009, p. 665). A key assumption when
estimating the standard error of the slope (shaded in gray) is
that noise in the data is normally distributed, however, this
is not the case for the logarithms of frequency data (Clauset
et al., 2009, p. 691). Further, the R2 statistic commonly used to
validate the presence of a power law (including by Tambovtsev
and Martindale, 2007), has low statistical power. That is, it often
fails to distinguish between data truly drawn from a power law
distribution and data drawn from other distribution types. This
unreliability becomes particularly acute when there is a small
number of observations, since the ability to distinguish a power
law distribution from other similar distributions, including the
log-normal, using R2 is reduced (Clauset et al., 2009, p. 691).

To remedy the shortcomings of earlier methods, Clauset et al.
(2009) developed power law validation procedures within a more
rigorous, maximum likelihood framework. These procedures
have since been adopted widely in the literature (for example,
Touboul and Destexhe, 2010; Cho et al., 2011; Brzezinski, 2014;
Lee and Kim, 2018), but have not previously been applied to
phoneme frequencies.

Some brief mathematical preliminaries will be useful
here. When we refer to distributions, we are referring to
mathematically defined functions, that relate one quantity to
another. Those functions may in addition have free parameters
which can be varied in order to produce a family of closely
related distributions. A power law is a relationship between
two quantities where one varies as a fixed power of the other,
for example y = x3, or y = x−2 (which can also be written
y = 1/x2). For present purposes, where we will not be concerned
with negative quantities or zeros, we will use a more narrow
definition by Clauset et al. (2009, p. 662), who define a power
law as a relationship in which a quantity, x, is drawn from the
distribution defined in Equation (1), where the free parameter
α is greater than zero and the variable x likewise is greater
than zero3. (The symbol “∝” means “is proportional to.”) For
example, x might denote items’ frequencies, while p(x) is the
probability that a given item has a frequency of x.

p(x) ∝
1

xα
, x > 0 (1)

3For the area under the distribution curve to integrate properly to 1, the power

function 1/xα must be multiplied by a normalization constant (denoted C in the

probability density function p(x) = C/xα). The normalization constant will be

calculated differently depending on the value of α and whether x is continuous or

discrete. Clauset et al. (2009, p. 664) give some examples.

In practice, Clauset et al. (2009, p. 662) observe that the exponent
(or “scaling parameter”), α, typically, though not exclusively,
falls in the range 2 < α < 3. They also observe that, in
practice, many phenomena will not actually obey a power law
for all values of x. Rather, the power law will apply to values
only above some minimum threshold value, xmin. For example,
in frequency data, it may be that only items whose frequencies
meet or exceed a lower threshold will follow a power law. More
generally, power law distributions come in a variety of specific
forms, with different numbers of free parameters. We detail some
of these in greater depth in the Discussion section below.

A distinction can be made between power laws that apply
to continuous variables and those that apply to discrete ones.
Frequency data, including the phoneme frequencies used in
this study, are typically discrete. Zipf ’s Law (2) applies to a
discrete number of n observations whose values, x, are ranked
by descending magnitude x1 ≥ x2 ≥ . . . ≥ xn. For example,
x may be the token frequency of n types, with xk the frequency
of the kth-ranked type. In (2), the quantity p(xk) is the relative
frequency of the kth-ranked type (i.e., its frequency scaled such
that the n relative frequencies sum to 1)4.

p(xk) ∝
1

kα
, 1 ≤ k ≤ n (2)

There is a long history of studying power laws in linguistics,
however, the evaluation of statistical support for a power law
relationship is far from straightforward and remains topical
across a wide range of scientific fields (Stumpf and Porter,
2012). Although several different models have been compared
for their goodness-of-fit to the frequencies of phonological
segments (Martindale et al., 1996; Tambovtsev and Martindale,
2007), the method used to measure fit (using the R2 statistic)
has been shown to be systematically unreliable (Clauset et al.,
2009). Accordingly, the methodological limitations of previous
studies and the renewed, general scientific interest in power
law phenomena motivate the re-evaluation of a power law
model with respect to phoneme frequencies. Our goal here is
to verify the presence or absence of power law behavior in the
frequency distributions of phonological segments in the lexicons
of Australian languages. It is, to the best of our knowledge, the
first attempt to validate a power law model for phonological
segments using a maximum likelihood framework as suggested
by Clauset et al. (2009).

MATERIALS AND METHODS

Data
As our data, we take phoneme frequencies in the lexicons
of 166 language varieties of Australia, covering the 19 of
Australia’s language families for which phonemic lexical data is
available, including all major branches of the Pama-Nyungan
family which dominates the continent5. Our choice of dataset

4This is equivalent to the probability that a token selected at random belongs to the

kth-ranked type.
5The dataset closely approximates an exhaustive sample, containing around 80%

of Australian languages for which phonemic lexical data is known to exist,
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brings advantages and limitations. Prior studies of phoneme
frequency distributions have overwhelming focused on languages
of Eurasia, and it is valuable to confirm whether similar results
emerge on other continents. Because Australian languages are
known to have quite similar phonemic inventories across the
continent (Capell, 1956; Dixon, 1980; Busby, 1982; Hamilton,
1996; Baker, 2014; Round, 2019; Round, forthcoming), it is useful
to confirm whether, even under conditions of highly constrained
variation in the substance of the phoneme inventories, we still
find recognizable variation in the distribution of frequencies
of the phonemes. There are reasons expect this will be the
case. Though phoneme inventories in Australia are similar,
the phonemes themselves are known to exhibit considerable
variation in their frequency distributions (Gasser and Bowern,
2014; Macklin-Cordes and Round, 2015). Likewise, phonemic
bigram frequencies in the large Pama-Nyungan family exhibit
diversity with a strong phylogenetic signal (Macklin-Cordes et al.,
accepted), suggesting that variations in Australian phonological
frequencies have evolved over a deep time span. The main
limitations of examining an Australian dataset is that Australian
languages will lack many phoneme types (such as ejective stops
and front rounded vowels) that may be found elsewhere in the
world, and may have different characteristic frequencies of some
individual phonemes (such as high frequency velar nasals, or
low frequency long vowels); on the other hand, this is equally
true of the Eurasian languages which have been the dominant
basis of prior research. On balance, we find it worthwhile to
increase the scope of knowledge to a new continent, and as the
results will show, Australian phoneme inventories behave in ways
that are clearly recognizable from Eurasia, suggesting that there
are important, fundamental dynamics at play in the shaping of
phoneme system that transcend the specifics of which phonemes
are involved.

The phonemic frequencies in this study are extracted from
wordlists. A consequence of this is that in our data, all lexemes
are counted just once and so are weighted equally6. This differs
from earlier work which has studied the frequencies of phonemes
in discourse. In discourse, lexemes have unequal frequencies and
so are weighted unequally. Indeed, since lexemes are known to
have a Zipfian frequency distribution in discourse, one might
wonder whether our lexical phoneme frequency data, which is
not affected by these discourse effects, should correspondingly
be expected to follow a different distribution—perhaps a less
Zipfian one. While the concern is understandable (we held
it ourselves initially), the reality is that mathematically, the
expected difference between phonemes’ lexical and discourse
frequencies on average is zero (see Supplementary Section 1,
for a more extended discussion). So, although lexical and
discourse frequencies will differ, their distributions will not
differ systematically purely as a result of word frequencies being

and on the order of 40% of the varieties that were spoken at the onset of

European colonization.
6There is a significant body of research suggesting that frequencies defined in this

manner are implicitly accessible to speakers and thus psychologically real (for

example, Coleman and Pierrehumbert, 1997; Zuraw, 2000; Albright and Hayes,

2003; Ernestus and Baayen, 2003; Eddington, 2004; Hayes and Londe, 2006).

distributed in any certain way in discourse. Having said that,
there could still be systematic differences due to other factors. For
instance, if words with high discourse frequency were especially
likely to contain the language’s least-frequent phonemes, this
could give rise to systematically different distributions; note
however, that this effect would not be due merely to words having
unequal frequencies in discourse, but be due to an additional
factor, which links words’ discourse frequencies directly and
exceptionally to phoneme frequencies. While we cannot rule out
the possibility of such additional effects, it remains true that
the neutral expectation is that lexical and discourse phonemes
frequency will be distributed similarly. Moreover, our study
reveals results that are consistent with this neutral expectation.
Our confirmation that this similarity in distributions is expected
to be the case, and actually is the case, sets up a useful context for
future studies also. For most languages of the world, discourse
frequency data is not yet available, but wordlists are. As research
into frequency distributions extends in scope to cover more of
the world’s languages, it is valuable to have clarified how results
based on lexical frequencies and discourse frequencies relate to
one another.

Our data comes from the Ausphon-Lexicon database,
under development by the second author (Round, 2017b).
Ausphon-Lexicon extends the Chirila resources for Australian
languages (Bowern, 2016). It adds additional varieties and applies
extensive data scrubbing, manual, and automatic error-checking,
and phonemic conversion using language-specific orthography
profiles (Moran and Cysouw, 2018). A standing challenge
for typological phonemic research is the long-recognized fact
that phonemic analysis itself is non-deterministic (Chao, 1934;
Hockett, 1963; Hyman, 2008; Dresher, 2009). Presented with
identical sets of language data, two linguists may produce
differing phonological analyses, not due to any error on the
part of the linguist but due to differing applications of the
multitude of criteria by which decisions are made during
the analysis of a phonemic system. As a consequence, cross-
linguistic phonological variation can be attributed not only to
language facts, but also to variation in linguistic practice. In
cross-linguistic research, it is desirable for information to be
represented in a comparable way throughout a dataset, and
so recent phonological literature has emphasized the value
of normalizing source descriptions prior to cross-linguistic
analysis (Lass, 1984; Hyman, 2008; Hulst, 2017; Round, 2017a;
Kiparsky, 2018). Phonemic representations in Ausphon-Lexicon
are normalized in this sense. Supplementary Section 3, details
the normalizations applied, together with bibliographic details of
original data sources.

To illustrate an example of the phoneme frequencies in
our sample, Figure 1 plots the frequencies of phonological
segments in the Walmajarri lexicon (Hudson and Richards,
1993). Equivalent plots for every language in our sample can be
viewed through an interactive visualization app that we provide
in Supplementary Section 6.

Phonological frequency data differs in some respects from the
data types most commonly encountered in scientific power law
studies, such as word frequencies or city populations. Typically,
in order to understand a population (and some property of
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FIGURE 1 | Frequency of phonemes in Walmajarri lexicon (Hudson and Richards, 1993). (A) Displays relative frequencies of each segment type. (B) Shows the same

frequencies on log-transformed x and y axes—the traditional visual device used to identify power laws.

it), such as the cities in the United States (and their sizes), or
the words of English (and their frequencies), it is impractical
to examine every last member of the population, and so the
study will examine a sample. Ensuring that a sample is of
sufficient size is an important consideration, firstly in order to
adequately represent the population and additionally because
a sufficiently large sample size is an important requirement in
maximum likelihood estimation (Barndorff-Nielsen and Cox,
1994; Newman, 2005). In contrast, the phonemic inventory of
any language is relatively small, and it is entirely feasible to
examine exhaustive populations of phonemes7. An advantage of
this is that the sample is highly representative of the population,
but a disadvantage is that the number of observations is small and
cannot be increased.

Given a sample of phonemes, we require an estimate, or
measurement, of their frequencies. Measurement error is a
potential concern in this study. Our segment frequencies are
calculated from documented wordlists, which necessarily are
limited representations of the complete vocabulary of the
languages that the wordlists represent. One concern is that
the particular morphology of a language’s citation forms may
cause certain segments in the language to be overrepresented
in a wordlist which contains only citation forms. This would
represent a bias, that is, a factor that pushes observations in
a certain direction. We have attempted to control for this, by
removing identifiable citation-form tense morphology from
verbal words and noun-class prefixes from nominals. Another
source of concern is that wordlists with a smaller number of
words will necessarily entail a greater level of uncertainty in the
observed segment frequencies. This will be a source of noise in
the data. It does not push observed frequencies in any particular
direction, but makes them generally less accurate. To address
this, in our study, we restrict the language sample to language

7The probability that we have failed to observe some phoneme that exists in

a language is small, though non-zero. In Supplementary Section 5, we evaluate

whether this is the case in our data. We find only three languages where it is. Even

in such cases, the missing segment inevitably will be an especially low frequency

type, and is unlikely to dramatically alter the overall frequency distribution of

segments in the language.

varieties with a minimum wordlist size of 250 lexical items. We
selected 250 lexical items as a cut-off on the basis of Dockum
and Bowern (2019), who investigate the effect of wordlist size on
phonological segment frequencies. Dockum and Bowern (2019)
report accelerating losses in the fidelity of segment frequency
estimates as a wordlist drops below 250 items. While more words
will always yield better frequency estimates, we select a minimum
of 250 as a reasonable compromise. This gives us a sample of 166
Australian language varieties. Wordlist sizes range from 268 to
8742 (median 1072, mean 1438).

Statistical Framework
We test for the presence or absence of a power law in the
distributions of phonological segments following the maximum
likelihood framework described by Clauset et al. (2009). In brief,
Clauset’s et al. (2009, p. 663) proposed procedure consists of
three steps:

1. Estimate the parameters xmin and α of the power law model
using the maximum likelihood method (Barndorff-Nielsen
and Cox, 1994; Newman, 2005)8.

2. Calculate the goodness-of-fit between the data and the power
law using the Kolmogorov–Smirnov (KS) statistic, where a
larger value corresponds to a worse fit. Using a Monte Carlo
procedure, a bootstrapped p-value is calculated9, and used to
evaluate the plausibility of the power law. Namely, if this p-
value falls below a plausibility threshold of 0.1, the power law

8Maximum likelihood estimation (MLE) is a method for estimating the parameters

in a statistical model, given some set of observations by finding the set of parameter

values, θ̂ , that maximize a likelihood function, P(x | θ̂), where x is a set of

observations. In our case, the parameters, θ̂ , to be estimated are those which

define a particular distribution—for example, α and (optionally) xmin in a power

law model.
9This is a well-established statistical technique. A large number of simulated

datasets are created, with data points drawn from themodel power law distribution

hypothesized in step 1. Each is then fitted to its own power law model and a KS

statistic is calculated for the simulated dataset, relative to this model. The p-value

is defined as the fraction of these simulated KS distances larger than the actual,

observed KS distance.
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model is rejected10. Otherwise, the power law model remains
an initially plausible hypothesis, and we proceed to step 3.

3. Compare the power law model with a set of models
representing alternative hypotheses. For each alternative
model, a bootstrapped p-value is calculated as in steps 1 and
2 above. A likelihood ratio test is performed, comparing the
fit of the alternatives with those of the power law model. If
the calculated likelihood ratio is significantly different from
zero, this indicates a significant difference in plausibility, and
its sign (positive or negative) indicates which model is favored
(Clauset et al., 2009, p. 680).

We use the poweRlaw package (Gillespie, 2014) in R (R Core
Team, 2017) to infer all maximum likelihood estimates and
conduct bootstrapping to derive p values. We run 10,000
bootstrap iterations per language, per distribution type11.

As a brief point of comparison to prior work, we return to
the Walmajarri example and plot the linear relationship between
phoneme frequencies and rank on a log-log plot. Tambovtsev and
Martindale (2007) find that a Zipfian distribution consistently
underestimates the frequency of both high- and low-ranking
segments while overestimating the frequency of those in the
middle. The dashed black slope on Figure 2 shows a similar
pattern. However, when the five lowest-frequency segments (i.e.,
those with the greatest statistical rank) are removed from the
equation, the linear model fits much better (solid blue line). This
is consistent with the observation by Clauset et al. (2009) that,
in practice, power laws are rarely observed across the whole
distribution—rather, there is a threshold, the xmin parameter,
below which the power law ceases to apply. Visual inspection of
other languages in the dataset indicates that Walmajarri’s pattern
of phoneme frequencies is common, although there is a good
deal of variation (and, consequently, variation in the fit of a
linear model). However, given the known limitations of applying
a linear model to a log-log plot, we now turn to more reliable
methods for validating the presence of a power law, using the
maximum likelihood method outlined above.

10Here we follow the method of Clauset et al. (2009), who suggest a threshold of

0.1. Note though, that even when p>0.1, we still do not necessarily accept that the

power law is a good fit, rather there is a further round of evaluation (step 3). This

use of a “p-value” differs from the more common use case where a null hypothesis

is rejected when the p-value is above a certain level. The reason for the difference

lies in how the hypothesis of interest is related to the null hypothesis. Commonly,

the hypothesis of interest is set up as the alternative hypothesis, and low p-values

are required to reject the null hypothesis (not of interest). Here, the hypothesis of

interest (power law is plausible) is set up as the null hypothesis. Accordingly, it too

is rejected when the p-value is low. By allowing it to be rejected all the way up to 0.1

(rather than 0.05, for example), we are setting the bar relatively high. This approach

may seem counterintuitive in the context of testing a single distribution hypothesis

(where it might seem better to make the distribution of interest deliberately harder

to accept than to reject). But in the context of testing which distribution fits the

data best among multiple alternatives, it makes sense to make it deliberately hard

to reject any particular distribution type.
11We find that 10,000 iterations are sufficient to obtain stable parameter estimates.

Beyond 10,000 iterations, estimates will continue to fluctuate but in a tightly

prescribed range. Plots of all bootstrapping runs can be viewed in the interactive

visualization app provided in Supplementary Section 6.

FIGURE 2 | Log-log plot of frequencies vs. frequency ranks in Walmajarri.

When a linear model is fitted to the full distribution (dashed black), high and

low frequency segments are overestimated and mid-rank segments are

underestimated. When lowest-frequency segments are removed from the

model (solid blue), the model appears to fit well.

TABLE 1 | Power law (without xmin).

Mean SD Min Max

α 1.38 0.17 1.16 2.18

Goodness-of-fit 0.35 0.07 0.15 0.53

p 0.01 0.03 0.00 0.27

Summary of α paramter, goodness-of-fit and p-values for the power law distribution fitted

to each language’s full phonemic inventory.

RESULTS

We firstly infer the fit of a power law to the full distribution
of phoneme frequencies for each language, without estimating
an xmin parameter. In Table 1 we summarize the maximum
likelihood estimates of the power law distribution’s defining
shape parameter, α, the goodness-of-fit of the estimated power
law distribution to the observed distribution of phoneme
frequencies, and bootstrapped p-values for the null hypothesis
that the data are plausibly drawn from a power law distribution.

Mean α is 1.38 (SD 0.17). As discussed earlier, the standard
range of α is 2 < α < 3 (Clauset et al., 2009, p. 662). α falls
within this range for only 1 language. Furthermore, p-values are
very low. Just 2 of the 166 languages give a p-value above the
plausibility threshold.

Throughout this study, the possibility of type I error (false
positives) must be taken into consideration. By setting our
implausibility range at p ≤ 0.1, we accept a one in 10 chance
of incorrectly rejecting a power law hypothesis which in fact is
plausible—this can occur when the distribution’s poor fit is due to
chance fluctuation alone. Given 166 tests (one test per language),
we would therefore expect to reject H0 incorrectly in around 17
(10%) of those tests. In this instance though, we have rejected H0

as implausible in 99% of the language sample. Thus, it is clear
that the power law distribution is being deemed implausible not
merely by chance. It is genuinely a poor fit for the vast majority
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TABLE 2 | Power law distribution (with xmin).

Mean SD Min Max

α 2.75 0.65 1.51 6.14

Goodness-of-fit 0.14 0.03 0.08 0.22

p 0.62 0.26 0.01 1.00

Summary of α paramter, goodness-of-fit, and p-values for the power law distribution fitted

to a subset of more frequent phonemes in each language.

of languages. This result accords well with earlier work which
has found that a simple, one-parameter form of the power law
distribution poorly characterizes phoneme frequencies (Sigurd,
1968; Martindale et al., 1996; Tambovtsev and Martindale, 2007).

As discussed earlier, our dataset of phoneme frequencies is
very likely to contain the complete population of phonemes in
each language. At the same time, the number of observations per
language is low—ranging from 16 to 37 segments in our language
sample (mean 24.5, SD 3.8). Such a small set of observations can
be a barrier to highly accurate maximum likelihood estimation.
Clauset et al. (2009, p. 669) suggest that a minimum sample size
of around 50 is needed to get a maximum likelihood estimate
of α accurate to at least 1%. This is simply not possible for
most of the world’s languages (including all languages in this
study) due to the limited size of segment inventories. Thus, in
phonemic studies such as ours there is likely to be an unavoidable
uncertainty in the estimate of α.

Power Law Distribution With xmin
If the power law distribution, as inferred above, is inadequate for
characterizing phoneme frequencies, then what other options are
there? There are a couple of approaches to this question. One is
to add an additional parameter to improve the fit of the power
law; the other is to consider alternative distribution types. In this
and the following sections we explore both approaches.

Here, we infer the fit of a power law distribution with an
additional xmin parameter, whose effect is to remove some of
the least-frequent observations from the sample which is being
fitted. As above, we use maximum likelihood to infer the best-
fitting xmin threshold for each language. Results are summarized
in Table 2.

After inferring an xmin parameter, the power law distribution
is fitted to an average of only 13.9 segments, though there
is a wide degree of variation (SD 4.1). In percentage terms,
the power law distribution is fitted to an average of 57% of a
language’s segmental inventory (SD 16%). 117 languages (70%)
fall within the normal 2–3 range for α. Having only a small
number of included observations above the xmin threshold can
drive unreasonably high estimates of the α scaling parameter. A
sizeable portion of our sample (43 languages, 26%) fall in this
high range with α above 3. At the other extreme, 6 languages (4%)
have an unusually low α under 2. Mean α is 2.75 (SD 0.65).

When xmin is included, the power law hypothesis is accepted
as plausible (though, to emphasize, not necessarily correct) in the
158 of 166 language varieties for which p > 0.1. p falls below
the 0.1 plausibility threshold in the remaining 8 languages. The

lowest p value for any language is 0.011. This puts the chance of
incorrectly rejectingH0 at around 1 in 100. The likelihood of a 1-
in-100 event is high in a set of 166 tests. Overall, since the number
of p-values below 0.1 is considerably fewer than the number we
would expect to observe through chance, and since there is a
reasonable possibility that the lowest p-value, 0.011, is a type I
error, we cannot confidently rule out the power law hypothesis
for any language in our sample.

Although we have failed to rule out the power law distribution
as implausible for any specific language, this still does not mean
that the power law distribution is the optimal one for our data,
and there are some important caveats to our results so far.

A distribution will always fit a set of data at least as well
as the same distribution with one fewer parameter. Thus, the
observation that the power law distribution fits better when xmin

is added requires some interpretation. Of greatest interest in this
respect is the striking degree of improvement in fit, such that
the power law distribution shifts from a largely implausible fit
against full phoneme inventories, to a largely plausible fit after
we exclude the least-frequent observations from samples. This
raises the obvious question of why this might be so. We consider
this in our Discussion, after we have also examined distributional
alternatives to power laws.

The inclusion of an xmin parameter when fitting power laws
is common practice, but its use is most obviously motivated in
contexts where there are very many possible observations. For
example, Clauset et al. (2009, p. 684) fit a power law to frequencies
of unique words in Moby Dick and find a best-fitting xmin of 7
(±2). Words occurring fewer than 7 times can be disregarded
and this still leaves nearly 3,000 unique words to which the power
law distribution can be fitted. In contrast to this typical use case,
where a large number of observations remain in play and do fit
the power law, our use of xmin with phoneme datasets results in
the exclusion of data points from an already small sample, leaving
an even smaller set of data being fitted. As a general fact, it is
inherently difficult to identify the most appropriate distribution
for a small collection of observations. Correspondingly, it is not
automatically an insightful finding, that a power law can be
plausibly fitted to such small datasets. However, asmentioned just
above, it is noteworthy that the same power law did not fit well to

the slightly larger datasets that were being used without the xmin

parameter. This suggests that it is not the merely small size of the
dataset which is causing the good plausibility of the fit.

Small samples of observations can inflate p values, as is the

case when investigating phonemes. We have good reason to
suspect our p values are being inflated by the low number of
observations per language, the evidence being that the number
of p-values we observe below 0.1 is considerably fewer than we
would expect by chance. The difficulty we find in ruling out the
power law distribution may reflect this.

Alternative Distributions
In addition to considering the merits of adding extra parameters
to a distribution, we must also consider whether a completely
different distribution would provide an equally good or better fit
to the data. We consider three alternative distributions, which
are not part of the power law family and may suggest different
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underlying generative processes. These are the lognormal,
exponential and Poisson distributions. Like the power law
distribution, the shape of these distributions can have a sharp
initial peak and a rapidly decaying tail, as illustrated in Figure 3.

Lognormal Distribution
The lognormal distribution is one where the data form a
normal distribution when transformed on a log scale. Once
again, we use the poweRlaw package (Gillespie, 2014) to
estimate parameter values using maximum likelihood. In this
instance, the parameters to be estimated are log mean and
log standard deviation parameters—the log-scale equivalent of
the two parameters that define a normal distribution. We
fit the distribution to the whole set of segment frequencies
for each language—we do not estimate an xmin parameter
at this stage (though see below). The lognormal distribution
narrowly construed is a continuous distribution, however the
poweRlaw package contains a corresponding discretized version,
appropriate to phoneme frequency data.

As for the power laws above, we calculate bootstrapped
p-values to assess the plausibility of the fit of the lognormal
distribution for each language. The p-values obtained are
highly variable throughout the dataset. There are 73 languages
(44% of the language sample) for which p falls in the range of
implausibility, below 0.1. This is higher than we would expect
if the lognormal distribution were plausible for all languages
and p ≤ 0.1 values were due to type I error alone. This result
is a little difficult to interpret, given the previously discussed
difficulties with small samples of observations per language.
What seems clear is that, given the rate of p ≤ 0.1 values is
elevated beyond chance, we cannot say that the lognormal
distribution plausibly characterizes the segment frequencies
of all languages. Nevertheless, for many languages—56% of
languages in our sample—we cannot confidently rule out the
lognormal distribution. Overall, this makes the lognormal
distribution with no xmin a better fit than the power law
distribution with no xmin, which we ruled out for up to 99%
of languages in the sample. One caveat to keep in mind
is that the lognormal distribution is minimally defined by
two parameters rather than one, which potentially puts it
at an advantage compared to the single-parameter power
law distribution.

Exponential Distribution
An exponential distribution, and its discrete analog, a geometric
distribution, is one in which frequencies decay at a constant
proportional rate. Thus, for the frequencies of any two
successively-ranked phonemes, xk and xk+1, the distribution is
characterized by a rate parameter, λ, so that xk+1 = λ.xk. Here,
as above, we use maximum likelihood to estimate the parameter
λ and the bootstrapping procedure to obtain a p value12.

Bootstrapped p-values are above the 0.1 plausibility threshold
for 147 of 166 languages. The number of languages for which

12This generates a relationship where p(xk) ∝ λk. An alternative expression of

the same relationship is p(xk) ∝ e−λ′k, where λ′ = −log(λ). Results reported in

Supplementary Sections 5, 6 use this second definition, with λ′.

p ≤ 0.1 is 19, close to the 17 or so that we would expect from type
I errors. This, on the face of it, seems to make the exponential
distribution quite a plausible model for phonological segment
frequencies more generally. It must be noted, however, that there
are a few languages for which the exponential distribution is a
very poor fit. The most extreme, Miriwoong, has a goodness-of-
fit statistic of 0.27 and a p value of 0.036. The poor quality of fit is
visually evident on a log-log plot (see Supplementary Section 6).

Poisson Distribution
The final distribution we consider is the Poisson distribution,
which is related to the exponential distribution. The Poisson
distribution is typically used to model the frequency of an event
within some interval of time or space. Our case is a bit different
since we are modeling the relationship between the frequency
of many different events (different phonological segments) and
their frequency rank in a language’s phonological inventory. As
with the exponential distribution, we use maximum likelihood to
estimate a single parameter, λ, and use bootstrapping to obtain a
p value for the plausibility of the distribution.

The Poisson distribution is totally implausible for all
languages in our language sample. Goodness-of-fit statistics
range from 0.43 to 0.75 (mean 0.59, SD 0.07). We find p-values
indistinguishable from 0 in all cases.

Summary of Results by Individual
Distribution Type
In Table 3, we summarize results for the four distribution types
evaluated in this study. For each distribution type, we give
the number of languages for which the distribution’s fit was
deemed plausible (p > 0.1). For completeness, we give results
for the exponential, lognormal and Poisson distributions when
xmin is included, just as we did for the power law distribution.
(Note: for one language, the bootstrapped p-value estimation
procedure failed to converge for the lognormal distribution with
xmin. This is the only distribution we tested which has three
free parameters, and in this instance, the algorithmic procedure
struggles to differentiate solutions with very similar likelihoods).
Perhaps most noteworthy among these results is the greatly
increased inconclusiveness of the method when applied to the
reduced set of data points lying above the xmin threshold. When
the fitting task is restricted to a subset of only the most frequent
segments in a language, it is possible to plausibly fit all but the
Poisson distribution to any language, after type I error is factored
in. One difference, which we nuance further in the next section,
is that power law distributions with xmin are fitted on average to
only 57% of a language’s phonemes, whereas the lognormal and
exponential distributions are fitted to closer to 80%.

Evaluation of Comparative Best fit
The third and final step in Clauset’s et al. (2009) framework
is a likelihood ratio test. This third step may not always
be necessary. If the bootstrapping procedure, above, were to
show that only one distribution type plausibly fits the data, it
would already have been shown to have the best fit among
the candidates examined. However, bootstrapping may identify
multiple distribution types as plausible. It will be recalled
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FIGURE 3 | Four distribution types: power law, exponential, lognormal and Poisson, each illustrated with four parameterizations.

TABLE 3 | Results summary.

Without xmin With xmin Prop. fitted

Power law 2 (1%) 158 (95%) 56%

Lognormal 93 (56%) 155 (93%) 78%

Exponential 147 (89%) 146 (88%) 84%

Poisson 0 (0%) 43 (26%) 17%

For each of the four distributions considered, this table lists the number of languages

(and percentage of the total language sample) for which the distribution plausibly fits, as

indicated by an uncorrected p > 0.1 value. “Prop. fitted” gives the average proportion of

each language’s phoneme inventory above xmin.

that just because a distribution is judged plausible via the
bootstrapping process does not mean that it is the optimal one,
since there may be other equally or more plausible distributions.
Accordingly, when there are multiple plausible candidate
distributions, Clauset et al. (2009) recommend using Vuong’s
(1989) likelihood ratio test for model selection, to determine
the best-fitting of any pair of competing models. Full results of
all likelihood ratio tests described in this section are tabled in
Supplementary Section 5.

Vuong’s (1989) test uses the Kullback-Leibler Information
Criterion (Kullback and Leibler, 1951) to calculate the log
likelihood of observing the data given a distribution model,
and compares this to the log likelihood of observing the same
data given a competing distribution model. The test returns

a test statistic, which gives an indication of how strongly
one model is favored over another, and a p-value, indicating
whether the difference in the support for each model is
statistically significant.

We begin by comparing distributions without the xmin

parameter. As summarized in Table 3, two of these distributions
(the power law and Poisson distributions, without xmin) have
already been rejected as implausible for all or nearly all languages.
Accordingly, we conduct just one likelihood ratio test per
language, comparing the fit of the exponential vs. lognormal
distributions. Overall, we find that Vuong’s likelihood ratio
test somewhat favors the exponential distribution. Likelihood
ratios favor the exponential distribution for 122 languages,
and the lognormal distribution for 44 languages. However
after Bonferroni correction, the difference in the likelihood of
exponential and lognormal models is statistically significant for
only two languages, Thaynakwithi and Dalabon, both favoring
the exponential distribution.

Turning to distributions with the xmin parameter, since we

have already rejected the Poisson distribution, we conduct

likelihood ratio tests pairwise among the remaining three
distributions. In order to compare distributions with xmin

parameters, it is necessary to set xmin to the same value in

both distributions (Gillespie, 2014). Thus, to make a pairwise

comparison, we take the xmin value from distribution A and using
it, re-estimate the other parameters of distribution B, and conduct
one likelihood ratio test. Then we take xmin from B, use it and
re-estimate the other parameters of distribution A, and conduct
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a second likelihood ratio test, giving two results for each pair
of distributions.

Comparing the exponential and lognormal distributions, the
likelihood ratios favor the lognormal distribution (139 languages
to 27) using xmin from the lognormal fit, and favors the
exponential distribution (103 languages to 63) using xmin from
the exponential fit, however none of these comparisons reaches
significance after Bonferroni correction.

Comparing the power law and lognormal distributions,
likelihood ratios favor the lognormal distribution (144 languages
to 22) using xmin from the power law fit, and all languages when
using xmin from the lognormal fit, however only two of these
comparisons reaches significance after Bonferroni correction. Yir
Yoront favors the power law when using xmin from the power law
fit and Malyangapa favors the lognormal distribution using xmin

from the lognormal.
Comparing the power law and exponential distributions, the

likelihood ratios favor the power law (133 languages to 33)
when taking xmin from the power law fit, though no comparison
reaches significance. They favor the exponential distribution 164
languages to 2 when xmin is taken from the exponential fit.
Thirteen of those comparisons reach significance.

In sum, we found earlier that when parameterized without
xmin, only the exponential and lognormal distributions were
broadly plausible. Voung’s likelihood ratio test marginally favors
the exponential test over the lognormal when fitted against entire
phonemic inventories, but the difference is at most slight. When
parameterized with xmin, the power law distribution is fitted
to around 60% of languages’ phonemes on average, while the
exponential and lognormal are fitted to around 80% (Table 3).
Pairwise likelihood ratio tests, which apply one distribution’s
xmin parameter to the other, provide slender evidence of the
following. Even when fitted against the small phonemic subsets
favored by the power law, the lognormal distribution may weakly
outperform the power law, but the exponential distribution does
not. Fitted against the larger subsets favored by the exponential
and lognormal distributions, the power law is outperformed by
the exponential and lognormal. The performance of the latter
two distributions is indistinguishable.

DISCUSSION

Here we contextualize the current study more fully in the history
of research into power laws and phoneme frequencies, before
drawing implications and conclusions from the new findings we
have obtained.

Power Laws in Linguistics
Investigation of power laws in the linguistic sphere has a long
history. One of the oldest and best-known examples of a power
law in any discipline is the distribution of word frequencies
in text corpora, first noted by Estoup (1916) and subsequently
described by Zipf (1932, 1949). Zipf ’s Law, as it has come to
be known, is a discrete power law distribution. Its exponent
parameter, α, is typically very close to 1, in which case, the second
ranked item will be approximately half as frequent as the first,
the third ranked item will be one third as frequent as the first,

and so on. Zipf ’s Law continues to garner considerable attention,
for example in Kucera et al. (1967), Montemurro (2001), and
more recently in Baayen (2001, 2008). Various modifications to
Zipf ’s formula have been suggested (notably Mandelbrot, 1954)
and theoretical explanations put forward (Li, 1992; Naranan and
Balasubrahmanyan, 1992, 1998).

Power laws have also been proposed to describe the
distribution of phoneme frequencies. The use of Zipf ’s Law to
model the frequencies of phonological segments initially appears
to be an attractive prospect (Witten and Bell, 1990, p. 565–
566). Nevertheless, a selection of alternative, non-power law
distributions has also been suggested.

Sigurd (1968) is an early study evaluating the fit of a Zipfian
distribution to phoneme frequencies, where the exponent, α, is
set to 1. His evaluation method is a simple visual inspection,
comparing observed phoneme frequencies in five languages
(selected for their variety in segmental inventory size) with
their expected frequencies assuming a Zipfian rank-frequency
relationship. Sigurd (1968, p. 8) observes that the phoneme
frequency distributions do not approximate a Zipfian curve,
particularly for the most common segments. Rather, Sigurd
(1968) finds better approximations using a geometric series
equation, so that xk+1 = λ.xk for some rate parameter λ, giving
the discrete distribution:

p(xk) ∝ λk (3)

Good (1969, p. 577) suggests an alternative method of
approximation: followingWhitworth (1901), Good calculates the
expected frequencies of each phoneme given a process whereby
a unit interval probability space [0, 1] is divided into n parts at
random (where n is the number of phonemes in the language),
following a uniform distribution. This is equivalent to a so-
called stick-breaking process: imagine a stick, which represents
the unit interval probability space. The stick is broken into n
parts; the n − 1 places along the stick at which a break is made
are selected randomly and all at once, with any place along the
stick equally likely to be selected as any other. When these parts
are rearranged by size, from smallest to largest, their expectation
follows the distribution:

1
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Which is to say:

p(xk) ∝

n
∑

i=k

1

i
, 1 ≤ k ≤ n (5)

In support of this model, Good (1969, p. 577) provides a table
of observed vs. expected frequencies of both graphemes and
phonemes in English, however the sample size is modest (1000
words) and does not extend to any other languages. Furthermore,
there is no visual or statistical evaluation of the goodness-of-
fit. Good (1969) intends for the results to be taken as a curious
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observation only, with no strong theoretical position or claim
of generalizability.

As n in Equation (5) grows large, the summation term
∑n

i=k
1
i converges toward −log( k

n+1 ) (Loeb and Rota,
1989, p. 12), meaning that Good’s distribution can be
considered an approximation of (6), a discretized negative
logarithmic distribution.

p(xk) ∝ − log
k

n+ 1
, 1 ≤ k ≤ n (6)

Gusein-Zade (1988) and Borodovsky and Gusein-Zade (1989)
visually evaluate the fit of (6) to the graphemes of English,
Estonian, Russian and Spanish13. They also use the equation
to describe the distribution of DNA codons (Borodovsky and
Gusein-Zade, 1989). Witten and Bell (1990, p. 563–566) examine
the frequencies of single graphemes, graphemic bigrams and
trigrams in the Brown Corpus and compare the fits of Good’s
distribution and Zipf ’s Law by comparing expected entropy
values for each model to observed entropy scores. They find
that the quality of the fit of Good’s model declines with bigrams
and trigrams compared to single graphemes, although the
observed distribution curves are broadly of the same shape (and
resemble the shape of Good’s distribution rather than the Zipfian
distribution). When assessed using metrics based on entropy,
Good’s distribution fits better than or around equally as well as
the Zipfian distribution for all three datasets. Good’s distribution
and the negative logarithmic distribution it approximates also
have the advantage of parsimony, since they are parameter-
free: knowing how many unique items (phonemes, graphemes,
bigrams, etc.), n, are in the dataset is sufficient to calculate their
expected distribution of frequencies—there are no additional
parameters to estimate such as α in (2) or λ in (3).

Martindale et al. (1996) compare the fit of four different
distributions to frequencies of both graphemes and phonemes in
text corpora from 18 languages. Using the R2 statistic in a linear
regression, they compare the fit of the parameter-free negative
logarithmic equation of Borodovsky and Gusein-Zade (1989) in
(6) to the Zipfian power-law distribution (2), Sigurd’s geometric
series distribution (3), and the Yule-Simon distribution (Yule,
1925; Simon, 1955), which can be written:

p(xk) ∝
1

kα
.λk (7)

The Yule-Simon equation in (7) is the product of the power law
in (2) and the geometric equation in (3). Because of the differing
rates at which the two parts of the equation decay as k increases,
equation (7) produces a distribution which is more like a power

13Of course, the statistics of graphemes are different from the statistics of

phonological segments. As Bloomfield (1935, p. 136–137) rather emphatically

points out: “If we take a large body of speech, we can count out the relative

frequencies of phonemes and of combinations of phonemes. This task has been

neglected by linguists and very imperfectly performed by amateurs, who confuse

phonemes with printed letters.” Nevertheless, the frequencies of graphemes has

been of interest historically in many applications; for example, in traditional

printing, the development of Morse code, and library cataloging (Witten and Bell,

1990, p. 550–551).

law (2) for low values of k (and thus for high frequency items,
for instance) and more like the geometric (3) for high values of k
(low frequency items) (Simon, 1955).

The Yule-Simon equation in (7) has not just one free
parameter but two, the exponent α and the rate λ, and the Zipfian
and Sigurd equations are effectively special cases of it, each with
one parameter fewer. The Zipfian distribution is equivalent to (7)
with λ set to 1 (so that λk = 1), while the geometric equation
is equivalent to (7) with α set to zero (so that 1/kα = 1). This
is important, since as a general fact, if distribution A is a special
case of distribution B, with fewer free parameters than it, then B
will always perform at least as well as A when fitting the same set
of data. Thus, the Yule-Simon distribution will necessarily fit the
same set of data at least as well as the Zipfian distribution, and
Sigurd’s geometric distribution.

Martindale et al. (1996) find that the Yule-Simon distribution
fits best, for both graphemes and phonemes. They find that the
Zipfian distribution tends to overestimate both high and low
frequency items, although the differences they observe between
models are only small. On this basis, they conclude that it is
“a matter of taste” whether one opts for the more precise Yule-
Simon distribution or simpler models with fewer parameters
to estimate (Martindale et al., 1996, p. 111). Tambovtsev and
Martindale (2007) expand Martindale’s et al. (1996) study to
include phoneme frequencies in 95 languages (90 of these
are Eurasian; 2 are from Oceania and 1 each from Australia,
Africa, and South America). The sample is divided into four
language groups (Indo-European, Altaic, and Yukaghir-Uralic–
plus a miscellaneous group) and a series of pairwise sign tests are
conducted to test whether the difference in mean R2 is significant
between different distributions for each language group. Again,
they find that the Yule-Simon distribution fits best overall14.

Obtaining a better fit by using a distribution with an additional
parameter may be relatively trivial mathematically speaking, but
this does not mean it is uninteresting. The extra parameter may
work to capture a significant real-world nuance in an underlying
causal process or describe the effect of one or more secondary
processes. A compelling causal explanation of a complex
distribution might therefore be formulated by identifying some
real-world factor and explaining how its mathematical effect
on the distribution is expected to match what we find. It
is also important to consider the possibility of equifinality—
the fact that multiple, different real-world phenomena may
have equivalent mathematical effects. Tests of goodness-of-fit
examine only the mathematical aspect, and cannot distinguish
between different phenomena whose detectable mathematical
contribution is equivalent.

Martindale et al. (1996, p. 111) and Tambovtsev and
Martindale (2007, p. 9) note that a Zipfian distribution describes
frequencies of phonological segments less well than it describes
frequencies of words, in part because the highest-frequency
phonemes are not frequent enough. They speculate that this
may be so, because if the most-frequent phonemes did pattern
in a Zipfian way, then perception problems could arise for

14Although in their statistical tests they do not adjust their significance levels to

correct for multiple hypothesis testing.
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language users owing to the small size of a phonological
inventory. This speculation does not meet the criteria for a
compelling causal explanation though. It is not clarified what
the linguistic mechanism is, that acts to prevent such perceptual
problems, and thus we do not have a real-world phenomenon
whose mathematical properties could be interrogated. Nor is
it explained why, if such a mechanism exists, its mathematical
effect would be to contribute something like the extra geometric
term λk that differentiates the Yule-Simon distribution (7) from
the Zipfian (2)15. This is not to say that an explanation in terms
of perceptibility and confusability is implausible, but rather if
our aim is for causal hypotheses that can be evaluated, then more
steps are needed, a topic that we return to below. Next, however,
we consider the history of investigation presented here, together
with our new results.

Findings From a More Reliable Evaluation
Procedure
Power laws have attracted wide and sustained scientific interest.
Recent debates on their validity have prompted the development
and widespread adoption of novel evaluation methods that are
more reliable than those used in the past (Clauset et al., 2009;
Stumpf and Porter, 2012). In this study, we re-evaluated the
plausibility of several distribution types as characterizations of
phoneme frequencies using a maximum likelihood statistical
framework presented by Clauset et al. (2009) and a sample of 166
Australian language varieties.

Using a more reliable evaluation procedure than previous
investigations, we have confirmed the finding that a basic
power law distribution, with a single free parameter, is
generally insufficient for characterizing phoneme frequencies.
Additionally, we reconfirm a result going back to Sigurd (1968),
that an exponential (or geometric) distribution, with a single free
parameter, is a good plausible fit for full phonemic inventories.
Furthermore, we find that a lognormal distribution, with two
free parameters, is an additional plausible fit, whereas a Poisson
distribution, with a single free parameter, is implausible. We did
not attempt to fit the two-parameter Yule-Simon distribution in
(7), since to our knowledge, there is no maximum likelihood
estimation procedure currently available for estimating its
parameters. However, we do return to the question of this
distribution just below.

A second novel contribution was to consider the addition
of an xmin parameter, a practice which is now common in
power law research. Notably, while power laws are largely
implausible fits for entire phoneme inventories, their plausibility
is improved strikingly once a subset of the least-frequent
phonemes is removed from the sample. This is despite that
fact that the full inventories and the reduced ones share the
property of comprising notably small samples. The subset

15The Yule-Simon equation, which Martindale et al. (1996) and Tambovtsev and

Martindale (2007) find to be a superior fit, describes a distribution which is most

similar to a power law for high frequency (low k) items, andmost like the geometric

for low frequency (high k). The claim that its superior fit is due to non-power-

law-like behavior of high frequency items is therefore hard to reconcile with

the mathematics.

removed in order to achieve maximum likelihood is on average
large, at 43%. This result indicates that power laws constitute
a plausible characterization for the more-frequent portion of
phonemic inventories, and explains why the upper end of a
Yule-Simon distribution, which most closely approximates a
power law, should be a reasonable fit. We note however, that
the lognormal distribution also performs well in this same,
high frequency region of phonemic inventories. Exponential (or
geometric) distributions do not fit the higher-frequency portion
of inventories as well the power law or lognormal do, but
they are good fits for entire inventories, suggesting that they
fit particularly well in lower-frequency portions. This would
explain why the lower end of a Yule-Simon distribution, which
most closely approximates a geometric distribution, should be a
reasonable fit.

Using an evaluation procedure which has since been shown
to be unreliable, Martindale et al. (1996) and Tambovtsev and
Martindale (2007) concluded that the two-parameter Yule-Simon
distribution fit whole inventories better than a power law or a
geometric distribution. Implicitly, this is a conclusion in two
parts: more-frequent phonemes are more power-law-like, and
less-frequent are more geometric-like. Here we have not been
able to directly evaluate the Yule-Simon distribution using the
more reliable, maximum likelihood method. However, we have
found evidence supporting a similar conclusion, that the more-
frequent and less-frequent portions of phonemic inventories are
characterized by different distributional properties. The more-
frequent portion better matches a power law, though also a
lognormal distribution. The less-frequent portion better matches
a geometric distribution. These two findings serve to clarify and
qualify the two implicit halves of the main finding of Martindale
et al. (1996) and Tambovtsev and Martindale (2007), and here
we have arrived at them by more reliable methods. Furthermore,
by estimating xmin parameters, we have provided some estimates
of where power-law-like behavior starts to cut out within a
phonemic inventory. To understand what these results entail for
theory, we return to the question of causal processes.

Distributions: Outcomes of Stochastic
Processes Linked to Causal Factors
Ultimately, linguistic theory seeks to explain the patterns that
can be observed in human language. This endeavor will be
aided by a sound knowledge of which mathematical distributions
plausibly characterize a given variable x (such as phoneme
frequency), since those distributions will be consistent with
only certain mathematical kinds of underlying processes. In this
paper, we have improved the certainty of our understanding of
observed distributions of phoneme frequencies, using state-of-
the-art statistical methods. This is a necessary step, but a first
step only. A fruitful next step used widely in other sciences is to
explicitly consider mathematical families of stochastic processes,
whose signature outcome distributions are consistent with those
of our empirical observations, and then to ask in turn, what
plausible, real-world causal processes could be consistent with
these observation-matching stochastic processes.

It can be emphasized that in this model of progress, a good
understanding of families of stochastic processes will play an
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important, enabling role. Accordingly, it will be useful to harness
advances that have already been made elsewhere. For instance,
many discrete systems can be profitably conceptualized in terms
of urn processes with characteristically associated distributions.
As Kuba and Panholzer (2012, p. 87) remark, “[u]rn models
are simple, useful mathematical tools for describing many
evolutionary processes in diverse fields of application.” There
exist well-studied urn processes which yield many kinds of
distributions. It will be profitable in linguistic research to more
clearly relate our own theories of change, including change in
phonemic inventories, to these mathematically more generalized
processes. By doing so, linguists will be able to tap into related,
existing mathematical results (such as relating processes to
distributions), that can assist us to further differentiate the
theories that are more viable from those that are less so.

Casual Processes of Phoneme Addition,
Removal, and Redistribution
Naturally, any observation-matching families of stochastic
processes will still need to be related to linguistically plausible
causal processes (Cysouw, 2009). Though our paper has primarily
focused on methods that will strengthen future discussions
around links between observations and causal mechanisms,
rather than the causal mechanisms themselves, here we offer
some brief remarks on historical mechanisms affecting phoneme
frequencies. As we do, we continue using the imagery of urns to
represent phonemes types; the balls in them to represent their
tokens in the lexicon; and processes that serve to add, remove,
and redistribute them. (For a like-minded review of potential
mechanisms behind Zipf ’s law in the frequencies of words, see
Piantadosi, 2014).

Phoneme frequencies undergo constant modification due
to changes occurring at multiple levels of linguistic structure,
including the phonology proper, morphology, syntax, and
the grammar of discourse. Within the phonology itself,
fundamental changes include deletions, insertions and changes of
phonemic category, all of which will impact phoneme frequency
distributions. In an urn model, historical deletions will result in
balls being removed from a phoneme’s corresponding urn while
insertions will add balls. Adding a level of complexity, many
phonological changes affect not just one phoneme category, but
natural classes of sounds, thus deletions and insertions that apply
to natural classes will remove or add balls simultaneously from a
non-random, “natural” set of urns.

Phonemic mergers (Hoenigswald, 1965) are changes which
collapse two erstwhile phoneme categories into one, effectively
emptying all balls from one urn into another. Phonemic partial
mergers, also known as primary splits, shift only some of a
phoneme’s instances into another, existing phonemic category,
transferring some portion of an urn’s balls to another. Phonemic
(secondary) splits involve an existing phonemic category splitting
into multiple new categories, entailing the creation of one
or more new urns, filled with some proportion of the balls
from an existing urn, which itself remains non-empty. In both
mergers and splits, natural classes may be involved, entailing
simultaneous transfers between, and creation or loss of, “natural”
sets of urns.

A phonemic category will map onto multiple actual speech
sounds, or phones, and the phonemic categorization of a
phone frequently depends on its contextual environment.
Consequently, it is not uncommon for multiple types of
phonemic changes to occur at once, owing to the fact that when
one sound changes, so too does the contextual environment
of its neighbors. Under these circumstances, the ubiquity of
non-uniform distributions of sounds in various contexts will
lead to non-accidental, correlational relationships among these
coupled changes.

At the morphological level, changes in the frequency of
certain formatives will cause concerted frequency changes in
the set of phonemes comprising the formative, though in this
case, there is no expectation that the set involved will form a
natural class. If the object of study is the discourse frequencies
of phonemes, then similar effects will arise when the usage
frequencies of words undergo change. Furthermore, lexicons
are not closed systems. Words can be borrowed from other
languages. The effects of borrowing on phoneme frequencies
in the recipient language is a complex matter (Boretzky, 1991).
Here we name just a few factors. The donor language will
have its own phonemic repertoire and associated frequencies,
which will bias what can be donated and at what relative rates.
Phonemic borrowing is not direct, but is mediated by phonetic
similarities and psychological equivalences drawn by speakers
across languages (Flege, 1987; Kang, 2003). Correspondences
between donor and recipient phonemes will therefore exhibit
correspondences that are broadly natural (Paradis and LaCharité,
1997), yet the process is frequently variable (Lev-Ari et al.,
2014) and may involve centuries of subsequent remodeling
of borrowed material (Crawford, 2009). Moreover, additional
systematic mutations, deletions and insertions of phonemes may
be motivated by constraints on the permissible phonotactic
(contextual) arrangement of phonemes in the recipient language.

There are implications to be drawn from this, for the
explanation of distributions of phoneme frequencies. We turn to
these implications below.

Implications for Explanatory Accounts
In most of the historical changes noted above, it matters

not only whether, and how many, balls are moving from

one urn to another, but exactly which real-world phonemes
the urns themselves represent. Phonemes form natural classes,

which may change in tandem. Phonotactic arrangements, which,
notwithstanding variation, exhibit strong similarities cross-
linguistically, will impact how changes mediated by contexts
are correlated. And borrowing too operates in reference to
phonemes’ actual substance. This importance of phonemic
substance raises a host of questions, which can be addressed
in new and potentially revealing ways within a stochastic-
modeling research program. For instance, the frequencies with
which various kinds of phonemes are present or absent across
the world’s languages varies greatly (Maddieson, 1984; Moran,
2012; Everett, 2018a): what is the range of assumptions under
which this result would emerge, within a stochastic model?
Does it demand models with strong effects corresponding to
well-known articulatory, acoustic and perceptual factors that
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cross-linguistically favor certain phoneme types (Liljencrants
and Lindblom, 1972; Browman and Goldstein, 1986; Stevens,
1989; Johnson et al., 1993; Proctor, 2009; Becker-Kristal, 2010;
Everett, 2018b) or can it be derived from weak ones? And can
some effects arise entirely through indirect interactions? For
instance, vowels typically stand adjacent only to consonants,
while in most languages consonants may be adjacent to vowels
or other consonants; can it be shown that this basic phonotactic
asymmetry predicts differing rates of change among vowels and
consonants (Moran and Verkerk, 2018)? Returning to the main
topic of this paper, might we predict that languages can exhibit
significantly different overall phoneme frequency distributions
depending on which phonemes they contain? For example, might
observations for one part of the world (such as the Australian
data in this paper) therefore differ in an explicable manner from
observations in others?

Even if we abstract away from issues related to phoneme
substance, a successful stochastic model of phoneme frequency
evolution may still require a mixture of sub-models, obeying
different principles, given the existence of the multiple types
of historical processes that affect phoneme frequency: deletion,
insertion, splits, mergers, borrowings. Though it might be
clear in outline what (some of) these sub-models must be, it
is far less clear, empirically speaking, what their quantitative
parameterizations are. In what precise mix do these sub-
processes occur? How often do events occur independently or
in concert? What empirical grounds do we have for estimating
these parameters, and what are our levels of uncertainty? In these
respects, there exists another interesting role to be played by
stochastic modeling studies. We currently lack empirical answers
to many of these quantitative questions, but can we reveal
limits to what is plausibly compatible with observed phoneme
distributions? A related open question, connected to issues raised
in the previous paragraph, is to what extent a successful stochastic
model will need to reflect empirical complexities, like phonemic
substance, natural classes, phonotactics and concerted changes,
as points of non-independence within and between sub-models,
or can some of these be ignored with little impact on the
outcomes predicted by the model? Whatever the answers may
be, we see a productive and interesting field of inquiring lying
directly ahead.

We conclude this section by returning to our empirical
findings and situating them within the causal reasoning just
outlined. Our empirical finding was that the more frequent
phonemes in a language’s inventory tend to be distributed
more in line with a power law, and the less frequent more
in line with an exponential distribution. As we mentioned
earlier, power law distributions can be stochastically generated
by preferential attachment processes. In addition to this,
exponential distributions can be stochastically generated by a
so-called birth-death process, in which entities arise at some
characteristic birth rate λ, and disappear at a characteristic
death rate µ. It may be—and here we are speculating, but in
a reasoned manner—that as tokens of phones shift between
phonemic categories during the kinds of sound change processes
we mentioned above, different phonemic categories have
different probabilistic propensities to be source categories (i.e.,

the erstwhile category of the changing phone) and destination
categories (its new category after the change). This alone would
constitute a birth-death regime (Cysouw, 2009), and its causal
roots would lie in phonemic substance. Taking this further, it
may also be that there is a separate propensity for phones to
migrate toward numerically stronger categories. This would
contribute a preferential attachment dynamic, whose causal roots
would be something over and above mere phonemic substance.
An interesting point to note, is that under this scenario, it is
not important which specific phonemes an inventory contains:
so long as phonemes have differing propensities to be source
or destination categories during changes, and so long as
numerically stronger categories are favored as destinations, the
same outcomes should be obtained. This would explain how
our Australian results can resemble earlier, Eurasian, results so
closely. However, what remains incomplete in this picture is
firstly: When a preferential attachment process and a birth-death
process are simultaneously active in one and the same system,
under what parameterizations of the system does it fall out that
preferential attachment affects the more-frequent categories
more strongly than the less-frequent, in a fashion similar to what
appears to be the case in phoneme inventories? And secondly:
What factor(s) might underlie both the preferential attachment
dynamic itself and the overall parameterization of the system?
There has been some work on this question, suggesting that
climactic factors (namely the effect of humidity on vocal fold
physiology) (Everett et al., 2015), universal sound-meaning
associations (Blasi et al., 2016) and/or relative physiological
ease of articulation (Everett, 2018a,b) might drive a preferential
attachment dynamic, in which languages gravitate toward
certain phonemic categories on the basis of these various
factors. It may be that different hypotheses about possible causal
mechanisms for the preferential attachment dynamic entail
different predictions on these crucial points. These ideas are
worth chasing up further.

Reasons to Seek Wider Horizons
There are likely to be additional, valuable variables, and

possibly more tractable variables, to study beyond just phoneme

frequency distributions. In this paper we have focused on

phoneme frequencies because they have occupied such a
prominent place in the history of investigations of distributions.
However, by doing so we do not wish to suggest that phonemes
ought to continue to occupy such a prominent place. Firstly,
we agree with Piantadosi (2014), that the focus of investigation
should not be on distributions for their own sake, but on
what a better understanding of distributions can tell us about
language. It may be, that further study reveals that phoneme
frequency distributions are not very powerful, when it comes
to discriminating plausible from implausible causal models,
whether this is because phoneme inventories are too small
to allow their distributions to be characterized with sufficient
precision or because those distributions themselves are consistent
with too many competing explanations. However, the very same
research may reveal other variables that are more valuable. To
speculate, perhaps it will provemore interesting to ask how sets of
phonemes, such as natural classes, pattern within their languages’
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frequency ranks across languages; or to examine not merely
phonemes (of which there are only few categories per language),
but phonemes within certain contextual environments (of which
there are more). Moreover, some interesting results may emerge
only within models and statistical analyses that grant a role to
phylogeny (Macklin-Cordes et al., accepted).

Conclusions
There are many branching paths of research ahead. Nevertheless,
there will be some basic principles that we see remaining
constant, and these have been the core focus of our contribution
here. In this paper we have demonstrated and outlined a
template for future work on distributions. Ideally, such work
should begin with critical assessment of links that can be made
between existing or new causal hypotheses, including diachronic
processes, and from these, via stochastic models, to particular
distributional outcomes. Subsequently, the fit of the hypothesized
distributions to real-world data should be evaluated rigorously
using robust statistical methods. Lastly, an attempt must be
made to rule out competing distribution types and alternative
generative mechanisms. As our investigation demonstrates, this
may be challenging, given the inherent limitations of working
with small sets of observations. Maintaining a clear-eyed view
of these limitations, and using advances already made in allied
fields, will help spur this field of inquiry to new, robust insights
into the dynamics of phoneme inventories.
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