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Scientific understanding about the psychological impact of the COVID-19 global
pandemic is in its nascent stage. Prior research suggests that demographic factors,
such as gender and age, are associated with greater distress during a global health
crisis. Less is known about how emotion regulation impacts levels of distress during
a pandemic. The present study aimed to identify predictors of psychological distress
during the COVID-19 pandemic. Participants (N = 2,787) provided demographics,
history of adverse childhood experiences, current coping strategies (use of implicit and
explicit emotion regulation), and current psychological distress. The overall prevalence
of clinical levels of anxiety, depression, and post-traumatic stress was higher than
the prevalence outside a pandemic and was higher than rates reported among
healthcare workers and survivors of severe acute respiratory syndrome. Younger
participants (<45 years), women, and non-binary individuals reported higher prevalence
of symptoms across all measures of distress. A random forest machine learning
algorithm was used to identify the strongest predictors of distress. Regression trees
were developed to identify individuals at greater risk for anxiety, depression, and post-
traumatic stress. Somatization and less reliance on adaptive defense mechanisms were
associated with greater distress. These findings highlight the importance of assessing
individuals’ physical experiences of psychological distress and emotion regulation
strategies to help mental health providers tailor assessments and treatment during a
global health crisis.

Keywords: COVID-19 pandemic, emotion regulation, somatization, machine learning, anxiety, depression, post-
traumatic stress, defense mechanisms

INTRODUCTION

In March 2020, the World Health Organization declared the current outbreak of COVID-19, the
disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a pandemic.
At the time of this writing, there are more than 41 million confirmed cases of COVID-19 across
227 countries (World Health Organization, 2020) and the worldwide death toll has surpassed one
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million. Besides the obvious impact on physical health, the
pandemic is likely to negatively affect mental health and well-
being (Brooks et al., 2020; Qiu et al., 2020).

In tandem with living amidst a global pandemic, stress,
social isolation, and the associated financial crisis, may result
in significant adverse mental health effects. During the SARS
epidemic in 2003, studies reported elevated levels of anxiety
and depression that persisted 3 years later (Chan et al., 2006;
Ko et al., 2006; Liu et al., 2012), with those under quarantine
showing a dramatic increase in post-traumatic stress symptoms
(PTSS; Hawryluck et al., 2004; Lau et al., 2005; Wu et al.,
2005; Liu et al., 2012). Initial reports from China indicate that
the COVID-19 outbreak and associated quarantining measures
have also led to an increase in symptoms of psychological
distress including anxiety, depression, self-harm, suicide attempts
(Qiu et al., 2020), and post-traumatic stress (Liu et al., 2020).
Similarly, during the acute phase of COVID-19 in Italy, the
number of days in lockdown was associated with higher levels of
psychological distress, including higher PTSS (Conversano et al.,
2020a; Di Giuseppe et al., 2020c; Marazziti et al., 2020). A recent
meta-analysis focused on prevalence rates for psychological
distress during COVID-19, found high rates of anxiety (31.9%),
depression (33.7%), and stress (29.6%) (Salari et al., 2020).

Risk Factors for Psychological Distress
Specific populations are likely to be more vulnerable to the
psychological impact of global health crises such as COVID-
19 (for a review see Brooks et al., 2020). Among Chinese
healthcare workers during COVID-19, women reported more
severe symptoms of anxiety, depression, insomnia, and general
distress and more severe PTSS and disrupted sleep than their
male counterparts (Lai et al., 2020). Age also appears to be an
important risk factor for psychological distress. While rates of
mortality and illness severity are lower among young people
infected with COVID-19, younger individuals have reported
more adverse psychological consequences, such as anxiety,
depression, and post-traumatic stress (Conversano et al., 2020b;
Qiu et al., 2020).

Adverse childhood experiences (ACEs) also have a
tremendous impact on general mental health and well-
being across the lifespan (Felitti et al., 1998; Hughes et al.,
2017). Although ACEs do not appear to have been researched
in the context of pandemics, it is probable that individuals
with childhood trauma are at increased risk for psychological
distress during the COVID-19 crisis (Bryant et al., 2020). Other
risk factors associated with adverse mental health outcomes
include low socioeconomic status and being a racial and/or
ethnic minority. The complex interaction of early childhood
trauma, racial/ethnic identity, and socioeconomic status is a
critical determinant of physical and mental health outcomes
(Wilkinson and Marmot, 2003).

Coping With Distress During COVID-19:
Explicit and Implicit Emotion Regulation
Besides pre-existing risk factors, the way people cope with
stressful events has also been shown to be important in mitigating

psychological distress (Gross and John, 2003; Aldao et al., 2010).
Individuals tend to utilize various explicit and implicit emotion
regulation strategies to mitigate distress through modification
of the intensity, duration, and type of the experienced emotion
(Gross and Thompson, 2007; Gyurak et al., 2011). Whereas
explicit emotion regulation requires voluntariness and effort,
implicit emotion regulation is an ongoing, effortless, automatic
process that operates outside of awareness. Although both are
crucial in maintaining psychological well-being, there is evidence
suggesting that implicit emotion regulation may be even more
important to healthy psychological functioning than explicit
emotion regulation (Gyurak et al., 2011). Specifically, in anxiety
and depression, emotion dysregulation has been proposed to
originate more in implicit, automatic processes rather than
explicit ones (Ehring et al., 2010; Etkin et al., 2010).

Explicit Emotion Regulation
Explicit emotion regulation is a conscious effort to control and
change one’s initial emotional reaction. Two major strategies
are cognitive reappraisal and expressive suppression (Gross and
John, 2003). Reappraisal involves reinterpreting the meaning
of an event to alter its emotional impact (Gross, 1998) and
is generally considered to be an adaptive emotion regulation
strategy associated with better interpersonal outcomes and well-
being (Gross and John, 2003). In contrast, suppression involves
an attempt to inhibit the expression of emotion and is associated
with more psychological distress (Aldao et al., 2010).

Implicit Emotion Regulation
Defense Mechanisms as Implicit Emotion Regulation
One strategy to implicitly regulate emotion is the use of defense
mechanisms. Defense mechanisms fall on a continuum ranging
from maladaptive defenses (e.g., acting out or passive aggression)
to highly adaptive defenses (e.g., humor and altruism; Perry,
1990; American Psychiatric Association, 2000). Use of adaptive
defenses can reduce the length or intensity level of distress,
or can positively change the quality of an emotional response
(Koole and Rothermund, 2011), while reliance on maladaptive
defenses tends to contribute to the maintenance and exacerbation
of psychopathology (Rice and Hoffman, 2014; Perry et al., 2020).
Adaptive defense mechanisms are known to mediate more severe
reactions to traumatic events (Riolli and Savicki, 2010). During
the outbreak in Italy, individuals under quarantine who relied on
maladaptive defenses had significantly higher levels of anxiety,
depression, and PTSS as compared to people who used more
adaptive defense mechanisms (Di Giuseppe et al., 2020a).

Somatization as Implicit Emotion Regulation
Another type of implicit emotion regulation strategy that
might impact the level of psychological distress is somatization.
Somatization refers to the presence of physical symptoms – such
as pain, dizziness, and indigestion – that have no known organic
cause (Greenberg, 2014). It is understood as a phenomenon in
which difficult thoughts and emotions are expressed through
medically unexplained physical symptoms (Chander et al., 2019;
Fu et al., 2019). The presence of somatic symptoms is associated
with difficulty experiencing, describing, and identifying emotions
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and a tendency to withdraw into fantasy (i.e., alexithymia; Bailey
and Henry, 2007). Somatization thus blocks the experience of
the original emotions, which may lead to greater distress (Katon
et al., 2001; Abbass, 2005; Busch, 2014). Although there is overlap
between somatic symptoms, anxiety, and depression (Löwe et al.,
2008; Simms et al., 2012; Fu et al., 2019), somatization is a distinct
phenomenon. Specifically, somatic symptoms (a) are associated
with impairment in social functioning (Löwe et al., 2008); (b)
result in greater healthcare utilization and medical care costs
(Barsky et al., 2005); and (c) rely on different psychobiological
pathways than related psychological disorders such as depression
(Rief et al., 2010). Somatization has been implicated as a key
factor in a range of anxiety and other disorders (Kroenke et al.,
1994; Blaya et al., 2006) and has been identified as a distinct
predictor of quality of life, independent of anxiety and depression
(Hyphantis et al., 2010).

The Current Study
All the factors described thus far impact mental health,
but little is known about which variables have the most
impact and how they interact with one another to predict
psychological distress during a pandemic. Previous studies
examined single risk factors (or a small set of risk factors)
with statistical models that treat all other variables as merely
noise. Testing each predictor factor as a separate hypothesis, as
done in traditional statistical approaches, can lead to erroneous
conclusions because of multiple comparisons (inflated type I
errors), model misspecification, and multicollinearity. Unlike
traditional statistical models, machine learning models are
not constrained by assumptions and are particularly helpful
for finding patterns in complex datasets (Orrù et al., 2020).
Specifically, the random forest method is able to identify the
most important predictors from a large set of potential predictor
variables. Moreover, the subsequent regression tree analysis
allows for the identification of various interactions between the
predictor variables.

The aims of the current study were threefold: (1) To identify
the prevalence of anxiety, depression, and posttraumatic stress
among adults during COVID-19; (2) To determine the most
prominent statistical predictors of anxiety, depression, and post-
traumatic stress, using random forest machine learning models;
(3) To explore how these predictors might interact in identifying
individuals who are at a greater risk of psychological distress,
using decision tree regression models.

METHODS AND MATERIALS

Procedures and Participants
This cross-sectional study was advertised via social media and
email listservs, with participants invited to complete an online
Qualtrics survey. Data were collected between March 25, 2020
and April 22, 2020. At the conclusion of the survey, all
participants were provided with links to resources supporting
mental health and well-being during the pandemic.

The number of participants who provided consent was 3,192.
Only those participants who proceeded beyond the demographic

portion of the survey (N = 2,787) were included in this study.
Detailed demographic data about the study sample is presented
in Table 1.

Measures
Predictors
Demographics
Participants provided information for the following candidate
predictors: age, gender, country of residence, ethnicity, socio-
economic status, education level, marital/relationship status.
In addition, participants reported whether they had a pre-
existing chronic health condition, knew someone diagnosed with
coronavirus, knew someone who had died as a result of COVID-
19, were a frontline healthcare worker, and/or work in another
industry deemed essential (e.g., cashiers, delivery services).

Childhood trauma
Participants completed the 10-item Adverse Childhood
Experiences Questionnaire (Felitti et al., 1998). This measure asks
about individuals’ experience of abuse, neglect, and household
dysfunction prior to the age of 18. The test-retest reliability
ranges from 0.52 to 0.72 (Dube et al., 2004). The test-retest
reliability for emotional abuse, physical abuse, and sexual abuse
is 0.66, 0.55, and 0.69, respectively (Dube et al., 2004). In the
present study, internal consistency for the ACE was 0.77.

Explicit emotion regulation
Key aspects of explicit emotion regulation were assessed with
the Emotion Regulation Questionnaire (ERQ; Gross and John,
2003). The ERQ includes 10 items that measure respondents’
tendency to regulate their emotions through cognitive reappraisal
and expressive suppression. Respondents answer each item on a
7-point Likert-type scale ranging from 1 (strongly disagree) to 7
(strongly agree). The ERQ has been used extensively in research
on emotion regulation and demonstrates acceptable internal
consistency and construct validity (Gross and John, 2003).
The two-factor model is replicable in community samples and
internal consistency for the subscales is acceptable to excellent,
cognitive reappraisal (α = 0.89–0.90) and expressive suppression
(α = 0.76–0.80; Preece et al., 2020). Internal consistency in the
current study was 0.86 for the cognitive reappraisal subscale and
0.79 for the expressive suppression subscale.

Implicit emotion regulation
Defense mechanisms were assessed with the Defense
Mechanisms Rating Scale – Self Report (DMRS-SR-30; Di
Giuseppe et al., 2020b) a 30-item inventory that assesses defense
mechanisms across the hierarchy described in the Diagnostic and
Statistical Manual of Mental Disorders, 4th Edition (DSM-IV;
American Psychiatric Association, 2000). The DMRS-SR-30
uses a 5-point Likert scale ranging from 0 (not at all) to 4
(very often/much). The questionnaire assesses 28 defenses
and provides proportional scores for seven hierarchically
ordered defense levels. The levels, ranging from most to
least adaptive, are: adaptive/mature, obsessional, neurotic,
minor image-distortion/narcissistic, disavowal, major image-
distortion/borderline, and action. The psychometric properties
of this DMRS-SR-30 are robust, with internal consistency ranging
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TABLE 1 | Demographic characteristics of the sample (N = 2,787).

Variable N (%)

Age

18–24 233 (8.3)

25–34 632 (22.7)

35–44 608 (21.8)

45–54 466 (16.7)

55–64 445 (16.0)

65–74 340 (12.2)

75–84 56 (2.0)

85+ 7 (0.3)

Gender

Female 2, 268 (81.4)

Male 470 (16.9)

Non-binary 48 (1.7)

Race/ethnicity

White 2, 232 (80.1)

Asian or Asian Indian 271 (9.7)

Hispanic/Latino 125 (4.2)

Black 63 (2.2)

Middle Eastern/North African 37 (1.3)

Native American/Aboriginal 26 (0.9)

Multiracial/multi-ethnic 16 (0.6)

Pacific Islander 11 (0.4)

Country

United States 1, 931 (69.2)

Australia 579 (20.8)

China 109 (3.9)

United Kingdom 31 (1.1)

Canada 20 (0.7)

Netherlands 20 (0.7)

Hungary 17 (0.6)

All other countries 66 (2.3)

Missing 14 (<0.5)

Education

<High school 47 (1.7)

High school graduate 201 (7.2)

Some college 477 (17.1)

2-year degree 200 (7.2)

4-year degree 739 (26.5)

Professional degree 784 (28.1)

Doctorate 338 (12.1)

Socioeconomic class

Lower class 247 (7.7)

Lower middle class 631 (19.8)

Middle class 1, 374 (43.0)

Upper middle class 258 (23.7)

Upper class 104 (3.4)

Marital status

Married 1, 502 (53.9)

Single/never married 803 (28.8)

Divorced/separated 399 (14.3)

Widowed 82 (2.9)

Know someone diagnosed with COVID-19

Yes 927 (33.3)

No 1, 860 (66.7)

Know someone who has died of COVID-19

Yes 199 (7.1)

No 2, 588 (92.9)

from good to excellent across all subscales and strong convergent
and divergent validity (Di Giuseppe et al., 2020b).

Somatization was measured with the PHQ-15 (Kroenke et al.,
2002) which asks about 15 somatic symptoms that account for
90% of the symptoms reported in outpatient settings (Kroenke,
2003). Items such as stomach pain, dizziness, and constipation
are rated from 0 (not bothered at all) to 2 (bothered a lot).
Total PHQ-15 scores range from 0 to 30 with scores of 0–
4, ≥5, ≥10, and ≥15 representing minimal, mild, moderate,
and severe levels of somatization, respectively (Kroenke, 2003).
Internal consistency of α = 0.80–0.87 and test-retest reliability of
0.65 has been reported (Gierk et al., 2015). Internal consistency
for the PHQ-15 in the current study was 0.78.

Outcome Variables
Psychological distress
Depression and anxiety were assessed with subscales of the
Patient Health Questionnaire (PHQ; Spitzer et al., 1999), a
screening tool for mental health disorders that is quick and
easy for participants to complete. The PHQ includes the Patient
Health Questionnaire for Depression (PHQ-9; Kroenke et al.,
2001) and the Generalized Anxiety Disorder Scale (GAD-7;
Spitzer et al., 2006). The cutoff score of 10 on the PHQ-9
has a sensitivity and specificity of 88% for major depression
and was used in this study (Manea et al., 2012). For the
PHQ-9, scores of 5–9, 10–14, 15–19, and 20–27 corresponded
to mild, moderate, moderately severe, and severe depression
symptoms, respectively.

For anxiety, this study used the GAD-7 module in the full
PHQ. Participants completed this module only if they endorsed
being bothered in the past 4 weeks by “feeling nervous, anxious,
on edge, or worrying about a lot of different things.” This module
of the GAD-7 asks participants to rate the presence of symptoms
on a 3-point scale ranging from not at all (0) to more than
half the days (2) during the past 4 weeks. Items are summed to
create a severity score ranging from 0 to 14. Participants were
considered to meet the criteria for GAD if the total score was ≥8
and three or more of the items were rated “more than half the
days” (Terrill et al., 2015).

Both self-administered rating scales are based on the DSM-
IV criteria for major depression and GAD. The PHQ and its
modules for the various diagnostic categories have been used
extensively and its reliability and validity are well-documented in
the literature (Spitzer et al., 1999; Kroenke et al., 2010). Internal
consistency for the PHQ-9 and the GAD-7 module in the current
study was 0.91 and 0.81, respectively.

Post-traumatic stress symptoms were assessed with the Impact
of Event Scale – Revised (IES-R; Weiss and Marmar, 2004), a 22-
item self-report measure that assesses subjective distress caused
by traumatic events. Following protocols used in numerous
studies during pandemics, participants were asked to respond
to the items with reference to the COVID-19 pandemic as the
identified stressor. The IES-R yields a total score (ranging from
0 to 88). The recommended cutoff score of 33, suggesting a
probable diagnosis of PTSD, was used in the current study
(Creamer et al., 2003). In the current study, Cronbach’s alpha for
the IES-R total score was 0.94.
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Data Analysis
The primary aim of the analysis was to develop a model to
statistically predict the level of psychological impact of COVID-
19. Following an initial examination of the data, the data was
randomly separated into two parts; a training set of 70% of
the total sample and a testing set of the other 30% of the
dataset. For cross-validation, a machine learning model was first
developed in the training set and subsequently tested in the
separate testing set. In the present study, we sought to integrate
the benefits of the predictability and interpretability of models
(Shmueli, 2010; Yarkoni and Westfall, 2017), by (a) identifying
the most predictive risk factors using machine learning models,
and (b) providing interpretation by exploring how the risk
factors interact in predicting symptom severity using traditional
regression models.

Identifying Predictors of Symptom Severity
To identify the strongest predictors of symptom severity for
anxiety, depression, and PTSS, a random forest algorithm
(as implemented in the R package Random Forest version
4.6) was used. In this method, 500 regression trees were
constructed based on bootstrapped samples from the primary
dataset. For each tree, the recursive partitioning searches for
binary splits in the sample that result in the smallest within-
node sum of squared residuals. The procedure uses a random
sample of partitioning variables for splitting at each node
(i.e., potential split-point). In each leaf (i.e., split) of the tree,
we estimated symptom severity. Final model predictions were
obtained by aggregating the predictions across the trees. Cross-
validation was used to reduce the number of splits in the tree
(i.e., to set the minimum leaf size for splitting). To impute
missing observations in the predictors, we used the R package
missForest. For cross-validation, the models were fit on the
training set and tested on the remaining 30% in the test
set. Random forests were built for each psychological distress
measure separately.

Estimating the Importance of Potential Predictors
To identify the strength of potential predictors, we used random
forest to obtain a variable-importance plot, using conditional
permutation (Strobl et al., 2008), that reflects the contribution
of each variable to predicting symptom severity (Breiman, 2001).
This method is a way of estimating each variable’s contribution
to the prediction of outcome variables. We calculated an
importance statistic reflecting the importance of each variable
in producing accurate predictions for the outcome variables of
anxiety, depression, and PTSS.

Exploring Interactions Between Potential Risk
Factors in Predicting Outcomes
To complement the random forest analysis, we conducted a
separate regression tree analysis focused on exploring how
potential risk factors may interact to predict symptom severity.
Regression trees were produced using Recursive Partitioning
(RPART) analysis. All potential risk factors were entered into
a regression tree analysis with the R package “rpart” (Breiman
et al., 1984). The final tree was obtained by limiting the node

size and pruning it by limiting its complexity according to cross-
validation estimated prediction error.

RESULTS

From the 2,787 participants who proceeded beyond the
demographic portion of the survey, the overall prevalence of
acute levels of anxiety, depression, and PTSS was 27.3, 36.6, and
30.9%, respectively (see Table 2). These rates exceed past-year
and lifetime prevalence for generalized anxiety (2.7 and 5.7%,
respectively), depression, (6.8 and 16.9%), and post-traumatic
stress disorder (3.6 and 6.8%; Kessler et al., 2004). Rates of
distress in the current study also exceed those reported amidst
the SARS pandemic. For example, during the SARS outbreak the
prevalence of anxiety, depression, and PTSS was 13 (Wu et al.,
2005), 8.8 (Liu et al., 2012) to 18 (Wu et al., 2005), and 4% (Wu
et al., 2005), respectively.

Some participants in the current sample experienced either
symptoms of anxiety, depression, or post-traumatic stress,
however, many (N = 885) experienced a combination of different
symptoms. See Table 2 for an overview of reported symptom
levels and comorbidities.

Prevalence of distress differed across demographic groups, in
that women, non-binary participants, and younger participants
(<45 years) reported significantly higher prevalence of all
symptoms across all measures of distress. There was a statistically
significant difference between all three gender groups for
each symptom category as determined by one-way ANOVA
(p < 0.001 for all comparisons). The largest effect sizes, though
small, were found in the comparison of male to non-binary
participants (Table 3).

To evaluate age differences, participants were categorized into
two age groups with younger <45 years and older ≥45 years.
There was a statistically significant difference between groups for
anxiety [t(2,061) = 2.62, p = 0.009, Cohen’s d = 0.05], depression

TABLE 2 | Prevalence of symptoms of psychological distress above the
clinical cutoff.

N (%)

No significant symptoms 1458 (52.3)

Anxiety symptoms only 129 (4.6)

Depression symptoms only 195 (7.0)

PTSS only 120 (4.3)

Anxiety + depression 205 (7.4)

Anxiety + PTSS 84 (3.0)

Depression + PTSS 71 (2.5)

Anxiety + depression + PTSS 525 (18.8)

PTSS, post-traumatic stress symptoms. The following cutoff scores were used to
classify those who were symptomatic. For depression, a cutoff score of 10 on the
PHQ-9, representing moderate levels of depression, was used in this study (Manea
et al., 2012). For generalized anxiety, participants with scores ≥8 on the GAD-7
module, who also had three or more items rated as “more than half the days” were
considered to be symptomatic (Terrill et al., 2015). The recommended cutoff score
of 33 on the IES-R, suggesting a probable diagnosis of PTSD, was used (Creamer
et al., 2003).
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TABLE 3 | Symptoms of anxiety, depression, and post-traumatic stress by gender.

Symptom category M (SD) Effect size (Cohen’s d)

Anxiety (GAD-7)

Male (N = 260) 8.35 (6.66) Male vs. female = −0.09

Female (N = 1765) 7.48 (3.35) Male vs. non-binary = −0.28

Non-binary (N = 38) 9.87 (2.98) Female vs. non-binary = −.19

Depression (PHQ-9)

Male (N = 454) 6.54 (6.86) Male vs. female = −0.08

Female (N = 2,221) 8.62 (6.51) Male vs. non-binary = −0.23

Non-binary (N = 47) 13.15 (7.62) Female vs. non-binary = −0.16

PTSS (IES-R)

Male (N = 429) 17.54 (16.17) Male vs. female = −0.14

Female (N = 2112) 26.47 (16.80) Male vs. non-binary = −0.26

Non-binary (N = 45) 35.80 (19.21) Female vs. non-binary = −0.13

Differences between all groups are significant at the p < 0.001 level. Questions
about anxiety were only presented to participants who endorsed feeling nervous or
anxious in the past 4 weeks.

[t(2,720) = 7.47, p < 0.001, d = 0.27], and PTSS [t(2,584) = 7.29,
p < 0.001, d = 0.23].

Variables for race and ethnicity were transformed into a
binary of White and all others (including those who endorsed the
following racial and ethnic identities: Hispanic/Latino/Spanish,
Black, Asian, Native American/Aboriginal, Middle
Eastern/North African, Pacific Islander, and multiracial).
Contrary to expectations, there were no differences between
White participants and participants of color on symptoms of
anxiety [t(2,061) = −0.31, p = 0.76], depression, [t(2,720) = 0.30,
p = 0.76], or PTSS [t(2,584) = 1.34, p = 0.18].

To examine the relationship between self-perceived
socioeconomic class (“How would you describe your
socioeconomic status?”) and distress, socioeconomic class was
transformed into a categorical variable with three levels. Group
1 consisted of “lower class” and “lower middle class” combined;
Group 2 included “middle class” as its own category; and Group
3 was “upper middle class” and “upper class” combined. There
were significant differences between the three groups for anxiety
[F(2, 2,060) = 31.73, p < 0.001], depression, [F(2, 2,719) = 66.60,
p < 0.001], and PTSS [F(2, 2,583) = 14.86, p < 0.001]. Post hoc
comparisons were conducted using Tukey’s HSD (see Table 4)
and indicated that individuals who described themselves as
“lower class” and “lower middle class” reported higher levels of
distress, particularly in comparison to individuals who described
themselves as “upper middle class” or “upper class”; however, the
effect sizes for these differences were relatively small.

Among participants who completed all questions on the
ACE (N = 2,157), 21% endorsed four or more ACEs. As
expected, higher numbers of ACEs were associated with higher
self-reported anxiety [r(1,684) = 0.28, p < 0.001], depression
[r(2,140) = 0.32, p < 0.001], and PTSS [r(2,155) = 0.27,
p < 0.001] symptoms.

Predicting Risk Factors for Anxiety,
Depression, and Post-traumatic Stress
Among participants (N = 2,787) who proceeded beyond
the demographic portion of the survey, responses from 551
individuals were removed because they had more than 10%
missing data in the remainder of the survey. Most of
these removed participants discontinued participation before
completing measures of implicit and explicit emotion regulation.
The subsequent results are based on responses from the
remaining 2,236 participants.

Anxiety
The predictors of anxiety, according to their order of importance,
appear in Figure 1. We used the resultant random forest to
predict anxiety in the testing set. The correlation between
predicted values in the training set and observed values in the test
set was 0.90. Graphs for predicted vs. observed anxiety appear in
the online supplements (Supplementary Figure 1).

In the second step, we tested the ability to fit a single
regression tree for anxiety (Figure 2). High somatization and
less reliance on adaptive defenses predicted higher anxiety.
High somatization was indicated in Node 1 with scores on
the PHQ-15 ≥ 3.7; a second split at Node 7, with scores
≥8, predicted the highest levels of anxiety. Splits for adaptive
defenses (M = 48.63, SD = 16.45, range = 0–100), such as
humor, altruism, and affiliation, appear at Nodes 2, 3, and 6.
There was also a split at Node 5 indicating that greater use of
neurotic defenses, such as displacement, dissociation, reaction
formation, and repression, were predictive of slightly more
anxiety. Conversely, less somatization, more adaptive defenses,
and fewer neurotic defenses appeared to predict lower levels of
anxiety symptoms.

For this step, the correlation between predicted values
of the training set and the observed values in the test
set was 0.67 (Supplementary Figure 1). This metric
provides an unbiased measure for the prediction accuracy
of the model. Finally, we conducted a linear regression
on the training set, focused on how potential risk

TABLE 4 | Post hoc comparisons for anxiety, depression, and post-traumatic stress by socioeconomic class.

Group 1 Group 1 Group 1 Summary

M (SD) M (SD) M (SD)

Anxiety 8.25 (3.45) (N = 601) 7.17 (3.35) (N = 862) 6.77 (3.26) (N = 600) G1 > G2 (d = 0.08) G1 > G3 (d = 0.11) G2 = G3

Depression 10.57 (7.31) (N = 754) 7.92 (6.46) (N = 1,197) 6.86 (5.68) (N = 771) G1 > G2 (d = 0.10) G1 > G3 (d = 0.14) G2 > G3 (d = 0.04)

Post-traumatic stress 28.01 (18.04) (N = 725) 23.77 (16.87) (N = 1,130) 24.36 (15.91) (N = 731) G1 > G2 (d = 0.06) G1 > G3 (d = 0.05) G2 = G3

Group 1, “lower class” and “lower middle class”; Group 2, “middle class”; Group 3, “upper middle class” and “upper class.” Post hoc comparisons conducted with
Tukey’s HSD. Results are summarized in the last column (p < 0.001).
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FIGURE 1 | Predictors of anxiety.

FIGURE 2 | Regression tree for anxiety.

factors may interact to predict symptom severity. The
correlation between the predicted values and the actual
values was 0.71.

Depression
The predictors of depression, according to their order of
importance, appear in Figure 3. The correlation between the
predicted values in the training set and observed values in the test
set was 0.66 (see graph in Supplementary Figure 2).

We followed the same data analytic strategy outlined for
anxiety. The resulting regression tree for depression appears
in Figure 4. High somatization and less reliance on adaptive
defenses predicted the highest levels of depression, whereas low

somatization and high reliance on adaptive defenses predicted
lower levels of depression symptoms. High somatization was
indicated at Node 1 with scores ≥4.9 and again at Node 7
(≥8). Node 10 shows that slightly elevated somatization makes
another split among a subgroup of people who tend not to
somatize (Node 1) and have moderate levels of adaptive defenses
(Nodes 2 and 5).

The correlation between predicted values on the validation
set and the observed was 0.67. The figures of observed vs.
predicted of both models appear in the online supplements
(Supplementary Figure 2). Finally, we examined a linear
regression with all variables in the model and obtained a
correlation of 0.72.
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FIGURE 3 | Predictors of depression.

FIGURE 4 | Regression tree for depression.

Post-traumatic Stress
Predictors of post-traumatic stress, according to their order of
importance, appear in Figure 5. The correlation between the
predicted and observed was 0.74. The graphs for predicted vs.
observed appear in the Supplementary Figure 3.

Following the same approach as was used for anxiety and
depression, we developed a classification and regression tree
for PTSS (see Figure 6). High levels of somatization and low

levels of adaptive defenses predicted the highest level of PTSS.
However, unlike the findings for anxiety and depression, a split
at node 10 indicated that respondents from the United States
reported significantly higher levels of PTSS compared with their
global counterparts.

The correlation between predicted values on the training set
and observed values in the test set was 0.63. The figures of
observed vs. predicted models appear in the Supplementary

Frontiers in Psychology | www.frontiersin.org 8 November 2020 | Volume 11 | Article 586202

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-11-586202 November 9, 2020 Time: 16:54 # 9

Prout et al. Predictors of Distress During COVID-19

FIGURE 5 | Predictors of post-traumatic stress symptoms.

FIGURE 6 | Regression tree for post-traumatic stress symptoms.

Figure 3. Finally, we examined a linear regression with all
variables in the model and obtained a correlation of 0.69.

DISCUSSION

This study examined the prevalence of psychological distress
experienced during the COVID-19 pandemic and aimed to

identify the strongest statistical predictors of distress. We found
high levels of psychological distress exceeding prevalence rates in
the general population absent a pandemic (Kessler et al., 2004)
and rates of distress during previous global pandemics (Wu
et al., 2005; Liu et al., 2012). These findings are in concert with
other recent studies that have reported similarly high prevalence
rates for anxiety, depression, and PTSS during the COVID-19
pandemic (Salari et al., 2020). The machine learning model for
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the prediction of anxiety, depression, and PTSS suggests that
individuals who struggle to deal with pandemic-related stressors
in adaptive ways, by relying more on somatization and less
on adaptive defenses, may be more vulnerable to developing
psychiatric symptoms (Perry et al., 2020).

Participants who were female and/or younger were more
likely to report psychological distress. Although only a small
sub-sample of this study, participants with a non-binary gender
also appeared to be more vulnerable to experience psychological
distress. This finding is supported by the existing literature on
increased mental health risks for non-binary and genderqueer
individuals (Budge et al., 2014; Matsuno and Budge, 2017)
and suggests the continued importance of gender-affirming
mental healthcare during a pandemic (American Psychological
Association, 2015). There were no differences between White
participants and participants of color in terms of anxiety,
depression, and PTSS. This may be due to variability within
different racial and ethnic groups in terms of economic stability,
exposure to the virus, and other related factors (Himle et al.,
2009; Novacek et al., 2020). There were, however, differences
across all symptom categories when socioeconomic groups, albeit
with small effects. This may point to the role of economic
stratification and its impact on stressors such as unemployment
and working conditions in low-wage jobs during the pandemic
(Kantamneni, 2020).

Among the predictor variables, two forms of implicit
emotion regulation – somatization and defense mechanisms –
emerged as the most impactful factors in statistically predicting
symptoms of anxiety, depression, and post-traumatic stress
in our regression models. The results regarding somatization
are in line with previous research findings about elevated
somatic symptoms among traumatized individuals (Rohlof et al.,
2014). Illness anxiety is naturally elevated during a pandemic.
This increased emotional burden can translate into somatic
symptoms in more vulnerable individuals, which, in turn, may
lead to more psychological distress (Hyphantis et al., 2010).
Although the cross-sectional nature of our study design prevents
us from making causal inferences, the relationship between
somatization and post-traumatic stress and anxiety could be
understood in both directions: somatization as a vulnerability
factor may lead to more anxiety, depression, and PTSS, and
vice versa, experiencing psychological distress in the form of
anxiety, depression, and PTSS may make individuals prone to
develop somatization symptoms. In addition, it is possible that
somatization and psychological distress negatively impact each
other: the distress can easily translate into somatic symptoms in
more vulnerable individuals, which, in turn, may lead to more
psychological distress.

Participants in the United States (who also met the splits
at Nodes 1, 2, and 5) had significantly higher levels of
PTSS compared to their global counterparts, with American
participants more likely to cross the threshold for likely PTSD
(score of 24 on the IES-R). This suggests that individuals outside
of the United States, with relatively healthy implicit emotion
regulation strategies, were less likely to experience distress;
whereas American participants with similar implicit emotion
regulation strategies were more likely to experience a clinical
level of PTSS. This difference may be due to poor access and

affordability of healthcare in the United States (Ginsburg et al.,
2008; Schoen et al., 2013). It is also possible that people in the
United States were exposed to more traumatic experiences during
the time of data collection, from mid-March to mid-April 2020,
compared to participants in other countries.

In contrast with expectations based on previous trauma
literature (Burns et al., 2010; Powers et al., 2015; Westermair
et al., 2018), ACEs (though associated with symptoms of anxiety,
depression, and PTSS) were not identified as a predictor of
distress. The fact that implicit emotion regulation processes were
more predictive of psychological distress during the COVID-19
pandemic than ACEs, is a promising finding. It may indicate that
vulnerability factors may be reduced, since, although childhood
trauma cannot be undone, new more adaptive emotional
regulation strategies can be learned.

Notably, explicit emotion regulation strategies did not
appear to statistically predict psychological wellbeing during
the pandemic. This highlights the salience of implicit ways of
coping and suggests the importance of interventions that focus
on identifying and modifying these capacities (Heldt et al., 2007;
Babl et al., 2019; Kramer et al., 2010; Perry et al., 2020).

Strengths and Limitations
This study extends beyond previous studies that identified
several risk factors of psychological distress, by examining the
interacting effects of these risk factors. A combined model that
focused on prediction (random forest based on 500 trees) and
explanation (regression single tree analyses) was used. Random
forest analysis was used to identify the strongest statistical
predictors and decision tree regression models helped explain
how these predictors interact and impact anxiety, depression,
and PTSS. This study also highlights the importance of specific
implicit emotion regulation strategies.

There are several limitations worth considering. First, the
cross-sectional design did not allow for empirically establishing
causal relationships between predictor and outcome variables.
Moreover, the use of online volunteers introduces both benefits
and limitations. Research conducted online often results in more
diverse samples that can be obtained rapidly, at lower cost,
and with valid results (Casler et al., 2013; Shapiro et al., 2013;
Chandler and Shapiro, 2016). However, online respondents may
respond in an inattentive or non-serious manner (Aust et al.,
2013; McKay et al., 2018). Although this study utilized commonly
recommended tools for increasing validity of online research,
including checks for unique IP addresses, completion time, and
implausible answer combinations (Aust et al., 2013), it did not
include specific validation questions or explicit questions about
the seriousness of respondents (McKay et al., 2018). Additionally,
there may have been a selection bias in that those who chose to
respond to this study may have been experiencing greater distress
during the pandemic than the population at large.

The use of brief screening measures provides only initial
information about whether psychological distress has surpassed
a threshold for acuity. Although the measures used in this
study have well-documented predictive validity for DSM-5
diagnoses, they are not comprehensive diagnostic assessments.
Additionally, the use of self-report measures for implicit emotion
regulation presents an inherent challenge; there are remaining
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questions about the validity of self-report for implicit processes
(Hofmann et al., 2005).

Although the use of machine learning in this study is
innovative, several potential limitations must be highlighted.
First, although psychologists might deem the sample large, and
decision tree models have been applied to similarly sized datasets
in the field of psychology (e.g., Delgadillo and Salas Duhne,
2020), for computer scientists this was a modest dataset. The
required minimum sample size in machine learning is a fertile
ground of methodological discussion. The ideal sample size
needed for machine learning depends on the quality of data
and the complexity of the model; however, the general rule of
thumb is that the amount of training data needed for a well
performing model is 10 times the number of parameters in the
model (Caballero et al., 2006).

The present study reports on a rigorous cross-validation
method for producing results that is likely to be generalizable to
the broader population. However, there is a risk of identifying
predictors in the test and validation samples that may not be
as important in a new sample (Aafjes-van Doorn et al., 2020).
Although the absence of out-of-sample external validation is
common in mental health machine learning research (Aafjes-van
Doorn et al., 2020), an additional step of out-of-sample validation
would certainly strengthen the external validity of the findings
(Sammut and Webb, 2017).

Perhaps the most significant limitation of psychological
research during a pandemic is the inability to identify
precipitating causes of distress. While the high rates of distress
identified in the current study stand out, absent an available
comparison sample (i.e., one unaffected by the pandemic) we
cannot be certain that these increases and the identified predictor
variables are completely unique to the pandemic. Anxiety,
depression and PTSS are multiply determined. Amidst a global
health crisis that has resulted in a radical shift in our way of life,
rampant unemployment, and extraordinary physical distancing
measures, it is difficult to determine whether distress is due to the
pandemic itself, concomitant measures to contain the virus, social
isolation and lack of social support (which the current study did
not assess), economic burden, or some combination of these and
other factors. We suspect it is the latter and that it would be
difficult, if not impossible, to disentangle these variables.

IMPLICATIONS AND CONCLUSION

The COVID-19 pandemic is still unfolding, and it is likely that
the virus and its consequences will impact the global population
for some time to come. This study begins to answer the call to
monitor rates of depression, anxiety and PTSS and to identify
mechanisms that can help explain differential trajectories of
distress during the COVID-19 pandemic (Holmes et al., 2020).
The current findings have implications for primary care and
mental health providers, many of whom are providing care online
(van Daele et al., 2020). Healthcare providers may need to be
vigilant for evidence of somatization and difficulties defending
against distress when assessing patients who present for care,
whether for COVID-related symptoms or unrelated difficulties

during the COVID-19 pandemic. Implicit emotion regulation
can be assessed with the same, freely available measures used in
this study and confirmed with a medical assessment of potential
causes of physiological symptoms.

The findings in the current study dovetail with other COVID-
19 research on psychological distress amidst the pandemic
(Mazza et al., 2020; Qiu et al., 2020) and highlight the public
mental health crisis that is unfolding. There will undoubtedly
be increased demand for mental health services in the coming
years. It is essential that primary care and mental healthcare
providers be equipped to respond to this dire need (Pfefferbaum
and North, 2020). Assessing patients for somatization and ability
to cope with ongoing stressors, should be a central part of
any evaluation. The increase in telepsychotherapy may afford
patients greater access to high-quality mental healthcare that can
improve mental health outcomes and support resilience during
the COVID-19 pandemic.
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