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The surprise minimization principle has been applied to explain various cognitive
processes in humans. Originally describing perceptual and active inference, the
framework has been applied to different types of decision making including long-term
policies, utility maximization and exploration. This analysis extends the application of
surprise minimization (also known as free energy principle) to a multi-agent setup and
shows how it can explain the emergence of social rules and cooperation. We further
show that in social decision-making and political policy design, surprise minimization
is superior in many aspects to the classical approach of maximizing utility. Surprise
minimization shows directly what value freedom of choice can have for social agents
and why, depending on the context, they enter into cooperation, agree on social rules,
or do nothing of the kind.
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INTRODUCTION

The “free energy principle” rests upon the assumption that all cognitive systems strive to minimize
surprise, i.e., minimize their uncertainty about future outcomes (Friston, 2005, 2010). Being unable
to avoid surprises can cause stress which, if it persists, may become toxic, leading to coronary
heart disease, depression and type 2 diabetes (Peters et al., 2017). Originally being introduced as
a principle for dealing with perception and action, the free energy principle has been applied to
more complex domains like decision making and exploration (Schwartenbeck et al., 2015).

In this article, we apply the concept of surprise minimization more broadly to a multi-agent
situation where agents can communicate and consider the option of cooperation. Intuitively
everyone knows that cooperation with other people can be a good way to avoid stress. We show
that according to the principle of minimizing surprises, in some cases the agents actually choose to
cooperate, but in other cases they do not.

The article is structured as follow. In Section “Surprise minimization as an extended model
of classical maximization of expected utility” we introduce the underlying concepts and metrics.
Section “The role of surprise minimization on the emergence of social rules” covers the multi-
agent case and shows under which circumstances cooperation occurs and under which not. Section
“Discussing potentials of surprise minimization for sociology and medicine” discusses the impacts
of our conceptual analysis and argues why it is superior to the pure form of utility maximization,
which is often used to explain human behavior and decision making. Section “Conclusion”
summarizes the final conclusions.
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SURPRISE MINIMIZATION AS AN
EXTENDED MODEL OF CLASSICAL
MAXIMIZATION OF EXPECTED UTILITY

Bayesian Brain – Surprise Minimization
The expectation concept plays a central role in Bayesian statistics.
The aspect that the fulfilment or disappointment of expectations
flows recursively back into the expectation itself has already
been modeled mathematically and integrated into modern brain
research. In the 18th century, Thomas Bayes defined probabilities
as reasonable expectations (Bayes and Price, 1763; Cox, 1946).
Environmental states S have a certain probability of taking
a specific value denoted as P(S = s). Values for probabilities
range from 0 (impossible) to 1 (reliable). Bayesian probability
theory introduces the concept of a prior probability (or prior
expectation) denoted as P(S) over a state vector S, which
combines previous knowledge and basic assumptions of the
observer in a probability distribution of S. The key idea of Bayes’
theorem is that the prior probability distribution is updated by
means of new evidence (data, observations), thereby creating a
posterior probability distribution denoted as P(S |O = o), where
O denote the observed states and o denote the observed values for
the states. The posterior distribution can be calculated using the
Bayes’ theorem:

P (S|O = o) =
P (O = o|S) P(S)

P(O = o)

The term P (O = o|S) is the likelihood of the observation given
the state S, and the P (O = o) is the prior for making the
observation O = o. As the Bayes’ theorem is central to modern
theoretical brain research, the neurobiological concept is called
the Bayesian Brain model.

It was the psychiatrist and physicist Karl Friston from
University College London who developed the model further
over the last 20 years (Friston, 2012). The “free energy principle”
rests upon the fact that self-organizing biological agents resist a
tendency to disorder and must therefore minimize the entropy
of their sensory states (Friston, 2005, 2010). Free energy is
a term from information theory, where it is referred to as
variational free energy. The variational free energy and the
free energy of stochastic thermodynamics not only share the
same mathematical formalism, but are also closely related to
each other on a deeper level (Sengupta et al., 2013; Kiefer,
2020; Parr et al., 2020), but this will not be discussed any
further here. The information-theoretic variational free energy
bounds surprise, and is conceived as the difference between
an organism’s predictions about its sensory inputs (embodied
in its internal model of the world) and the sensations it
actually encounters. Reducing “free energy” inevitably reduces
“surprise” – as measured by a violation of predictions. Likewise,
reducing “expected free energy” inevitably reduces “expected
surprise” – known as entropy or uncertainty. Thus, in the
long-term, agents are all compelled to avoid surprises and
resolve uncertainty.

Accordingly, prior beliefs are iteratively updated in the
Bayesian brain on the basis of new evidence. Future surprises

or prediction errors can be minimized through two processes:
perceptual inference that updates the prior expectation into
a posterior probability distribution, and active inference that
alters sensory input through actions that change the agent’s
position in space.

Perceptual Inference
The perceptual aspect of the Bayesian Brain is often referred
to as predictive coding. A basic formulation of the problem of
perceptual inference is in terms of cause and effect. States in the
world have effects on the brain, processes in the world are the
causes for sensory input. The problem with perception is to use
the effects – the sensory data to which the brain has access – to
find the causes (Hohwy, 2013). It is not easy to infer from only
the known effects back to their hidden causes, because the same
effect can arise from many different causes.

Technically speaking, there are two methods of performing
Bayesian inference. The first is exact Bayesian inference, using
the explicit formula of the Bayes theorem, in which a prior
belief is directly updated into a posterior belief. The second
is the approximate Bayesian inference, which has been studied
for decades in the field of machine learning and later been
transferred to predictive coding. The approximate method uses
as one important component a “generative model,” in order to
be able to infer from an effect its probable cause. The generative
model consists of a “prior” belief and a “likelihood” allowing
predictions about what sensory information will arrive. Thus,
the generative model can predict an effect, given the cause that
is considered most likely. Simply put, the model can create an
effect from a cause. If the prediction does not match the sensory
input, the agent will be surprised. Surprise (which, as said, can
be approximated by free energy) can be estimated with the help
of the so-called prediction error, which is the difference between
the predicted and the actual sensory input. The prediction error
is used in turn to update the prior belief by transforming it
into an approximate posterior belief. Although the mathematical
procedure for exact Bayesian updating and the procedure used
for predictive coding are formally different, they lead essentially
to the same results.

Bayesian inference describes the minimization of variational
free energy, where free energy is the overall amount of prediction
error. There is evidence that both perceptual inference and
learning can be described as a minimization of prediction errors
(i.e., free energy; Rao and Ballard, 1999; Friston, 2005). The free
energy concept, originating from statistical mechanics, makes
it possible to transform difficult integration problems (which
occur when Bayes’ rule is applied directly) into a more treatable
optimization problem (e.g., prediction error minimization). Free
energy can be regarded as the information a person is lacking,
and which he/she could use to make his/her internal model as
close as possible to reality. Thus, Bayesian inference, as used in
perception, reduces our uncertainty about the states of affairs in
the world that have caused our sensations.

The structural and functional brain networks are organized
hierarchically (Park and Friston, 2013). The lower cortical
areas are nearer the primary sensory input, the higher areas
play an associative role. Due to its hierarchical architecture,
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the brain can learn both its own priors and the intrinsic
causal structure of the world that generates the sensory input.
In hierarchical Bayesian inference, the mid-level priors now
become “empirical priors.” This follows because they become
accountable to empirical (sensory) data and can therefore be
optimized to minimize prediction errors at each hierarchal
level. Neuroanatomical hierarchy means distinguishing between
bottom-up and top-down connections (Salin and Bullier, 1995).
In the auditory and visual system, it has been shown that
of bottom-up prediction errors and top-down predictions,
the latter are particularly important (Chennu et al., 2013;
Dijkstra et al., 2017). Using dynamic causal modeling of
mismatch responses, elicited in an oddball paradigm, Garrido
and coworkers showed that the late components of event-
related responses were mediated by top-down connections
(Garrido et al., 2007). This work demonstrated that top-down
connections are necessary for recurrent interactions among levels
of cortical hierarchies.

Active Inference
Active Inference is the second way how to minimize prediction
errors. In perceptual inference, agents strive to update their
internal model of the world, whereas in active inference, agents
change their environment in order to better inform their beliefs
about the world (Adams et al., 2013). In active inference,
sensations can be changed by action in such a way that they
become more like the predictions.

In the visual and auditory system, evidence supports that
the systems’ functioning can be attributed to active inference
(Chennu et al., 2013; Kok and de Lange, 2014). In the
motor system, actions have been shown to effectively minimize
proprioceptive prediction errors; in the simplest case, motor
reflexes can accomplish such a minimization (Adams et al., 2013).
In the visceromotor system, the internal body environment is
subject to allostatic (predictive) regulation (Sterling, 2012), which
reduces viscerosensory prediction errors (Barrett and Simmons,
2015). In this way, perceptual and active inference can minimize
the surprise of living beings like ourselves.

Surprise Arises When an Agent Reaches
a State That Deviates From His Goal
States
A well-defined agent to exist must occupy a limited repertoire
of states. For a fish it could be a binary state S environment
that could be either in the water (unsurprising) or out of the
water (surprising; Friston, 2009). Information theory describes
the violation of predictions as surprise, self-information, or
surprisal (Tribus, 1961). The less likely it is that an agent occupies
a particular condition, the greater the surprise is when the
condition will actually be reached. States can be either discrete,
if only a fixed number of values are possible to the state (e.g., in
or out of the water) or continuous, if there are unlimited possible
values (e.g., water temperature). In the latter we have a probability
density function over the infinite possibilities.

Since the brain is hierarchically organized (Felleman and van
Essen, 1991; Swanson, 2000), there are priors coded at different

levels. Prior expectations encoded at higher levels change (if at
all) only over a long period of time and have a high level of
abstraction (e.g., rules, principles). When we talk about goal states
we mean states, that have a high value in the high-level prior
distributions (i.e., are encoded with high precision). In contrast,
prior expectations encoded at lower levels are updated much
more frequently and have a low level of abstraction (various
details; Friston, 2005). The lower-level prior expectations are
closer to the level of the incoming sensory input (in the retina of
the eye, in the thalamus) and are therefore constantly adapted to
rapid changes in the environment. Among the high-level priors
are the goal expectations of a person, for example social and
moral attitudes (fairness, justice, and honesty) and individual
goals (at work, family, and partnership; Peters et al., 2017).

The beliefs about the “states that agents believe they should
occupy” involve regions such as the ventromedial prefrontal
cortex prefrontal and the orbitofrontal cortex (Bechara et al.,
2000; Gottfried et al., 2003; O’Doherty et al., 2003; Roesch and
Olson, 2004; Barron et al., 2015). Such regions play a key role in
setting the expected value (i.e., free energy) of future states. These
goal or prior preferences provide a neurally coded reference
point for goal-oriented behavior. With neural coding we refer
to the idea that beliefs (e.g., preferences) are represented as
probability distributions over states of the world specified by
their sufficient statistics, which we assume are encoded in the
synaptic network of a hierarchically organized brain structure.
Which probabilistic neural code is used for this is not clear
yet, but the Laplace approximation is a promising candidate,
because it can efficiently treat continuous and correlated states;
it is particularly efficient because it specifies recognition densities
completely by their mean; the only other sufficient statistic
(the conditional precision) can be derived from the mean and
does not need to be explicitly coded (Friston, 2009). In many
cases, capturing the goal states requires several dimensions,
so that the probability distribution over these states becomes
multi-dimensional. For instance, people who want to buy a car
usually have multidimensional goals (e.g., size, price, brand, and
ecological sustainability, . . . ).

In summary, an agent is surprised when it reaches a
state that deviates from his goal state. But if he succeeds
in minimizing long-term surprise, he automatically assumes
conditions that are optimal for maintaining his physical, mental
and social well-being.

The Risk of a Policy Indicates the
Likelihood of Being Surprised in the
Future
Decision-making can also be treated as an inference problem
(Friston et al., 2013). The agent infers which of his strategies
or policies is most promising for achieving his goal states.
Policies can be either individual actions or sequences of actions
depending on the context, here denoted as π. In this inference
process, the agent uses a generative model to make predictions
about which states can be reached by using a particular policy
denoted as P(S|π). In other words, the generative model predicts
future scenarios for each policy.
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Figure 1A shows an example of a Gaussian prior distribution
over a continuous state variable. When the agent enters a
particular state (state 5), the degree of surprise is clearly
determined (4.21 bits). The problem is more difficult with future
predictions. It is not certain that a particular policy will result in
only one defined state. Instead, using a particular policy, there is
a probability distribution over attainable states. Figure 1B shows
two probability distributions, that over goal states and that over
attainable states given the chosen policy. The risk of a policy
is defined as the Kullback-Leibler divergence DKL between the
two probability distributions. The Kullback-Leibler divergence
is defined for continuous and discrete probability distributions.
While the continuous uses an integral over the infinite state
values, the discrete uses a sum. In the following we will work with
the discrete version of the measure:

DKL = −
∑

S

P (S|π) log2
P(S)

P(S|π)
(1)

The Kullback-Leibler divergence is a mathematical tool
that measures the “distance” between any two probability
distributions (although it is not a metric measure). In simplified

terms, DKL is a measure of future surprise, with diverse
applications such as applied statistics, machine learning and
neuroscience. The larger the distance between goal states and
attainable states is, the larger is the DKL and thus the risk of the
policy in question. Remarkably, the risk increases quadratically
with distance (given Gaussian distributions with equal variance).
In Figure 1B, the risk of the policy is 2.00 bits.

The beliefs about the “states that can be reached” involve
regions like the pre-supplementary motor area (pre-SMA;
Rushworth et al., 2004; Nguyen et al., 2014). From this
perspective, the pre-SMA includes a generative model that
predicts outcomes that can be achieved with alternative policies
(policy 1, policy 2,. . . , policy n; Friston et al., 2013). All
previous experiences throughout life have formed the current
prior beliefs that underpin how predictions or decisions are
made in the Bayesian brain. For example, child adversities or
failed attachment to parents, but also every strong positive or
negative experience in school, work and private life, influence
the way policies are chosen in the Bayesian brain to ensure
future well-being. Amygdala- and hippocampus-dependent
emotional and declarative memories shape the generative model
in a lengthy iterative process. No person in this respect

FIGURE 1 | Goal states, surprise and risk. (A) Surprise: The goal states of an agent are represented by a prior probability distribution (blue) that indicates how much
the agent prefers particular states of the world. From the state reached by the agent, the resulting surprise (black) can be calculated using the logarithm of the state’s
probability (which is given by the goal state probability distribution). The unit of surprise is “bit.” The surprise is minimal when the agent reaches the most preferred
goal state (state 3), whereas the surprise increases the more the state reached deviates from the most preferred goal state. For example, a 4.21-bit surprise occurs
when the agent reaches state 5. Thus, an agent that minimizes surprise most likely takes on the conditions that he believes should be occupied. (B) Risk: In
decision-making, a policy should be selected from a given policy repertoire. A key step in decision-making is assessing the risk of each policy. For each policy,
predictions are made as to which states can be reached. These attainable states are represented by a probability distribution over attainable states (orange). The risk
of a policy can be assessed by the Kullback-Leibler divergence (see text). As the mean of the attainable states changes, so does the risk (red). For example, if the
mean of the attainable states is state 5.3, the risk of this policy is 2 bits.
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is free from such biographical biases toward the prediction
of future events.

Among the various brain regions, there is a candidate
region capable of integrating beliefs about attainable states
and goal states – the anterior cingulate cortex (ACC; Lee
et al., 2007; Nguyen et al., 2014). The ACC is in an ideal
position to assess and compare the risks of alternative policies
and to enable decisions-making under uncertainty (Paulus
et al., 2002; Feinstein et al., 2006; Behrens et al., 2007;
Sarinopoulos et al., 2010; Karlsson et al., 2012; Liljeholm et al.,
2013). Electroencephalography studies highlighted the presence
of specific markers of performance monitoring in the time
(error related negativity) and time frequency domain (theta
synchronization) that originate from the ACC (Falkenstein et al.,
1991; Cavanagh et al., 2009). Interestingly, the same markers
of the activity of the performance monitoring system seem to
be present when observing someone else performing an error,
or when interacting with someone else, when monitoring of
its movements is needed (de Bruijn et al., 2007; Moreau et al.,
2020).

Activation within the ACC has been interpreted by some
researchers as reflecting selection of action (Posner et al., 1988)
and by others as conflict monitoring (Botvinick et al., 1999) –
which is not mutually exclusive. A complementary perspective
provides evidence for an “expected risk model” of the ACC,
which indicates that the ACC assesses the expected risk of
a given policy (Brown and Braver, 2007). The monitoring
processes mentioned here cluster primarily in the transition
zone between the cingulate and paracingulate (areas 24 and
32), association (area 8), and premotor cortices (area 6), an
area that has extensive connections to brain areas involved
in the control of cognitive and motor processes and the
regulation of autonomous arousal (Paus, 2001; Critchley et al.,
2003). These interactions allow the ACC to signal the need
for performance adjustments when decisions are uncertain
(Ridderinkhof et al., 2004).

In engineering and optimal control theory, the process of
minimizing the divergence between predicted and preferred
states is called KL control. Basing beliefs about future choices
on KL divergence is formally related to optimization schemes
based on KL control; particularly risk sensitive control. KL
control is related to what neurobiologists call goal-directed
processes. Goal-directed processes assess an expected value of
one or more options for action in a given situation. In the
typical approach describing goal-directed processes, the expected
value is “expected utility” (Moors et al., 2017; Moors et al.,
2019), but it can also – in the strict sense of KL control – be
“expected free energy” (Friston et al., 2013). Depending on the
approach used, goal-directed processes can maximize utility, or
minimize free energy (i.e., surprise). Whatever the case, the action
option with the highest expected value activates its corresponding
action tendency, and this action tendency can be manifested
in overt behavior.

In summary, an important aspect in resolving uncertainty in
strategy selection is to reduce the expected surprise with regard
to one’s own goals. In this respect, risk assessment and the
comparison of risks between policies are important steps in the

decision-making process. The resulting basic rule says that an
agent with a given policy repertoire is well advised to choose the
policy with the least risk.

A Low-Risk Policy Has High Expected
Utility and Leaves Many Options
(Attainable States) Open
A good policy is able to balance environmental exploitation and
exploration. Exploitation is the method of choice as long as the
accessible source is rich. In this case, only expected utility is
maximized. Exploration is useful when there is no immediate
access to resources. However, if an agent exploits a rich source,
he should look for other options that may become important
when the current source is drying up. This means that – in some
contexts – agents are compelled to seek novel states whereas in
other contexts they maximize expected utility.

Eq. 1 can be decomposed into two components
(Schwartenbeck et al., 2013):

DKL = −
∑

S

P (S|π) log2 P(S)+H[P (S|π)] (2)

The first term represents the expected utility over outcomes that
depends on an agent’s priors and constitutes the goals of the
agent, i.e., his beliefs about the utility of final states. A reduction
of the first term of the DKL is accompanied by a reduction
of the policy’s risk and thus ensures the outcome with the
highest expected utility. The second term is the entropy H over
attainable states that reflects the number of different outcomes
that the agent is likely to experience under the particular policy.
Increasing the entropy over attainable states means that the agent
expects to keep many options (attainable states) open. Under
certain circumstances, the surprise can be minimized when an
agent selects a policy that increases the likelihood of visiting
new states. Thus, surprise minimization can be considered an
extension of the classical maximization of expected utility.

Restrictive Social Rules or Laws That
Exclude Reaching Certain States May
Increase or Decrease the Risk,
Depending on the Context
Social rules or constraints can intervene at two points in the
decision-making process: First, rules can alter the probability
distribution over the attainable states for a policy, and in so
doing they change the risk of that policy; second, rules can
limit the repertoire of policies, thereby changing the certainty in
policy selection. Here, we show that, depending on the context,
social rules can have both good and bad effects. For example,
adhering to a calorie restriction diet – which is a life-style
constraint – limits the number of attainable states: e.g., eating ice
cream is excluded. Sometimes such constraints are useful [e.g.,
smoking cessation (Anthonisen et al., 2005)], sometimes they are
ineffective or even harmful [e.g., calorie restriction diet (Villareal
et al., 2006; Look-Ahead-Research-Group, 2013)].

Basically, restrictions that make certain states unreachable
diminish the value of a policy because such constraints reduce
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the number of open options (Eq. 2). There are two possible ways
in which restrictions may affect the risk of a policy. First, if the
restriction precludes a highly undesirable condition that is likely
to occur, the gain in expected utility is large. Such a large utility
gain would outweigh the disadvantage of limiting open options,
making the policy attractive.

Second, the gain in expected utility is low if constraints prevent
the achievement of a condition that is moderately desirable
and moderately likely. In such a case, the foreseeable loss of
open options (achievable conditions) outweighs the small gain in
expected utility, making the policy unattractive.

In conclusion, there are cases where restrictive rules or
constraints are on the whole favorable, although they limit open
options. In contrast, there are other scenarios in which restrictive
rules or constraints pose a high risk, mainly because they prevent
the agent from exploring the world. The concept of surprise
minimization, therefore, by no means precludes agents from
active exploration or appreciating novelty but rather explicitly
predicts that this is an important factor in guiding our behavior.
In the next section we will look at how such social rules or
constraints could emerge when two agents are in the game.

THE ROLE OF SURPRISE MINIMIZATION
ON THE EMERGENCE OF SOCIAL
RULES

For Two Agents, the Mutual Agreement
to Limit the Number of Policies at Choice
May Reduce Uncertainty
In this section, we examine decisions on whether agents should
cooperate or not. In particular, it will be asked whether the
principle of surprise minimization provides a basis for an
agent’s decision to cooperate. Cooperation is defined here as the
willingness to introduce and accept social rules, an interaction
that we clearly distinguish from a unique friendly commitment.
Cooperation in this sense, as well as friendly and hostile
commitments, are all dealt with later in our example. Like
the sociologist Niklas Luhmann we here consider interactions
basically microsociological (Luhmann, 1987). Luhmann stated
that double contingency in democratic reality is overcome by the
developing individuality and ability to communicate. Through
observation of the other as well as through trial and error, an
emergent order arises in the course of time, which Luhmann
calls social system.

In the interaction between the two agents “Ego” and “Alter,”
the states S of the system depend on the policies that each of the
agents chooses. In the communication between Alter and Ego,
information is exchanged that is used in both agents to change
neuronally coded expectations P(S|m) where m is referring to a
specific agent. Luhmann emphasizes in this context that in the
characterization of those systems that can acquire and process
information, another feature must be added that indirectly
serves to define the concept of information: these must be self-
referentially operating systems, i.e., systems that must always
participate in the change of their own states (Luhmann, 1987).

Here, we examine a scenario in which Ego and Alter have
their predefined preferences regarding the possible outcomes
of their interaction. This set-up is characterized by two state
variables A and E, each having three possible values, resulting
in a total of nine environmental states. Figure 2 visualizes
the environmental states and the agent’s preferences encoded
in a prior distribution P(S|m) over the states. A hypothetical
realization of a specific outcome is thus always connected with
a surprise for the agent. In the example, the states E1 and E2
can be interpreted as a friendly commitment of Ego, whereas
E3 can be interpreted as his commitment to being hostile. The
matrix shows that Ego has a higher preference for a friendly
commitment of Alter while being hostile himself. In this setup,
the agents Ego and Alter can select policies to influence the
states. The Ego agent has three policies that directly correspond
to the environmental states, i.e., “Policy 1” results in E = E1,
“Policy 2” results in E = E2 and “Policy 3” results in E = E3. For
Alter it is analog.

The situation described here would correspond to the
prisoner’s dilemma if the agents only had these three options
and the preference matrix. In the prisoner’s dilemma, both
agents have the tendency to select the hostile policy as a
dominant strategy, resulting in an overall suboptimal outcome.
One solution to the prisoner’s dilemma is the agreement
on an enforceable contract (Fehr et al., 2002). In a utility
maximization approach the agents could sign a contract,
which makes the hostile policy (“Policy 3”) more expensive or
even close to impossible (when the costs get extraordinarily
high). There are also other solutions to this dilemma, for
example if the game is repeated over time, as is the case
with the “repeated prisoner’s dilemma.” Novak’s five rules,
which relate to five mechanisms for the development of
cooperation (selection of relatives, direct reciprocity, indirect
reciprocity, reciprocity in the network, and group selection),
each describe the needed payout structure and the probability
of replay in terms of the repeated prisoner’s dilemma (Nowak,
2006). The statistical-physics perspective enables an interesting
approach which has already been used as a basis for the free-
energy principle and which can also be used for the game
theoretical framework known as the repeated prisoner’s dilemma
(Javarone, 2016, 2018).

In our example, however, the constellation is different in some
respects from the classic and the repeated prisoner’s dilemma. We
look at a one-time decision-making with enforceable contracts,
where the agents minimize their expected surprise instead of
maximizing a payout or utility. The agent’s choice to put an
enforceable contract into place, makes the environmental states
containing hostile commitments impossible. In combination
with the policies described above the agents have now a vector
of policies π =

{
′Policy 1′, ‘Policy 2′, ′Policy 3′, ‘Cooperate′

}
to

choose from in order to influence the environmental states S.
The updated probability distribution over the states S given a
specific policy represents the posterior probability distribution.
In Figure 3, we visualize the posterior distributions for all of
Ego’s potential policy choices. Figure 3A shows the posterior
distribution given the policy choice P(S|π = Policy 1). In this
example, Ego does not know about the preferences of the
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FIGURE 2 | The agent’s preferences over the possible outcomes are encoded in a prior probability distribution (here 9 possible states). The preferences can be
visualized in a decision matrix (A) or in a bar chart (B). A high value is associated with a high preference and a low value with a low preference. Given the nature of a
probability distribution, the maximum preference is one. If one state has the probability of one, the agent will only accept this state as a goal and the realization of all
other states would result in maximum surprise. In our example, the Ego agent has high preference for performing the hostile Action 3 while receiving a friendly Action
1 or 2 from the Alter agent, as is known from the Prisoner’s Dilemma.

FIGURE 3 | Every possible policy that the Ego agent can choose is characterized by a distribution of states that can be reached by using it. (A–D) contain the
posterior distributions for the four possible policies Ego can choose from. Each of these distributions is then compared with the agent’s preference distribution using
the Kullback-Leibler Divergence DKL. The agent selects the policy that has the minimal DKL value.

Alter agent and thus assumes equal probability for each of
Alter’s actions.

We use this constructed example to illustrate, that cooperation
(in the sense of a willingness to introduce and accept social
rules) can also arise from a free energy perspective, according to
which future surprises or risks are minimized. As stated above,
calculating the risk (or future surprise) of a policy is done by
calculating the Kullback-Leibler divergence between the prior
distribution encoding the agent’s preferences and the posterior

distribution over the attainable states given the chosen policy.
Figure 4 contains the results of the calculations for all 4 possible
policies. The table on the right side shows that minimizing
future surprise would lead to a cooperation between the agents
because the introduction of the social rule predicts the smallest
future surprise.

In conclusion, we were able to show that the principle of
minimizing surprise or free energy, which has proved successful
in various fields including neuroscience, can also explain the
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FIGURE 4 | (Left Table) Summary of all probability distributions used in the situation. (Right Table) The resulting risk of each policy is calculated using the
Kullback-Leibler Divergence DKL. The agent chooses the policy that has the smallest divergence, meaning that the distribution over the attainable states is closest to
the agent’s preferences encoded in the prior distribution. In the situation described, the cooperative policy, which excludes the hostile actions for both agents,
minimizes the risk for the Ego agent. Since the Alter agent is a copy of the Ego agent, it is likely that a cooperation is agreed upon.

emergence of social rules, when multiple agents communicate
with each other. Of note, it can also explain why certain social
rules or laws are not introduced, even if they would increase the
expected utility.

Limiting the Policy Repertoire May Also
Increase Uncertainty
As mentioned above the risk of a policy can also be reformulated
into the exploration bonus and an expected utility. The
exploration bonus results in a higher preference for a policy that
allows for multiple attainable states rather than focusing on only
one relatively promising state.

In the example above only very hostile or cooperative actions
existed. Policies excluding the very hostile actions therefore
lead to surprise minimization. In setups with a more granular
difference between the actions, it could be difficult to find the
right criteria for a policy. A very restrictive policy could exclude
so many options that the loss in exploration bonus is higher
than the gain in the expected utility. In political policy design it
can be observed that policies aim to leave room for individual
decision making and reactions but try to avoid the most severe
reactions. One example is the higher penalty for crimes of murder
compared to misconducts of pedestrians crossing the street at
a red light. If a policy maker would only consider maximum
expected utility, he would punish all crimes very severely and uses
prohibitions and bans in economics more often.

The surprise minimization approach values freedom of
choice in the future and actively rewards policies, strategies
or constraints that only exclude the most harmful states while
preserving flexibility and self-determination.

Stress Can Occur in Threatening
Situations Where There Is no Clear Best
Policy
The prior distribution, which encodes the goal states of the Ego
agent in the above example, describes his preference to exploit
the Alter agent. In this example, the preference is coded with a
low to medium probability (p = 0.22) in the prior distribution. If
we assign a higher (or lower) value to the reward for exploitation
while keeping all other rewards constant, the probability for
the states A3, A1 and A3, A2 increases (or decreases) in the

FIGURE 5 | The preference for the Ego agent to exploit the Alter agent is
encoded in Ego’s prior. Changing this preference for exploiting (x-axis) results
in a change of the Kullback-Leibler Divergences of the different policies
(y-axis). Up to a certain exploitation preference the agent will cooperate
(dove-like behavior). Beyond that cut-off point a cooperation will not take
place (hawk-like behavior). The cut-off point is marked by the intersection of
the two policies “Cooperation” and “Policy 3.” At this point there is no clearly
best policy because both policies have the same level of risk or future surprise.

prior distribution. Figure 5 shows that the Kullback-Leibler-
Divergence for each policy depends on this exploitation reward.
A very “bold” (hawk-like) agent with a high preference for
exploitation (p = 0.35) will not cooperate in this example, while a
relatively “cautious” (dove-like) agent (p = 0.15) will cooperate.

In evolutionary terms different organisms adopt different
behavioral strategies. It has become clear that natural selection
maintains a balance of different traits preserving genes for high
aggression (hawk-like) and low aggression (dove-like) within a
population. The existence of these personality types (Hawks–
Doves) is widespread in the animal kingdom, not only between
males and females but also within the same gender across
species (Korte et al., 2005). Given the results of our analysis,
the exploitative behavior of hawk-like agents and the cooperative
behavior of dove-like agents appear to be due to a set of
neurally-coded-prior probabilities that determine their different
goal states.

The priors which determine individual goals are not
necessarily fixed, but can also be influenced by the priors
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of other agents who live with him in the same society.
Ethnographic records of 60 societies showed that the valence
of several cooperative behaviors (including helping kin, helping
your group, reciprocating, and dividing disputed resources) is
uniformly positive (Curry et al., 2019). Such a social consensus
can make the friendly policies more attractive for the Ego
agent, reduce his preference for exploiting the Alter agent, lower
the cut-off for not cooperating, and thus make the Ego agent
more likely to cooperate. If one lives in a society that values
cooperation highly, cooperation is indeed not a bad decision to
avoid surprises.

In our example, there is also the case of a prior distribution
with a medium preference for exploitation (p = 0.24), where
the Kullback-Leibler divergence for cooperation and non-
cooperation is equal. In this case, the medium preference for
exploitation of the counterpart equals the cut-off point for
abstaining from cooperation. In such a situation the agent has no
clear best policy available. When this choice of policy is uncertain
in a situation that endangers well-being, stress arises.

Such a stress reaction does not only occur in critical situations
where the decision to cooperate or not to cooperate has to
be made. Generally speaking, people who feel threatened by
changes in their external environment or in their internal body
environment may find themselves confronted with this question:
“What policy should I select to safeguard my future physical,
mental and social wellbeing?” According to a novel definition,
“stress” arises in those people who are uncertain about the
answer (Peters and McEwen, 2015). In other words, stress
occurs when expectations are anticipated to be disappointed
when using any of the available policies. The uncertainty that
arises when it turns out that all available policies are equally
risky initiates a physiological uncertainty resolution program
(Peters et al., 2017).

As the ACC plays a key role in reducing uncertainty,
it may disinhibit (if necessary) the amygdala, which is the
center of the stress response network. The amygdala in turn
activates three components of the stress response. First, the
locus coeruleus in the brain stem initiates the release of
noradrenaline from nerve endings that reach almost every part
of the brain, particularly in the cerebral cortex (Aston-Jones and
Cohen, 2005). Here, norepinephrine accelerates the information
transmission from one neuron to another, thereby increasing
the bit rate per second and also the energy consumption
of the brain. Secondly, activation of the sympathetic nervous
system (SNS) leads to extra glucose being supplied to the brain
(Peters et al., 2004). This supplementary glucose is actively
withdrawn from the body stores (Peters and Langemann, 2009).
The extra glucose can cover the brain glucose requirement
for enhanced information processing. Third, the activation of
the hypothalamic-pituitary adrenal axis (HPA) leads to the
release of the stress hormone cortisol from the adrenal glands.
Cortisol acts throughout the human organism, including the
brain, where it modulates how successful policies are learned
(McEwen and Morrison, 2013; Peters et al., 2018). Overall, the
stress response with its three components aims to eliminate
the uncertainty as quickly as possible (Peters et al., 2017). It is
obvious that the uncertainty resolution program is adaptive and

has clear advantages, although people feel uncomfortable while
it is operating.

At this point we come back to Ego’s decision whether to
cooperate or not. If the two agents do not yet know each other,
the Ego agent may assume that all reactions of the Alter agent
are equally likely, which is not necessarily true. If the Ego agent
is uncertain about how to decide, he could try to better predict
the Alter agent’s goals with the additional resources available to
him during stress.

DISCUSSING POTENTIALS OF
SURPRISE MINIMIZATION FOR
SOCIOLOGY AND MEDICINE

We have shown for two agents that free energy or surprise
minimization can explain the emergence of social rules. In the
famous Prisoner’s Dilemma, maximization of expected utility can
also explain the emergence of rules, so why should we use the
free-energy principle to explain a similar outcome? We have
four good reasons.

1. Experimental evidence shows that surprise minimization
can explain human decision making better than
utility maximization.

2. The freedom of choice has an explicit term in the
surprise minimization.

3. The free energy principle can explain not only previously
unexplained phenomena such as the so-called “binocular
rivalry,” but – as a more general framework – even
cooperation between two agents.

4. Using the free energy principle, research has shown how
uncertainty in decision-making can lead to toxic stress
with secondary diseases such as coronary heart disease,
depression and type 2 diabetes. Restrictive policy designs
can easily put an individual in an uncertain decision-
making situation where all his or her policies seem
unsuitable due to the lack of open options. In contrast
to utility maximization, surprise minimization can explain
why restrictive policy designs can put large parts of society
under toxic stress.

Ad 1: Surprise Minimization Explains
Experimental Data Better Than Utility
Maximization
Minimizing surprise makes a prediction at variance with
expected utility models; namely, that in addition to attaining
valuable states, agents attempt to “keep their options open.”
Schwartenbeck et al. (2015) tested this prediction using a
simple binary choice paradigm and showed that human
decision-making is better explained by surprise minimization
compared to utility maximization. These results illustrate a
limitation of purely economic motivations in explaining choice
behavior and instead emphasize the additional importance of
belief-based motivations aimed at keeping as many options
open as possible.
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Ad 2: Freedom of Choice Explicitly
Formulated
As mentioned above, the free energy principle optimizes the sum
of exploration bonus (i.e., the entropy over attainable states)
and expected utility. Thus, surprise minimization is not opposed
to the classical maximization of expected utility, but surprise
minimization is actually an extension of utility maximization.

Ad 3: Wide Range of Validity of the
Surprise Minimization – Binocular Rivalry
A growing body of experimental evidence supports the free-
energy principle as it is formulated in concept of the Bayesian
brain (Hohwy, 2013; Clark, 2016). The Bayesian view conceives
perception as a process of top-down predictions, which are
corrected via bottom-up prediction errors. In contrast, the
conventional view of perception says that the information flow
is only directed bottom-up, e.g., from the retina via the thalamus
to the visual cortex.

A classic experiment challenges the conventional view
(Hohwy et al., 2008): Test persons are put on virtual reality
glasses (i.e., glasses with small monitors instead of lenses). One
eye is shown the image of a house, at the same time the other
eye is shown the image of a face. What is striking is that the
test person initially perceives only one image, e.g., the house for
about eight seconds; and then only the face for eight seconds;
and then the house again, and so on. The two monocular images
compete with each other, causing repetitive perceptual changes.
This counter-intuitive effect is referred to as binocular rivalry.

The conventional view has difficulties to explain these
experimental results. For, during the rivalry, the physical
stimulus in the world remains the same and yet the perception
alternates. However, the Bayesian brain perspective can provide
an explanation: There are three relevant candidate hypotheses to
explain what may have caused this unusual sensory input: it is a
house only, it is a face only, or it is a face-house blend. The system
will select one of these hypotheses based on their likelihood (how
likely it is that a house, face, or face-house blend would have
caused this input) and secondly their prior probability (how likely
it is that one should be seeing a house, a face, or a face-house now,
irrespective of the actual sensory input). In the hierarchical brain
structure, the priors on the lower levels of abstraction encode
details (e.g., nose, eyes, and roof tiles), the priors on the higher
levels encode rules and principles (e.g., it is unlikely that two
things coexist in the same place at the same time). The combined
face-house-blend hypothesis has the highest likelihood. This is so,
because it accounts for more of the sensory input than the face
or the house hypothesis on their own. Thus, at a certain level in
the Bayesian hierarchy, the face-house-blend hypothesis would
have the highest prior probability. On the level above, however,
the coexistence of face and house has an extremely low prior
probability. This extremely low prior probability at the higher
level of abstraction overrides the prior belief at the level below.
In this way, it is either the face or the house hypothesis that
is selected and determines alternating perception (Hohwy et al.,
2008). There were many other neuroscientific experiments that
gave an enormous boost to the Bayesian approach (Hohwy, 2013;

Clark, 2016). Today, inference to the best explanation clearly
supports the free-energy based Bayesian brain concept.

Through the method of surprise minimization, human
decision-making can be anchored in a much more fundamental
biological principle, the free-energy principle, which can explain
many phenomena in the life sciences, especially those observed in
brain research, such as action, perception and learning (Friston,
2010; Ramstead et al., 2018). As shown in this paper, even the
decision whether to agree on a social rule with someone else can
be derived from surprise minimization.

Ad 4: Policy Makers Can Reduce Toxic
Stress in Society by Weighing up the
Expected Utility and Open Options for
the Individual
As mentioned above, the physiological stress response in agents
can be seen as an uncertainty-reduction program that puts
the brain into a highly active (hypervigilant) mode that helps
to gather more information as quickly as possible to finally
determine one best policy (Peters et al., 2017). The agent
experiences an episode of “good stress” if he/she is able to resolve
the uncertainty.

Toxic stress, however, occurs when it is not possible to resolve
the uncertainty and this situation persists for years, so that the
agent becomes frustrated by the futile search for a successful
policy (Peters and McEwen, 2015). In such a case, the brain gets
into a hypervigilant state day and night (Hermans et al., 2011).
Therefore, the brain’s average energy demand is increased in
the long run. Such an energetic overload of brain metabolism
has long-term consequences: First, chronic hyperactivity of the
amygdala leads to typical depression (McEwen, 2012). Secondly,
the chronically high energy requirement of the brain leads to
intermittent or permanent SNS activation and thus to an increase
in the average heart rate (Jones et al., 2011). An increased
cardiac output upturns the cerebral energy supply, but also
the probability of turbulences occurring at bifurcations and
branching points in the arterial system (Malek et al., 1999). If
turbulences appear chronically, atherosclerosis develops at these
predilection sites (Chatzizisis et al., 2007). In the long run,
toxic stress causes myocardial infarction and stroke (Orth-Gomer
et al., 2009; Gulliksson et al., 2011).

If the agent is stuck in such a difficult situation and
cannot resolve uncertainty himself, external help in the form of
psychological or psychiatric intervention may become necessary.
But there are also other cases where individual support is not
sufficient to reduce uncertainty. Social factors such as social
inequality (e.g., low level of education) generate uncertainty
and stress, which in turn promote the development of the
above-mentioned diseases of civilization. Experimental social
interventions have been shown to improve uncertainty, type 2
diabetes mellitus and obesity (Ludwig et al., 2011; Ludwig et al.,
2012). Therefore, socio-political policies are also necessary to
reduce people’s uncertainty.

In summary, uncertainty in the choice of policy arises
when, in a threatening situation, all available individual policies
appear dangerous (little expected utility) and leave little room
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for freedom of choice (exploration bonus). In view of the
dramatic consequences of uncertainty and toxic stress, policy
makers should carefully weigh up expected utility and the
individual’s freedom of choice when designing legislation.

CONCLUSION

This paper extends the role of the surprise minimization principle
to social contexts where multiple agents are involved. We could
show that cooperative behavior and social rules can emerge
from surprise minimization. Our analysis has shown that an
agent who has to decide whether to cooperate or not can
assess the risks of both options. The risk of each option
depends largely on how pronounced the agent’s preference is
for exploiting the other agent. There is a cut-off point below
which the preference to exploit is low enough that cooperation
is expected to produce minimal surprises, and above which
the preference is high enough that non-cooperation is more
favorable in this respect. Of course, it has been shown that
classical utility maximization can explain cooperative behavior
too. However, surprise minimization seems to be superior to
the classical method of utility maximization for four reasons:
First, surprise minimization, unlike utility maximization, predicts
that, in addition to achieving high utility states, agents will
try to “keep their options open.” This prediction was tested
using a simple binary choice paradigm, and it became evident
that human decision making can best be explained by surprise
minimization. Secondly, freedom of choice (keeping options
open) is explicitly formulated as “the entropy of future states.”
Third, surprise minimization is a more general principle that

can best predict observations in many areas of biology, including
the neurosciences (e.g., binocular rivalry). Fourth, surprise
minimization – but not classical utility maximization – can
be used to explain why policy makers who carefully balance
utility maximization and freedom of choice can reduce toxic
stress in human societies. In all, our analysis reveals that the
surprise minimization principle can be regarded as a fundamental
framework that can also be applied to the emergence of
cooperation and social rules.

One direction for further research would be to investigate a
more complex setting in which agents interact, involving several
time steps, e.g., with the possibility of withdrawing from social
rules or changing preferences. Another direction for further
development is to examine whether “keeping options open” is
also important for the other forms of cooperation with more
than two actors described by the Nowak rules, such as indirect
reciprocity, network reciprocity or group selection.
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