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The purpose of cognitive diagnostic modeling (CDM) is to classify students’ latent

attribute profiles using their responses to the diagnostic assessment. In recent years,

each diagnostic classification model (DCM) makes different assumptions about the

relationship between a student’s response pattern and attribute profile. The previous

research studies showed that the inappropriate DCMs and inaccurate Q-matrix impact

diagnostic classification accuracy. Artificial Neural Networks (ANNs) have been proposed

as a promising approach to convert a pattern of item responses into a diagnostic

classification in some research studies. However, the ANNs methods produced very

unstable and unappreciated estimation unless a great deal of care was taken. In

this research, we combined ANNs with two typical DCMs, the deterministic-input,

noisy, “and” gate (DINA) model and the deterministic-inputs, noisy, “or” gate (DINO)

model, within a semi-supervised learning framework to achieve a robust and accurate

classification. In both simulated study and real data study, the experimental results

showed that the proposed method could achieve appreciated performance across

different test conditions, especially when the diagnostic quality of assessment was not

high and the Q-matrix contained misspecified elements. This research study is the first

time of applying the thinking of semi-supervised learning into CDM. Also, we used the

validating test to choose the appropriate parameters for the ANNs instead of using typical

statistical criteria.

Keywords: cognitive diagnostic classification, artificial neural networks, semi-supervised learning, machine

learning, co-training algorithm

1. INTRODUCTION

The purpose of cognitive diagnostic modeling (CDM; Templin and Henson, 2006) or diagnostic
measurement is to provide students’ skill/knowledge/attributes mastery status (mastery or non-
mastery) through their responses to items from carefully designed assessments. Because of the
ability to provide educators diagnostic feedback from students’ assessment results, CDM has been
the focus of much research in the last decade. Various types of diagnostic classification models
(DCMs), such as the deterministic inputs, noisy and gate (DINA; Junker and Sijtsma, 2001),
the reparametrized unified model/fusion model (RUM; Hartz, 2002), and the log-linear cognitive
diagnosis model (LCDM; Henson et al., 2009), are designed based on different cognitive theories or
assumptions about the relationship between a student’s response pattern and attribute profile.
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A principal research question of the previous research
studies in CDM is which model better describes the data.
When analysing a particular assessment dataset, selecting
inappropriate DCMs (model misspecification) impacts the
classification accuracy and parameter estimation. For example,
when the attributes measured by an assessment are non-
compensatory, which indicates that non-mastery on one
attribute cannot be compensated by mastery on another
attribute, selecting a compensatory model will decrease the
performance of classification and measurement. DINA model
and DINO (Templin and Henson, 2006) model achieved worse
fit than did the other more relaxed DCMs, such as G-
DINA (DeCarlo, 2011), LCDM, and RUM because both DINA
and DINO might be too restrictive to reflect actual students’
knowledge status (Yamaguchi and Okada, 2018). Some recent
research studies (Chiu and Köhn, 2019; Yamaguchi and Okada,
2020; Zhan, 2020) started to apply the non-compensatory or
conjunctive DCM, DINA model, and the compensatory or
disjunctive DCM, DINO model, to build up a more general item
response function (IRF) for CDM. However, these methods still
require pre-data analysis procedure and assumptions of IRF to
determine the hyperparameters contained in the mixture (or
hybrid) CDM.

A Q-matrix indicates the relationship between items and
attributes in an assessment. Q-matrices are often carefully
designed by assessment experts, whereas some existing research
and their experimental results have shown that Q-matrices
constructed by content experts do not always reflect the
relationship precisely and may require empirically-driven
modifications (Bradshaw et al., 2014; Tjoe and de la Torre,
2014). In CDM, the diagnostic quality of an item indicates the
discriminating power of the item to determine the success of
the diagnosis. The item with high discriminating refers to that
students who have mastered the attributes required by the item
are expected to have a high probability of responding to the item
correctly, while students who have not are expected to have a low
probability. Items with low discriminating power compromise
the accuracy of the estimate of student attribute mastery. In the
previous research studies, the performances of all DCMs are
sensitive to either the diagnostic quality of items or the accuracy
of Q-matrices (Kunina-Habenicht et al., 2012; Liu et al., 2017).

Because of the increase of data size and development
of computational power, artificial neural networks (ANNs;
Goodfellow et al., 2016) have been proposed as an attractive
approach to convert a pattern of item responses into a diagnostic
classification (Cui et al., 2016; Guo et al., 2017; Paulsen, 2019;
Xue, 2019). An ANN is a computational system inspired by
biological neural systems for information processing in animals’
brains. An ANN is built on inputs being translated to outputs
through a series of neuron layers. It consists of three types
of layers: an input layer, hidden layer(s), and an output layer.
Each layer consists of a number of neurons (or nodes), and
each node is connected to the nodes in the next layer. Each
layer (except for the input layer) uses the output of its previous
layer as the input. Supervised learning ANNs were applied
in some research studies (Cui et al., 2016; Guo et al., 2017;
Paulsen, 2019). To train the supervised learning ANNs, the

ideal response patterns were set as the input layer and the
associated attribute profiles as the output layer. Cui et al. (2016)
hypothesized DINA model with both slipping and guessing
equalling to 0 to synthesize ideal responses to train a multilayer
perceptron (MLP). The experimental results showed that the
classification accuracy of the supervised learning ANNs was not
appreciated even in the simulated study. Another disadvantage
of applying supervised learning ANNs for CDM is how to
create the ideal response patterns using a DCM because both
DCM and parameters are difficult to hypothesize. In addition
to supervised learning ANNs, Cui et al. (2016) used one type
of unsupervised learning ANNs, self-organizing map (SOM),
to classify test-takers into different latent groups for CDM.
One disadvantage of the unsupervised learning ANNs is that
some further data analysis approaches are required to label
the clusters. For example, although cluster analysis can place
test-takers into different latent groups, post hoc techniques are
required to discern the attributes from these latent groups. To
do cluster labeling, Xue (2018) proposed a modified autoencoder
network with a sparsely connected decoder explained the code
layer outputs by using a part of the Q-matrix information.
However, in both research studies, the unsupervised learning
ANNs cannot yield comparable classification results compared
with the DCMs, especially when the diagnostic quality of the
assessment was not high. In addition, the ANNs methods
produced very unstable and unappreciated estimation unless a
great deal of care was taken to conduct sensitivity analyses (Briggs
and Circi, 2017).

Regarding the disadvantages in supervised leaning ANNs and
unsupervised learning ANNs, in this research, semi-supervised
learning thinking is introduced to provide reasonable labels for
ANN training and provide accurate and robust classification
under different test conditions. In the machine learning field,
semi-supervised learning (Zhu, 2005) concerns the study of
how computers and natural systems learn in the presence of
both labeled and unlabeled data, and it is somewhere between
supervised learning and unsupervised learning. The research goal
of semi-supervised learning is to understand how combining
labeled and unlabeled data change the learning behavior, and
design algorithms that take advantage of such a combination.
Semi-supervised learning is a great interest in a wide range
of applications, such as image search (Fergus et al., 2009),
natural language parsing (Liang, 2005), and speech analysis (Liu
and Kirchhoff, 2014) because the labeled data is scarce
or expensive.

In this research, we firstly applied the semi-supervised
learning thinking into the ANNs-based CDM. Unlike the hybrid
CDM research studies, which used DINA and DINO models in
a mixture CDM, in this research, DINA and DINO models were
contained in a semi-supervised learning framework to improve
the accuracy and consistency of the ANN’s classification. In
the following sections, we will first briefly introduce the Co-
Training method, which is the semi-supervised learning method
we used in this framework. Then, we will describe the structure
of the ANNs will. Additionally, we will illustrate the experimental
results under simulated experiments to compare the proposed
method and five different DCMs. Lastly, we will outline the
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benefits and challenges of this methodology are summarized and
future research.

2. METHOD

2.1. Co-training Methods of Using DINA
Model and DINO Model
As one typical semi-supervised learning method, Co-
Training (Nigam and Ghani, 2000) methods use a pair of
classifiers with separate views of the data to iteratively learn and
generate additional training labels. Like the self-training scheme,
Co-Training is a wrapper method and widely applicable to
many tasks. Co-Training bears a strong resemblance to the self-
training scheme because each classifier uses its most confident
predictions on unlabeled instances to teach itself. Two classifiers
operate on different views of one observation, and the success of
CoTraining depends on the following two assumptions (Zhu and
Goldberg, 2009): (1) each view alone is sufficient to make good
classifications, given enough labeled data; (2) the two views are
conditionally independent given the class label.

Inspired by the typical Co-Training method, in this research,
we chose the DINA model and DINO model as two classifiers
to operate on different views of one response pattern to an item.
The DINA model is a non-compensatory, or conjunctive DCM
means that a lack of one attribute cannot be compensated by the
mastery of another attribute measured by an item. For each item,
the DINA model classifies students into two groups: those who
have mastered all the attributes required by the item and those
who have not. The jth item response probability of the ith student
can be written as:

P(yij = 1|ξij, sj, gj) = (1− sj)
ξijg

1−ξij
j (1)

where ξij = 1 indicates the ith student has mastered all required
attributes of jth item, and ξij = 0 refers to non-mastery status; sj
and gj are the slipping parameter and guessing parameter of the
jth item.

In contrast to the DINA model, the DINO model is a
compensatory or disjunctive DCM, which means that a non-
mastery on one latent attribute can be compensated for by
a mastery status on another attribute. The jth item response
probability of the ith student can be written as:

P(yij = 1|ωij, sj, gj) = (1− sj)
ωijg

1−ωij

j (2)

where the latent response ωij = 1 indicates that the ith
student has mastered at least one attribute measured by jth item,
and ωij = 0 indicates the absence of all required attributes.
Like DINA, sj and gj are the slipping parameter and guessing
parameter of the jth item.

The reason for selecting the DINA model and the DINO
model is to hold the two assumptions of successfully applying
Co-Training. First, in an assessment, either the DINA model or
the DINO model can be the correct model for different items.
For example, both the DINA and DINO models are the correct
models for a simple structure item, which only measures a single
attribute. Thus, using either the DINAmodel or the DINOmodel

is sufficient to make accurate classification results. Second, the
DINA model and DINO model’s item response functions are
represented based on different assumptions on the relationship
between response patterns and attribute profiles. When the true
latent class labels of students are known, for one item, the
students can be divided into two groups, DINA-type and DINO-
type, respectively. Considering the local independence (Wang
and Douglas, 2015), test-takers’ item responses from these two
groups are statistically independent conditional on the true latent
class labels.

In this paper, given the response data and Q-matrix, the
DINA model and the DINO model were fitted. For an individual
test-taker, we use two labels cDINA and cDINO. cDINA was the
estimated latent class under the assumption of using the DINA
model, and cDINO was the estimated latent class under the
assumption of using the DINO model. cDINA and cDINO could
be either the same or different. In this research, the One-Hot
encoding method (Harris and Harris, 2015) was applied to the
integer encoding cDINA and cDINO to create two new One-Hot

representation vectors cDINA = {ckDINA} and cDINA = {ck
′

DINA}.

ckDINA and ck
′

DINA ∈ {0, 1}, and
∑

k c
k
DINA =

∑

k′ c
k′

DINA = 1. In
machine learning, a One-Hot is a group of bits among which the
legal combinations of values are only those with a single 1 bit and
all the others 0 bits. For example, if there are 4 latent classes, the
integer encoding labels 1, 2, 3, and 4 are converted to One-Hot
encoding [0001], [0010], [0100], and [1000], respectively.

2.2. Semi-supervised Learning ANN for
Diagnostic Classification
As shown in Figure 1, the proposed semi-supervised learning
ANN consisted of four parts: the input layer, two hidden layers,
class layer, and the output layer. The number of nodes (the
circles in Figure 1) on the input layer was equal to the number
of items contained in the assessment. The number of nodes on
the class layer was equal to the number of latent classes. To
establish the relationship between the input and class nodes, we
used two hidden layers (i.e., hidden layer 1 and hidden layer
2) to convert observed response patterns to latent classes. The
numbers of nodes at these two hidden layers are 200 and 100. We
use the Rectified linear unit (ReLU; Goodfellow et al., 2016) as
the activation function for these two hidden layers and softmax
function as the activation function for the class layer. In deep
learning field, ReLU is widely used because the mathematical
form of ReLU is very simple and efficient, and RelU can avoid
a small derivative causing vanishing gradient problem. Softmax
function is used for amulti-classification problem in ANNs. Since
the number of nodes at the two hidden layers could be viewed
as a hyperparameters of ANNs, we selected the two numbers
(i.e., 200 and 100) for three reasons: (1) deep learning provides
information-theoretically optimal approximation of a very wide
range of functions and function classes used in mathematical
signal processing (Grohs et al., 2019); (2) Lu et al. (2017)
showed a universal approximation theorem for width-bounded
ReLU networks: width-(d + 4) ReLU networks, where d is the
input dimension, are universal approximators; (3) based on the
validation test in our previous research studies using ANNs for
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psychometrics (Xue, 2018, 2019; Xue et al., 2020), these two
values could achieve a balance between efficiency and accuracy.

In the supervised learning ANNs in CDM, only a single
label was used for each observation. For example, when only
using DINA classification as labels, the supervised learning ANN
was used to train the standard softmax regression or a sigmoid
regression (Pang et al., 2020) inputs to outputs without taking
into account incorrect labels.The incorrect labels will impact the
prediction performance of the ANNs for supervised learning
ANNs. In contrast, the output layer in our proposed semi-
supervised learning ANN consisted of three parts. The first part
(output 1 or Y1) corresponded to the DINA model classification,
the second part (output 2 or Y2) corresponded to the DINO
model classification, and the third part was the reconstructed
response pattern (X̃). The total number of output nodes was
equal to two times of the number of hidden classes plus the
number of items. For example, given an assessment with 30 items
that measured a total of 4 attributes, the input layer X consisted
of 30 input nodes (30 items), the class layer t consisted of 16
nodes (24 = 16 latent classes), and the output layer {Y1,Y2, X̃}
consisted of 62 nodes (16+ 16+ 30).

Let X ∈ {0, 1}I be the response patterns (I is the number
of items), cDINA and cDINO be the One-Hot encoding of the
DINA class labels and DINO class labels, respectively. Then we
introduced into our ANN model the “true” latent class label
(as opposed to the DINA and DINO class labels) as a latent
multinomial variable t ∈ {0, 1}C,

∑C
j tj = 1, where C is the

number of latent classes. Like cDINA and cDINO, t was also a One-
Hot encoding label for each response pattern. The output of the
class layers (or the input of the output layer) of our ANN was the
posterior over t using the softmax regression. The ith element of
t can be represented as:

P(tj = 1|X) =
P̃(tj = 1|X)

∑C
j′=1 P̃(tj′ = 1|X)

=
φj(X;w1)

∑C
j′=1 φj′ (X;w1)

(3)

where P̃ denotes the unnormalized probability distribution,
8 = {φj(X;w1)}, j ∈ {1, . . . ,C} indicates the calculation from
the input layer to class layer’s output, and φj(X;w1) indicates the
jth node’s values on the class layer, the computation of φj(X;w1)
is as follows:

φj(X;w1) = σ (
100
∑

m=1

200
∑

n=1

wH2t
mj max(wH1H2

nm max(wXH1
in Xi, 0), 0))

(4)
where σ (·) is the softmax function, max(·, 0) is the ReLU
function, w1 = {{wXH1

in }, {wH1H2
nm }, {wH2t

mj }} indicate the all the

weights of the ANNs from the input layer to the class layer.

{wXH1
in } is the weights between input layerX and first hidden layer

H1; {w
H1H2
nm } is the weights between the first hidden layer H1 and

second hidden layerH2; {w
H2t
mj } is the weights between the second

hidden layer H2 and the class layer. w1 needs to be estimated in
the training of ANNs. Given the true label t, the output 1 (DINA
model classification) and output 2 (DINO model classification)

can be modeled using another softmax with logits as follows:

logit(P(Y1|X)) = logit(P(ckDINA = 1|X)) =
C

∑

j=1

wtY1
jk

tj

logit(P(Y2|X)) = logit(P(ck
′

DINO = 1|X)) =
C

∑

j=1

wtY2
jk′

tj

(5)

where the weights wtY1
jk

and wtY2
jk′

learn the log-probability of

the “true” label j as DINA class label k (the kth class in DINA
classification) and as DINO class label k′ (the k′th class in DINA
classification), respectively. Thus, in the proposed ANN, the joint
relationship between input layer x and the kth node of Y1 and
k′th node of Y2 can be represented as follows:

P(Y1,Y2|X) = P(ckDINA = 1, ck
′

DINO = 1|X)

=

C
∑

j=1

P(ckDINA = 1, ck
′

DINO = 1, tj = 1|X)

=

C
∑

j=1

P(ckDINA = 1|tj = 1)

P(ck
′

DINO = 1|tj = 1)P(tj = 1|X)

(6)

where P(tj = 1|X), P(ck
′

DINO = 1|tj = 1), P(ckDINA = 1|tj = 1) are
defined in Equations (3) and (5).

In addition to the difference between Co-Training labels
and Y1, Y2, we also added a regularization term, H(X, X̃), to
encourage the classification to be perceptually consistent. X is the
observed response pattern, and X̃ is the reconstructed response
pattern corresponding to the estimated latent class. The X̃ can be
calculated from the true label t as:

X̃i =

C
∑

j=1

wtX̃
ji tj (7)

where wtX̃
ij is the connection weights between jth

class layer node and ith reconstructed output node.
The weights between class layer and output layer of
the ANNs is w2 = {{wjk}, {wjk′}, {wji}}. We could
perform training via stochastic gradient descent (SGD;
Bottou and Bousquet, 2007) to minimize the following
cost function:

{w} = argmin{H(Y1, cDINA)+H(Y2, cDINO)+ λH(X, X̃)} (8)

where {w} = {w1,w2} indicates all the weights of the ANNs
to be estimated, H(·, ·) is the cross-entropy to calculate
the difference between Y1 and One-Hot DINA labels
cDINA, and the difference between Y2 and One-Hot DINO
labels cDINO, and the difference between observed response
pattern X and reconstructed response pattern X̃. λ is a
scaling parameter which was determined through a validation
test (Xue et al., 2020).
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FIGURE 1 | The structure of the proposed semi-supervised learning ANN. The proposed semi-supervised learning ANN consisted of one input layer, two hidden

layers, one class layer and one output layer. The input X is response pattern of a test-taker; H1 and H2 are two hidden layers; t indicates the class layer; and the

output layer consists of three parts: Y1 is the classification under DINA assumption; Y2 is the classification under DINO assumption; X̃ is the reconstructed response

pattern of the test-taker.

Because of the large number of parameters contained in the
deep learning structure, the random initialization of parameters
may impact the optimization when the training sample size is
not large enough. Thus, one concern of using ANNs for CDM
is that using the feature extracted by deep learning through
a single training is risky or sensitive to the starting points
of the parameters (Briggs and Circi, 2017). Cui et al. (2016)
only set a maximum number of iterations (e.g., 10,000) to stop
training the supervised learning ANN in their research study.
We applied two methods to deal with this issue. The first
method was the early stopping, which is a simple, effective, and
widely used approach to avoid overtraining the ANNs. The early
stopping method is used to train on the training dataset but
to stop training at the point when performance on a validation
dataset starts to degrade. In addition, through the validating,
we determined the scaling parameter in Equation (10). In our
method, the whole data set was divided into two parts: the
training dataset consisted of 80% observations, and the validating
dataset consisted of the rest 20% observations. The second
method was that we conducted 100 ANN trainings individually,
produced a probability of latent class for each training, and then
averaged the 100 probabilities as the final probability of the latent
class for each test-taker.

3. EXPERIMENTAL STUDY

The aims of the experiment were (1) to examine the
attribute profile estimation and classification accuracy of
the proposed method under different test factors which
are expected to affect the estimates’ accuracy, and (2) to
compare the proposed method with the performance of five
DCMs: the DINA, DINO, G-DINA (De La Torre, 2011),
LCDM (Henson et al., 2009), and RUM (Hartz, 2002).
Thus, we conducted a simulation study under different
assessment conditions with a variety of fixed factors and four
manipulated factors.

3.1. Method
3.1.1. Manipulated Factors
Using item by latent class matrix, we manipulated
three assessment factors in the data generation for the
simulation, including the number of items (20 or 30),
number of attributes (three or four), and test diagnostic
quality (high or mixed). When estimating the conditions,
we also manipulated the Q-matrix accuracy (100 and
90% correct) as another factor expected to impact
classification accuracy.
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3.1.1.1. Test Length and Number of Attributes
The number of items (20 or 30) and the number of attributes
were selected to reflect the current real assessment applications,
which often contained between 20 to 30 items and measured
three or four attributes [e.g., MELAB data (Li and Suen, 2013);
DTMR data (Bradshaw et al., 2014)]. For three attributes, we
generated 20 items, and for four attributes, 20 and 30 items
were generated, respectively. The three Q-matrices (i.e., 20 items
measured 3 attributes, 20 items measured 4 attributes, and 30
items measured 4 attributes) for these conditions are shown in
Supplementary Tables 1–3, respectively.

3.1.1.2. Test Diagnostic Quality
Item discriminating power is another factor impact performance
of DCMs shown in previous research studies (e.g., Cui et al.
2016; Roussos et al. 2005). The item discriminating power di
is calculate as di = p(x = 1|α1) − p(x = 1|α0). α0 is the
attribute pattern where none of the attributes measured by the
ith item are mastered, and α1 is the attribute pattern where all
attributes measured by the ith item are mastered. If di > 0.3,
the Item i is a highly discriminating item, and if 0 < di ≤ 0.3,
the Item i is a lowly discriminating item. In the assessments
with high diagnostic quality, all items are of high discriminating
power; in the assessments with mixed diagnostic quality, 50%
items are of high discriminating power, and 50% items are of low
discriminating power.

3.1.1.3. Accuracy of Q-Matrix
Since the Q-matrices constructed by content experts do not
always reflect the relationship precisely and may require
empirically-driven modifications (Bradshaw et al., 2014; Tjoe
and de la Torre, 2014), two levels of Q-matrix accuracy were
also created for DCMs model fitting and Co-Training methods:
100% accuracy indicated that the Q-matrix were completely
known; 90% accuracy indicated that 10% of elements in each
Q-matrix were incorrect. We mis-specified the 10% elements in
Q-matrix randomly drawing a Q-matrix entries and changing its
value, with the constraint that each item must measure at least
one attribute (i.e., a randomly drawn value of “1” for a simple
structure item could not be changed to “0”). Such constrain
makes there is no all zero q-vector (e.g., [0, 0, 0], [0, 0, 0, 0])
in Q-matrix.

3.1.2. Generating Item Response Probabilities
Sample sizes of 1,000 were used for all conditions. The true
class probabilities of correct response for the items in the item
pools were simulated using the logic of a DCM with respect
to the Q-matrix defining the item-class relationships and the
probabilities following monotonicity constraints across non-
equivalence classes on an item (i.e., masters of all attributes
measured by the item having a higher probability of correct
response than masters of a proper subset of these attributes;
masters of no attributes measured by the item having a lower
probability of correct response than masters of a proper subset
of these attributes), but did not follow a particular existing DCM
item response function (e.g., the LCDM or DINA function).
Current DCM item response functions constrain the item

response probabilities to be equal within all equivalence classes;
our simulated data did not. Item-based equivalence classes are
latent classes that have the same attribute profile, or the same
pattern of mastery, for all attributes that are measured by
the item. Conversely, item-based non-equivalence classes differ
on the mastery status of one or more attributes measured by
the item.

We simulated data using a general I × C item by latent class
matrix (Xu and Zhang, 2016) according to DCM logic (i.e.,
defining latent classes by attribute profiles and specifying item-
latent class relationships by the Q-matrix) without the specific
mathematic representation of the item response function:

5 =











π1,1 π1,2 . . . π1,C

π2,1 π2,2 . . . π2,C
...

...
. . .

...
πI,1 πI,2 . . . πI,C











. (9)

where the conditional probability that students in lth latent class
answer ith item correctly P(xi = 1|c) = πi,c, which is also known
as item response probability (IRP) for each class. I indicated the
number of items, C indicated the number of latent classes.

We denote πi,α0 , πi,α1 , and πi,αp as the IRPs for non-mastery
group, mastery group, and partial mastery group, respectively.
The mastery group contained students who mastered all of the
attributes required by ith item, the partial mastery group contains
students who onlymastered a proper subset of attributes required
by ith item, and the non-mastery group contained students who
mastered none of the attributes required by ith item.

As shown in Table 1, when simulating response patterns to
high discrimination items for the mastery group πi,α1 were
drawn from a uniform distribution U[0.65, 0.9]; for the non-
mastery group πi,α0 were drawn from a uniform distribution
U[0.15, 0.35]; and for the partial mastery group πi,αp were
drawn from a uniform distribution U[0.4, 0.6]. These draws
yielded an average item discrimination value of 0.530 in 3 highly
discriminating assessments. When simulating response patterns
to low discrimination items, for the non-mastery group πi,α0
were drawn from a uniform distribution U[0.2, 0.4]; for partial
mastery group πi,αp were drawn from a uniform distribution
U[πi,α0 ,πi,α0 + 0.2]; lastly for the mastery group (students who
mastered all the attributes required by ith item) πi,α1 were
based on a uniform distribution U[πi,αp ,πi,α0 + 0.3] for complex
items and U[πi,α0 ,πi,α0 + 0.3] for simple items. This yielded
an average item discrimination value of 0.387 in three mixed
discriminating assessments.

By drawing true item parameters in this way, the πi,cs in our
simulated data differs from IRPs simulated from the LCDM in
that partial mastery classes with the same attribute pattern with
respect to the measured attributes on a given item (the partial
mastery item-based equivalence classes) have different true item
response probabilities. The item response probabilities for these
classes are, however, drawn from the same uniform distribution,
so while they may be different values, they will be in the same
range. Taking Item 10 that measures Attribute 1 and Attribute 2
as an example (as shown in Supplementary Table 4), Classes C2,
C3, C6, and C7 are all partial mastery classes with respect to this
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TABLE 1 | The table of selecting πi,c for item by class matrix.

Latent groups High Low

discrimination discrimination

Non-mastery πi,a0 U[.15, .35] U[.20, .40]

Partial-mastery πi,αp U[.40, .60] U[πi,a0 ,πi,a0 + .15]

Mastery πi,a1 U[.65, .90]







U[πi,αp ,πi,a0 + 0.30], Complex items

U[πi,a0 ,πi,a0 + 0.30], Simple items

For each item, πi,a0 , πi,a1 , and πi,αp indicate the πi,c for non-mastery group, mastery group,

and partial mastery group, respectively.

item: Class C2 and C6 both have mastered Attribute 1 but not
Attribute 2, and Class C3 and C7 has both mastered Attribute 2
and not Attribute 1. Under the LCDM, Class C2 and C6 would
have the same IRP, while Class C3 and C7 would have the same
IRP; under our generating model, the IRP for all four classes
were drawn from the same interval, but the draws were different,
resulting in, Class C2 having an IRP of 0.509, Class C3 having
an IRP of 0.519, Class C6 having an IRP of 0.458, and Class C7
having an IRP of 0.429 (see Supplementary Table 4). For non-
mastery equivalence classes and mastery equivalence classes, the
true model did constrain draws to be equal within the interval
(i.e., Class C1 and C5 have IRP values of 0.33 and Class C4 and
C8 have IRP values of 0.891). Only for partial mastery item-based
equivalence classes were they allowed to differ. The purpose of
allowing this difference was to add some noise in the data while
still controlling the item discrimination level (IRP of mastery
group minus IRP of non-mastery group).

The values in the item by latent class matrix 5 for the 6
item pools are shown in Supplementary Tables 4–9, respectively.
These appendices showed that the DCMs primary monotonicity
assumptions held. Namely, the mastery group has the greatest
IRP, the non-mastery group has the lowest IRP, and the IRP of
partial mastery groups lie between them. These appendices show
this simulation procedure firstly held that 0.3 ≤ di < 0.75
for high discrimination items and 0.3 < di < 0.75 for low
discrimination items; it also again shows the DCMmonotonicity
assumptions that the mastery group has a greater IRP than the
non-mastery group held.

3.1.3. Estimation
In our simulated study, as a comparison, five types of widely used
DCMs were introduced as baselines to evaluate the diagnostic
classification performance of the proposed framework. DINA
and DINO models were selected as two baselines because
they were the two classifiers used for Co-Training method. In
addition, we chose three more general models, the G-DINA with
identity link function (De La Torre, 2011), the LCDM with the
logit link function (Henson et al., 2009), and the RUM (Hartz,
2002).

Results were analyzed in terms of classification accuracy of
the five DCMs and proposed method under 12 different test
conditions. Since in the proposed method, a validation test
was introduced for early stop in the training procedure to
avoid overtraining, the whole data set was divided to two parts:

training dataset which contains 80% observations; and validating
dataset which contains 20% observations. In the results shown in
Tables 2–4, we list three types of the results of using the proposed
ANNmethod:

1. ANN: the classification results of applying the trained ANN
structure to the whole dataset containing training set and
validation set;

2. ANN*: the classification results of applying the trained ANN
structure to the training dataset;

3. ANN**: the classification results of applying the trained ANN
structure to the validating dataset.

The data simulation and five DCMs were conducted using the
“CDM” package (George et al., 2016) in R. The proposed semi-
supervised learning ANN was conducted using the “tensorflow”
library (Pang et al., 2020) in Python. In the experimental study,
we conducted 100 replications. In each replication, new response
patterns were created based on the fixed values in the item by
latent class matrices in Supplementary Tables 4–9.

3.2. Results
First, we tested the effects of the four assessment factors of
test length, number of attributes, test diagnostic quality, and
Q-matrix accuracy on the attribute profile and classification
accuracy for the proposed method. Then we compared the
proposed method to the five DCMs, under 12 different test
conditions. Results are given in Tables 2–4.

3.2.1. Classification Accuracy and Four Assessment

Factors
We first focus on results for the proposed method. As mentioned
in the Estimation session, ANN, ANN* and ANN** in Tables 2–
4 indicate the classification accuracy on whole dataset (including
training set and validating set), the training set and validating
set, respectively. Results show that the proposed method (ANN)
works reasonably well and has classification accuracy values
>70% under 6 out of 12 assessment conditions (condition 1, 2,
3, 4, 9, and 10) when applying the trained ANN to the whole
data set (i.e., ANN). Condition 1–4 are all four test conditions for
the assessment measures 3 attributes using 20 items with either
highly diagnostic quality or mixed diagnostic quality. Condition
9 and 10 are the two test conditions for assessment measures 4
attributes using 30 items with highly diagnostic quality. Results
show classification accuracy increased in expected ways for
the proposed method. Namely, average classification accuracy
increases from 0.670 to 0.722 as test length increases from 20
to 30 for assessments measure 4 attributes (there is only one
test length of assessment that measures 3 attributes); when the
number of attributemeasured decreases from 4 to 3 in assessment
with 20 items, the average classification accuracy increases from
0.670 to 0.834; when the test diagnostic quality increases from
mixed to high, the average classification accuracy increases from
0.621 to 0.736; and when the accuracy of Q-matrix increases from
90 to 100%, the average accuracy increases slightly from 0.675
to 0.682. In addition, we can see that ANN* always achieves
the best performance with average classification accuracy 0.692,
ANN** always achieves the worst performance with average
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TABLE 2 | Comparison of classification rates for three attributes using 20 items.

Test Methods Quality Q-matrix Attribute 1 Attribute 2 Attribute 3 Class

condition accuracy

1 DINA High 100% 0.949 (0.00) 0.864 (0.02) 0.957 (0.01) 0.778 (0.02)

DINO 0.953 (0.01) 0.871 (0.02) 0.952 (0.02) 0.784 (0.04)

LCDM 0.96 (0.00) 0.917 (0.00) 0.957 (0.00) 0.842 (0.01)

G-DINA 0.96 (0.00) 0.917 (0.00) 0.957 (0.01) 0.842 (0.00)

RUM 0.953 (0.01) 0.91 (0.00) 0.958 (0.00) 0.827 (0.00)

ANN 0.956 (0.01) 0.915 (0.01) 0.957 (0.01) 0.834 (0.02)

ANN* 0.962 (0.01) 0.921 (0.01) 0.964 (0.02) 0.851 (0.02)

ANN** 0.945 (0.01) 0.901 (0.02) 0.942 (0.01) 0.818 (0.03)

2 DINA 90% 0.944 (0.00) 0.824 (0.01) 0.957 (0.00) 0.741 (0.02)

DINO 0.946 (0.01) 0.852 (0.01) 0.944 (0.01) 0.757 (0.02)

LCDM 0.956 (0.00) 0.897 (0.00) 0.958 (0.00) 0.819 (0.00)

G-DINA 0.956 (0.00) 0.897 (0.00) 0.958 (0.01) 0.819 (0.00)

RUM 0.949 (0.00) 0.879 (0.01) 0.958 (0.00) 0.794 (0.01)

ANN 0.955 (0.01) 0.900 (0.02) 0.958 (0.02) 0.821 (0.02)

ANN* 0.962 (0.01) 0.910 (0.02) 0.969 (0.02) 0.831 (0.03)

ANN** 0.945 (0.01) 0.881 (0.02) 0.932 (0.04) 0.807 (0.04)

3 DINA Mixed 100% 0.875 (0.00) 0.859 (0.01) 0.914 (0.00) 0.693 (0.01)

DINO 0.863 (0.01) 0.864 (0.00) 0.896 (0.01) 0.665 (0.01)

LCDM 0.879 (0.01) 0.884 (0.00) 0.913 (0.00) 0.712 (0.01)

G-DINA 0.879 (0.00) 0.884 (0.00) 0.913 (0.00) 0.712 (0.00)

RUM 0.873 (0.01) 0.9 (0.00) 0.917 (0.01) 0.724 (0.00)

ANN 0.883 (0.01) 0.884 (0.02) 0.915 (0.01) 0.720 (0.01)

ANN* 0.892 (0.01) 0.896 (0.01) 0.929 (0.02) 0.730 (0.02)

ANN** 0.868 (0.01) 0.878 (0.02) 0.911 (0.01) 0.704 (0.02)

4 DINA 90% 0.878 (0.01) 0.85 (0.01) 0.906 (0.00) 0.676 (0.02)

DINO 0.869 (0.00) 0.861 (0.00) 0.908 (0.00) 0.679 (0.01)

LCDM 0.878 (0.00) 0.85 (0.00) 0.918 (0.00) 0.685 (0.01)

G-DINA 0.877 (0.00) 0.85 (0.01) 0.918 (0.00) 0.684 (0.00)

RUM 0.877 (0.00) 0.85 (0.01) 0.915 (0.00) 0.685 (0.01)

ANN 0.874 (0.01) 0.888 (0.02) 0.908 (0.02) 0.704 (0.02)

ANN* 0.889 (0.01) 0.901 (0.01) 0.923 (0.01) 0.719 (0.01)

ANN** 0.867 (0.04) 0.871 (0.04) 0.890 (0.03) 0.683 (0.03)

ANN indicate the attribute profile estimation using the proposed method on whole data set. ANN* indicate the attribute profile estimation using the proposed method on the training

data set. ANN** indicate the attribute profile estimation using the proposed method on the validation data set.

classification accuracy 0.661, and ANN falls between ANN* and
ANN** with average classification accuracy 0.678. The reason is
that the parameters of ANN structure were trained based on the
training dataset but not considered the validation dataset.

Next, we examine the results for the five DCMs. Results
show that DINA model has classification accuracy values >70%
under 2 out of 12 assessment conditions (condition 1 and 2);
DINO model has classification accuracy values >70% under 2
out of 12 assessment conditions (condition 1 and 2); G-DINA
has classification accuracy values >70% under 5 out of 12 test
conditions (condition 1, 2, 3, 9, and 10); LCDM has classification
accuracy values >70% under 5 out of 12 test conditions
(condition 1, 2, 3, 9, and 10); and RUMhas classification accuracy
values >70% under 5 out of 12 test conditions (condition 1, 2,
3, 9, and 10). Condition 1 and 2 are two tests (high and mixed

diagnostic quality) with 20 itemsmeasures 3 attributes and the Q-
matrix accuracy is 100%; condition 3 is a test with high diagnostic
quality consists of 20 items to measure 3 attribute but the Q-
matrix accuracy is 90%; condition 9 and 10 are two tests (high and
mixed diagnostic quality) with 30 itemsmeasures 4 attributes and
the Q-matrix accuracy is 100%. We could also notice that the G-
DINA and LCDM achieved almost the same classification results
because the only difference between G-DINA and LCDM in the
CDM::gdina() is the link function. We chose “identity” function
for G-DINA and “logit” function for LCDM. In addition, like the
proposed method, results show classification accuracy increased
in expected way for the 5 DCMs. Namely, accuracy increases
as test length increases, as the number of attribute measured
decreases, as the test diagnostic quality increases, and as the
accuracy of Q-matrix increases.
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TABLE 3 | Comparison of classification rates for four attributes using 20 items.

Test Methods Quality Q-matrix Attribute 1 Attribute 2 Attribute 3 Attribute 4 Class

condition accuracy

5 DINA High 100% 0.908 (0.02) 0.924 (0.03) 0.79 (0.02) 0.893 (0.02) 0.591 (0.03)

DINO 0.909 (0.04) 0.928 (0.05) 0.858 (0.02) 0.899 (0.03) 0.653 (0.04)

LCDM 0.918 (0.01) 0.929 (0.02) 0.858 (0.00) 0.919 (0.01) 0.67 (0.01)

G-DINA 0.918 (0.01) 0.929 (0.01) 0.858 (0.01) 0.919 (0.00) 0.67 (0.01)

RUM 0.923 (0.02) 0.921 (0.01) 0.853 (0.02) 0.917 (0.01) 0.664 (0.03)

ANN 0.919 (0.01) 0.925 (0.01) 0.858 (0.03) 0.922 (0.04) 0.67 (0.03)

ANN* 0.931 (0.02) 0.942 (0.01) 0.870 (0.03) 0.941 (0.01) 0.691 (0.03)

ANN** 0.909 (0.03) 0.918 (0.02) 0.861 (0.01) 0.912 (0.04) 0.655 (0.03)

6 DINA 90% 0.909 (0.04) 0.922 (0.04) 0.74 (0.02) 0.886 (0.02) 0.56 (0.03)

DINO 0.903 (0.04) 0.924 (0.02) 0.852 (0.03) 0.879 (0.04) 0.621 (0.04)

LCDM 0.904 (0.01) 0.922 (0.00) 0.824 (0.01) 0.887 (0.01) 0.616 (0.01)

G-DINA 0.904 (0.01) 0.922 (0.01) 0.824 (0.01) 0.887 (0.02) 0.616 (0.01)

RUM 0.905 (0.02) 0.922 (0.02) 0.8 (0.02) 0.884 (0.01) 0.599 (0.03)

ANN 0.912 (0.04) 0.923 (0.01) 0.862 (0.03) 0.89 (0.02) 0.648 (0.03)

ANN* 0.924 (0.02) 0.931 (0.01) 0.877 (0.01) 0.901 (0.02) 0.657 (0.02)

ANN** 0.903 (0.01) 0.917 (0.02) 0.853 (0.03) 0.883 (0.02) 0.632 (0.03)

7 DINA Mixed 100% 0.854 (0.01) 0.836 (0.03) 0.824 (0.02) 0.851 (0.03) 0.503 (0.02)

DINO 0.863 (0.02) 0.817 (0.04) 0.854 (0.02) 0.816 (0.04) 0.484 (0.04)

LCDM 0.867 (0.01) 0.823 (0.01) 0.855 (0.02) 0.84 (0.03) 0.509 (0.01)

G-DINA 0.867 (0.01) 0.824 (0.02) 0.855 (0.04) 0.84 (0.03) 0.51 (0.01)

RUM 0.878 (0.03) 0.831 (0.02) 0.856 (0.03) 0.837 (0.04) 0.522 (0.03)

ANN 0.864 (0.04) 0.842 (0.02) 0.857 (0.03) 0.859 (0.02) 0.531 (0.02)

ANN* 0.879 (0.01) 0.855 (0.03) 0.870 (0.02) 0.871 (0.01) 0.550 (0.02)

ANN** 0.853 (0.03) 0.839 (0.02) 0.826 (0.02) 0.850 (0.04) 0.504 (0.05)

8 DINA 90% 0.856 (0.04) 0.826 (0.02) 0.744 (0.01) 0.854 (0.01) 0.448 (0.02)

DINO 0.854 (0.02) 0.817 (0.02) 0.855 (0.01) 0.851 (0.04) 0.503 (0.05)

LCDM 0.865 (0.00) 0.817 (0.01) 0.776 (0.02) 0.844 (0.01) 0.469 (0.01)

G-DINA 0.865 (0.02) 0.817 (0.01) 0.776 (0.00) 0.844 (0.01) 0.469 (0.01)

RUM 0.864 (0.03) 0.821 (0.01) 0.855 (0.04) 0.84 (0.01) 0.509 (0.03)

ANN 0.852 (0.02) 0.871 (0.02) 0.855 (0.03) 0.852 (0.01) 0.542 (0.04)

ANN* 0.869 (0.03) 0.883 (0.02) 0.867 (0.01) 0.870 (0.00) 0.558 (0.03)

ANN** 0.850 (0.04) 0.851 (0.02) 0.855 (0.02) 0.854 (0.03) 0.512 (0.05)

ANN indicate the attribute profile estimation using the proposed method on whole data set. ANN* indicate the attribute profile estimation using the proposed method on the training

data set. ANN** indicate the attribute profile estimation using the proposed method on the validation data set.

3.2.2. Comparison Classification With 5 DCMs
Simulation results indicated that when using the proposed
ANN, the classification rates were higher than rates from
the DINA and DINO models, the two initial classifiers
used in Co-Training. Compared to DINA and DINO
models, at the attribute level, the average improvements
of classification using ANN was 0.0218 and 0.0140, and
at the class level (i.e., attribute profiles level), the average
improvements were 0.0589 and 0.0432. Compared to the
general models LCDM and G-DINA, which often achieved
the best performance in classification, the performance
of ANN was also better than these two methods. The
improvements at the attribute level were 0.0056 and
0.0055 compared with LCDM and G-DINA models,
respectively. At the class level, the improvements were 0.0130
and 0.0132.

The simulated study also indicated that when the Q-matrix
became less accurate, the classification accuracy for each method
dropped at both attribute level and latent class level when holding
other test assessment factors. When the Q-matrix accuracy
decreased to 90% accurate, at the attribute level, the average
reductions of classification accuracy were 0.0071, 0.0055, 0.0114,
0.0114, 0.0095, and 0.0038 corresponding to DINA, DINO,
LCDM, G-DINA, RUM, and our ANN methods, respectively.
At the attribute pattern level, the average accuracy reductions
were 0.0163, 0.0138, 0.0298, 0.0302, 0.0243, and 0.0075 for
DINA, DINO, LCDM, G-DINA, RUM and, our ANN methods,
respectively. From this observation, we could find that firstly, the
relaxedmodels (LCDM,G-DINA, and RUM)weremore sensitive
to the accuracy of Q-matrix; secondly, the proposed ANN was
more robust to the noise within the Q-matrix compared to the
five DCMs.
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TABLE 4 | Comparison of classification rates for 4 attributes using 30 items.

Test Methods Quality Q-matrix Attribute 1 Attribute 2 Attribute 3 Attribute 4 Class

condition accuracy

9 DINA High 100% 0.937 (0.04) 0.938 (0.03) 0.814 (0.06) 0.892 (0.02) 0.641 (0.05)

DINO 0.942 (0.01) 0.941 (0.08) 0.854 (0.11) 0.902 (0.08) 0.681 (0.12)

LCDM 0.947 (0.01) 0.949 (0.00) 0.873 (0.02) 0.925 (0.02) 0.732 (0.02)

G-DINA 0.947 (0.00) 0.949 (0.01) 0.873 (0.02) 0.925 (0.03) 0.732 (0.02)

RUM 0.948 (0.02) 0.945 (0.00) 0.872 (0.04) 0.917 (0.03) 0.719 (0.05)

ANN 0.949 (0.01) 0.944 (0.02) 0.872 (0.03) 0.916 (0.02) 0.722 (0.03)

ANN* 0.955 (0.01) 0.952 (0.01) 0.880 (0.02) 0.935 (0.01) 0.741 (0.02)

ANN** 0.942 (0.02) 0.940 (0.02) 0.860 (0.04) 0.903 (0.03) 0.711 (0.04)

10 DINA 90% 0.934 (0.03) 0.94 (0.02) 0.853 (0.04) 0.853 (0.03) 0.64 (0.04)

DINO 0.935 (0.02) 0.924 (0.03) 0.855 (0.08) 0.874 (0.03) 0.644 (0.06)

LCDM 0.948 (0.00) 0.946 (0.01) 0.858 (0.02) 0.92 (0.03) 0.708 (0.04)

G-DINA 0.948 (0.02) 0.946 (0.01) 0.859 (0.03) 0.92 (0.03) 0.709 (0.03)

RUM 0.945 (0.01) 0.945 (0.01) 0.869 (0.02) 0.915 (0.01) 0.713 (0.03)

ANN 0.952 (0.02) 0.948 (0.01) 0.873 (0.02) 0.916 (0.01) 0.723 (0.02)

ANN* 0.960 (0.02) 0.954 (0.02) 0.890 (0.01) 0.926 (0.01) 0.733 (0.02)

ANN** 0.935 (0.03) 0.940 (0.04) 0.860 (0.02) 0.902 (0.04) 0.703 (0.04)

11 DINA Mixed 100% 0.903 (0.03) 0.876 (0.03) 0.801 (0.01) 0.882 (0.02) 0.56 (0.02)

DINO 0.911 (0.03) 0.884 (0.05) 0.858 (0.06) 0.858 (0.04) 0.586 (0.07)

LCDM 0.912 (0.03) 0.886 (0.02) 0.857 (0.02) 0.88 (0.02) 0.616 (0.03)

G-DINA 0.912 (0.02) 0.886 (0.01) 0.858 (0.02) 0.88 (0.01) 0.617 (0.02)

RUM 0.9 (0.02) 0.884 (0.01) 0.858 (0.02) 0.871 (0.03) 0.592 (0.03)

ANN 0.91 (0.01) 0.889 (0.02) 0.862 (.01) 0.881 (0.01) 0.616 (0.02)

ANN* 0.916 (0.02) 0.898 (0.01) 0.869 (.02) 0.900 (0.01) 0.623 (0.02)

ANN** 0.905 (0.02) 0.881 (0.03) 0.850 (.02) 0.881 (0.03) 0.605 (0.03)

12 DINA 90% 0.908 (0.03) 0.887 (0.03) 0.847 (0.01) 0.876 (0.03) 0.603 (0.02)

DINO 0.906 (0.03) 0.883 (0.07) 0.852 (0.08) 0.836 (0.07) 0.566 (0.09)

LCDM 0.908 (0.02) 0.891 (0.01) 0.863 (0.03) 0.868 (0.01) 0.605 (0.02)

G-DINA 0.908 (0.01) 0.891 (0.02) 0.863 (0.03) 0.868 (0.01) 0.605 (0.02)

RUM 0.905 (0.02) 0.891 (0.01) 0.864 (0.03) 0.861 (0.03) 0.602 (0.03)

ANN 0.909 (0.01) 0.885 (0.02) 0.859 (0.01) 0.871 (0.02) 0.61 (0.02)

ANN* 0.921 (0.01) 0.903 (0.02) 0.869 (0.01) 0.878 (0.01) 0.624 (0.01)

ANN** 0.901 (0.03) 0.889 (0.02) 0.850 (0.01) 0.857 (0.03) 0.603 (0.03)

ANN indicate the attribute profile estimation using the proposed method on whole data set. ANN* indicate the attribute profile estimation using the proposed method on the training

data set. ANN** indicate the attribute profile estimation using the proposed method on the validation data set.

Besides, high item discriminating was a positive impact
on the classification accuracy of all six methods. When the
discrimination of items decreased (from high to mixed), the
classification rate dropped 0.0301, 0.0383, 0.0458, 0.0458, 0.0392,
and 0.0397 for DINA, DINO, LCDM, G-DINA, RUM, and
our ANN at the attribute level. The reductions were 0.0780,
0.1095, 0.1318, 0.1318, 0.1137, and 0.1158 for DINA, DINO,
LCDM, G-DINA, RUM, and our ANN at the latent class
level. The reason that our ANN method dropped more than
DINA, DINO, and RUM (only at the attribute level) was that
when the items were high discriminating, the improvement
of classification rate using our ANN was more significant
than using mixed discriminating items. Even though the
performance of our ANN at both the attribute level and
the latent class level was the best among the six diagnostic
classification methods.

4. CONCLUSION

The purpose of this research is to solve two problems that exist
in current supervised learning ANN methods and unsupervised
learning ANNs: the supervised learning method requires ideal
response pattern to train the model; the classification accuracy
of unsupervised learning methods was not as good as DCMs.
We designed a novel semi-supervised learning ANN to do
diagnostic classification and evaluated the performances of the
proposed method through a simulation study. In the proposed
framework, we combined ANN with a semi-supervised learning
method, the Co-Training method. To hold the two assumptions
of successfully applying Co-Training, we used two DCMs, DINA,
and DINO models, as the two classifiers.

In the simulated study, we compared the proposed method
with five widely used DCMs, DINA, DINO, LCDM, G-DINA,
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and RUM. By varying the four assessment factors (item
discrimination, Q-matrix accuracy, number of attributes, and
items) which impact the performance of DCMs, the comparison
results indicated some advantages of the proposed method.

The first advantage is that the proposed ANN method
achieved comparable performance compared with the five DCMs
even under the ideal assessment condition (high diagnostic
quality and 100%Q-matrix accuracy). It means that the proposed
ANN method could be used for providing reasonable cognitive
diagnostic classification result without an appropriate DCM for
an assessment.

The second advantage is that proposed ANN was robust to
the Q-matrix mis-specification because the classification rate
dropped less than the other five DCMs when the Q-matrix
accuracy decreased to 90% accuracy. This advantage make the
proposed method can be used for real large scale assessment
because the Q-matrix of a large number of items can hardly be
guaranteed to be 100% accurate.

The last advantage is that although the classification rates of
the proposedmethod droppedmore thanDINA andDINOwhen
the item discriminating power reduced, the proposed method
was still more robust to the item discriminating reduction than
the general DCMs. In other words, the proposed method finds
a trade-off between classification accuracy and robustness to
the noise.

Generally, the proposed method could demonstrated the
ability to provide a reasonably accurate classification results
which can be used for either providing diagnostic classification.
In addition, the classification can be used to determine
the relationship between items and latent class. Then, the
relationship can help researchers to choose the appropriate
DCM to fit the data and estimate both personal variable and
item variables.

5. DISCUSSION

Although the study demonstrates promise for using the proposed
semi-supervised learning artificial neural networks, there are
still some limitations. One concern of this study is that the
current analysis only focused on the classification rate but
not consider the item parameters, which are very important
to provide appropriate item matching students’ ability in an
computer adaptive test or online adaptive learning environment.
Another concern of this study is that the missing response was
not considered in the proposed ANN. In the simulation, we
assumed that all test-takers responded all items, but in real
assessment, the missingness is a very common issue in CDM.
The last concern is that although we introduced the validating
test for early stop to avoid over training, this research did not
evaluate the prediction performance of the proposed method.
The reason is that in current CDM area, the research studies
focus on explaining data not doing prediction on a new dataset.
With regard to these three concerns, there will be three future
research topics.

The first future study is that the classification results could
be used to determine the item parameters to evaluate item

discriminating power among students’ mastery level for specific
attributes or determine the relationship between items and
attributes to explore the attribute structures. An appropriate
difficulty that matches a student’s momentary attribute profile is
expected to encourage the student to complete the item.

The second future research direction is to convert the
dichotomous response patterns to polychotomous response
patterns by considering missing values into the input response
pattern. Then a multiclass classification algorithm is applied
to classify the latent classes by considering the missing values
even the missingness is related to the latent class (i.e., non-
ignorable missingness).

The last future research is to evaluate the prediction
performance of the artificial neural network based cognitive
diagnostic classification method, and compare the performance
with the DCMs in doing prediction on new dataset, although
DCMs are proposed to interpret the current dataset (i.e., training
data). With regard to the knowledge in educational data mining
(EDM), the prediction will consist of two directions: (1) how
is the model’s performance on predicting new test-takers’ latent
variables; (2) how is the model’s performance on estimating new
item’s characteristics. For different directions, the ANN based
method will be built up using different architecture.
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