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Dementia, a prevalent disorder of the brain, has negative effects on individuals and

society. This paper concerns using Spontaneous Speech (ADReSS) Challenge of

Interspeech 2020 to classify Alzheimer’s dementia. We used (1) VGGish, a deep,

pretrained, Tensorflow model as an audio feature extractor, and Scikit-learn classifiers

to detect signs of dementia in speech. Three classifiers (LinearSVM, Perceptron, 1NN)

were 59.1% accurate, which was 3% above the best-performing baseline models

trained on the acoustic features used in the challenge. We also proposed (2) DemCNN,

a new PyTorch raw waveform-based convolutional neural network model that was

63.6% accurate, 7%more accurate then the best-performing baseline linear discriminant

analysis model. We discovered that audio transfer learning with a pretrained VGGish

feature extractor performs better than the baseline approach using automatically

extracted acoustic features. Our DepCNN exhibits good generalization capabilities. Both

methods presented in this paper offer progress toward new, innovative, and more

effective computer-based screening of dementia through spontaneous speech.

Keywords: dementia detection, prosodic analysis, affective computing, transfer learning, convolutional neural

network, machine learning, speech technology, mental health monitoring

1. INTRODUCTION

One of the most important social problems in developed countries is the constant rise of the
percentage of the elderly population. A major health issue affecting this segment of population
is the appearance Alzheimer’s dementia (AD), affecting around 50 million people worldwide and
expected to grow three times over the next 50 years (Baldas et al., 2010).

Dementia is estimated to be responsible for 11.2% of years lived with disability in people over 60
years of age, compared with 9.5% for stroke, 5.0% for cardiovascular disease, and 2.4% for cancer.
In Europe, the prevalence of AD increases exponentially with age. The incidence also increases with
age, although with a plateau in extreme old age (Todd and Passmore, 2009).

Comorbidity of several physical and mental health disorders was studied in relation to age
and socioeconomic deprivation. The presence of mental health disorders increased as the number
of physical morbidities increased, and was much greater in more deprived than in less deprived
people. Physical-mental health comorbidity is very common, with depression and painful disorders
as key comorbidities, and with dementia seen in a small reverse gradient (Barnett et al., 2012).

There is a significant relation between old-age depression and subsequent dementia in patients
over the age of 50. This supports the hypothesis of old-age depression being a predictor, and
possibly a causal factor of subsequent dementia (Buntinx et al., 1996).
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Speech is a well-established early indicator of cognitive deficits
including dementia (Bucks et al., 2000). Speech processing
methods offer great potential to fully automatically screen for
prototypic indicators in near real time, and they can be used as
an additional information source when diagnosing Alzheimer’s
disease (Weiner et al., 2016).

Dementia was detected in speech with voice activity detection
and speaker diarization followed by extraction of acoustic
features. The unsupervised system achieved up to 0.645
unweighted average recall (UAR). Authors detected dementia
using speech segments as short as 2.5 min, but achieved the
best results using segments in the range between 10 and 15 min
(Weiner et al., 2018).

Other AD detection approaches combined extraction of
acoustic and linguistic features (Speech to Text and Human
Transcriptionist), and applied a one-way ANOVA for feature
selection. The reported binary classification accuracy on brief
(less than 10 min) spontaneous speech samples reached 88%,
with recall of 0.920 (Jarrold et al., 2014).

We target the classification task of AD Recognition through
Spontaneous Speech (ADReSS Challenge 2020). The AD
classification task consists of creating binary classificationmodels
to distinguish between AD and non-AD patient speech on
the ADReSS dataset. The authors of that challenge prepared
the dataset and provided five baseline, machine learning
classification models, that used both acoustic and linguistic
features for the detection of AD in spontaneous speech. Their
acoustic approaches were based on emobase (Eyben et al.,
2010), ComParE 2013 (Eyben et al., 2013), Multi-resolution
Cochleagram features (MRCG) proposed by Chen et al. (2014),
the Geneva minimalistic acoustic parameter set (eGeMAPS) by
Eyben et al. (2015), and minimal feature set (Luz, 2017). The best
baseline accuracy was achieved by linear discriminant analysis
(LDA) model using ComParE features.

In this paper, we propose two methods for speech-based
screening of AD. Our models perform significantly better than
the ADReSS challenge baseline for classification task, as evaluated
on the same, official ADReSS challenge dataset.

2. METHODS

2.1. Dataset
The dataset for the 2020 ADReSS challenge consists of speech
recordings elicited for the Cookie Theft picture description task
from the Boston Diagnostic Aphasia Exam (Goodglass et al.,
2001). These data were balanced by the organizers in terms of
age, gender, and the distribution of labels between the training
and test partitions in order to minimize the risk of bias in
the prediction tasks. The dataset from 78 non-AD subjects,
and 78 AD subjects, was labeled for binary classification and
regression tasks. The labels for the binary classification include
Alzheimer’s dementia and healthy control, whereas the labels for
the regression task are Mini-Mental State Examination (MMSE)
scores (Folstein et al., 1975), which provide a means for dementia
diagnosis based on linguistic tests. For more details regarding the
dataset, including the segmentation and voice activity detection

algorithm, we refer the reader to the ADReSS challenge baseline
paper (Luz et al., 2020).

2.2. VGGish Model and Scikit-Learn
Classifiers
We extended the method of Pons Puig et al. (2018) and
conducted two-step classification experiments to detect cognitive
impairment due to AD (as shown in Figure 1). This consisted of
a two-stage classification process, where a classifier was trained
with features to predict whether a speech segment was uttered by
a non-AD or AD patient, and majority vote (MV) classification,
which assigned each subject an AD or non-AD label based on the
majority labels classification.

2.2.1. Feature Extraction

We used VGGish (Hershey et al., 2017), a deep, pretrained
Tensorflow (Abadi et al., 2016) model as a feature extractor.
VGGish is an audio embedding produced by training a modified
VGGNet model (Simonyan and Zisserman, 2014) to predict
video tags from the Youtube-8M dataset (Abu-El-Haija et al.,
2016). Principal component analysis (PCA) (Cao et al., 2003)
was used for dimensionality reduction, with PCA set to 128.
VGGish model converted audio input features into high-level
128-D embedding, which was fed as an input to a downstream
classification model. The features were extracted from non-
overlapping audio patches of 0.96 s, where each audio patch
covered 64 mel bands and 96 frames of 10ms each.

2.2.2. Classification Methods

We performed classification experiments using five different
methods, namely support vector machines (SVM, with a radial
basis function kernel and scaling gamm), linear support vector
machines (LSVM), perceptron, multi-layer perceptron classifier
(MLP, with 20 hidden layers, using a stochastic gradient descent
solver, 600 iterations, learning rate of 0.001), and nearest
neighbor (1NN, for KNN with K = 1 and cosine metric).

2.3. DemCNN—Custom Convolutional
Neural Network
Current deep convolutional neural network (CNN) performs
considerably better than the previous state-of-the-art
(Krizhevsky et al., 2012). Transfer learning was often used
in medical image analysis (Cheplygina et al., 2019). Applying
transfer learning on a wide range of tasks nearly always gave
better results (Kornblith et al., 2019). CNN-based methods
have been successfully employed to medical imaging tasks
and achieved human-level performance in classification tasks
(Esteva et al., 2019). CNNs have proven very effective in image
classification and show promise for audio (Hershey et al., 2017).
We extend the audio classification work presented in Wołk, K.,
and Wołk (2019) and Chlasta et al. (2019).

2.3.1. Classification Method

We introduce DemCNN, a custom PyTorch (Paszke et al.,
2019) CNN. We designed and implemented a custom sequential
architecture consisting of six Conv1D layers using ReLU
activation function, batch normalization and dropout, with
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FIGURE 1 | Two-stage architecture: VGGish model and Scikit-learn classifiers.

FIGURE 2 | Architecture diagram of DemCNN, a custom PyTorch convolutional neural network for speech classification.

the final (seventh) output layer being a dense layer. The
output layer had 2 nodes (num_labels), which matched the
number of possible classifications outputs. Figure 2 presents a
more detailed architecture diagram of our custom CNN for
speech classification.

We unpacked a byte-string for each file into a 1D numpy array
of numbers that could be analyzed by the CNN. Subsequently,
the dataset was downsampled with a low-pass filter (with
downsampling factors of 4, 4, 2).

We performed a two-step training of our CNN model using
a cross-entropy loss function. We fine-tuned learning rate, the
number of training cycles, and the number of training iterations
per cycle. We set the first (training) batch size to 32, and the
second (deployment) batch size to 2. The selection of the second
learning rate for each step of our method was automated using a
custom function operating on standard lr_finder. We trained the
classifier for 2 or 4 epochs.

3. EXPERIMENTS AND RESULTS

All experiments were implemented in Python using Scikit-
learn (Pedregosa et al., 2011), Tensorflow (Abadi et al.,
2016), and PyTorch (Paszke et al., 2019) on the Google
Colaboratory Platform (Bisong, 2019). The platform uses Jupyter
Notebook standard that facilitates exchange of source code and
reproducibility of results. The source code and accompanying
results are available on GitHub.1

The ADReSS development data were split into train and test
sets by randomly assigning 80% of the speakers to the train set

1Code: https://github.com/KarolChlasta/ADReSS-Challenge2020

and 20% to the test set. Results obtained for different classifier
setups are summarized in Table 1.

Three models we developed using the first approach (VGGish
+ 128 PCA + linearSVM/perceptron/1NN) achieved 59%
accuracy in our test set. Employing the same setup with SVN
model, we achieved 55% accuracy. The best-performing baseline
SVM models using MRCG features proposed by (Chen et al.,
2014) and the ComParE 2013 features (Eyben et al., 2013)
achieved lower accuracy of 53%. Interestingly, our 1NN model
achieved better results than the best-performing baseline 1NN
model using ComParE features (59% against 57%).

Our custom raw waveform DemCNN system achieved the
best classification accuracy of 63.6%. The model classified
14 speakers correctly, eight incorrectly, and proved the most
effective in distinguishing between AD and non-AD speech
samples on the full wave enhanced ADReSS audio dataset. This
result was 7% better then the best baseline classification accuracy
on the ADReSS training set (Luz et al., 2020).

The final results for our custom audio DemCNN model
were submitted to the 2020 ADReSS Challenge organizers after
retraining the classifier on the full ADReSS training set, and
predicting on the full ADReSS test set (see Table 2 for results
and the accompanying hyperparameters). Our model performed
slightly better (1%) on the test partition than the best baseline
LDA model trained on automatically extracted ComParE feature
set (Eyben et al., 2013).

4. DISCUSSION

The main limitations of the AD field are poor standardization,
limited comparability of results, and a degree of disconnect
between study aims and clinical applications (de la Fuente Garcia
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TABLE 1 | Summary of classification results on AD Recognition through Spontaneous Speech (ADReSS) training set.

Model type Precision Recall F1 score Accuracy Baseline accuracy

SVM 0.556 0.454 0.500 0.545 0.565 (SVM + Minimal)

LinearSVM 0.600 0.545 0.571 0.591 0.565 (SVM + Minimal)

Perceptron 0.600 0.545 0.571 0.591 0.565 (LDA + ComParE)

MLP 0.429 0.273 0.333 0.454 0.565 (LDA + ComParE)

1NN 0.600 0.545 0.571 0.591 0.574 (1NN + ComParE)

DemCNN 0.692 0.692 0.692 0.636 0.565 (LDA + ComParE)

Our approaches (VGGish + 128 Principal component analysis [PCA] and custom audio convolutional neural network [DemCNN]) vs. the best baseline accuracy on acoustic features.

The bold values indicate best results achieved on ADReSS training dataset.

TABLE 2 | The results of Alzheimer’s dementia (AD) classification task on AD Recognition through Spontaneous Speech (ADReSS) test set.

Approach Class Precision Recall F1 Score Accuracy

DemCNN (Learning rate = 0.2; Non-AD 0.528 0.792 0.633 0.542

Cycles = 4.4; Lengths = 8.8) AD 0.528 0.792 0.389 0.542

DemCNN (Learning rate = 0.1; Non-AD 0.625 0.625 0.625 0.625

Cycles = 2.2; Lengths = 8.8) AD 0.625 0.625 0.625 0.625

Baseline acoustic features Non-AD 0.670 0.500 0.570 0.620

(LDA + ComParE) AD 0.600 0.750 0.670 0.620

Our approach (custom audio convolutional neural network [DemCNN]) vs. the best baseline on acoustic features (linear discriminant analysis [LDA] + CompParE). The bold values

indicate best results achieved on ADReSS test dataset.

et al., 2020). Our two methods are attempting to close some of
these gaps.

Data scarcity has hindered research into the relationship
between speech and dementia. Recently, the community has
turned to transfer learning (Yosinski et al., 2014), as a
solution for a wide range of machine learning tasks for which
labeled data are scarce. Selecting the right pretrained model as
audio feature extractor allows to rapidly prototype competent
speech classifiers.

In our first approach, we used a standard VGGish (Hershey
et al., 2017), that is a popular deep audio embedding model
trained on Youtube-8M video dataset (Abu-El-Haija et al., 2016).
In our experiments to detect subtle changes in pathological
speech, we confirmed that automatic extraction of acoustic
features (Eyben et al., 2010) performs similarly to using a
pretrained deep audio embedding model for feature extraction.

Similarly to us, Syed et al. (2020) also used VGGish deep
acoustic embeddings in the ADReSS Challenge. They used
other types of feature aggregation methods: (a) Fisher Vector
encodings (FVs) and (b) Bag-of-Audio-Words (BoAW). Both
achieved satisfactory results. Their VGGish and FVs model
overperformed ours (59.1%) with 62.96% accuracy on the train
partition, whereas their VGGish and BoAWmodel achieved even
higher accuracy of 75%.

Our second method, the DemCNN model, for which we
only performed a basic hyperparameter tuning, improved the
classification results further. Moreover, the results achieved
by DemCNN were similar in training and testing (63.6 vs.
62.5%), which is a good indicator of the lack of overfitting

during the training process. This can be explained by a larger
dropout defined in layers 5 and 6 of the network. An expected
consequence of that is a good generalization capacity of our
DemCNN model, which would positively impact the overall
performance in clinical practice, when working with new data.

A similar approach to our DemCNN in the ADReSS Challenge
was proposed by Cummins et al. (2020). Their raw segment
based End-to-End CNN had four convolution layers, with
the first convolution layer used to model voice source-related
information or vocal tract information, such as formants. This
approach achieved 71.3% accuracy on the training partition,
but the reported result on the test partition was only 66.7%.
Although this result is 4% better than our DemCNN, an expected
consequence of a large difference between the results in training
and test partitions is possibly a worse generalization capability of
the network when working with new data.

An interesting opportunity for future research would be to
use a combination of acoustic and linguistic features in detecting
dementia. The latter approach, derived from automatic speech
recognition (ASR) output, or from manual transcripts, had
already been proven to detect dementia (Weiner et al., 2017),
but relatively small gains were found when fusing acoustics and
linguistics approaches (Cummins et al., 2020; Rohanian et al.,
2020).

ADReSS Challenge 2020 helped to establish that although
the linguistic systems outperforms the acoustic systems in
AD (Cummins et al., 2020; Yuan et al., 2020), this result
is unsurprising given that a human observer generated the
transcripts manually, and they contain considerably fewer
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sources of noise than the audio recordings. As a result, such
systems would be difficult to implement in clinical practice.

An option to overcome that would be to combine acoustic
information with linguistics systems based on transcripts
generated from ASR systems. This idea would introduce
automation, but also increase the complexity, and dependency on
errors rate for ASR in a given language.

It may also be useful for future work to gather a large dataset
combining spontaneous speech samples for several pathologies
(starting with depression and dementia, especially for old-age
patients) to train an improved DepCNN to distinguish different
types of disorders in pathological speech.

Finally, the DementiaBank’s Pitt corpus (Jost and Grossberg,
1995) is large enough for considering experiments with other,
custom, or off-the-shelf deep neural network architectures.

5. CONCLUSION

In this paper, we proposed and compared two acoustic-based
systems: VGGish, a pretrained Tensorflowmodel as audio feature
extractor and Scikit-learn classifiers with DemCNN, a custom
raw waveform based CNN.

In the first approach, we selected the VGGish model as feature
extractor and PCA for dimensionality reduction. This approach
achieved the accuracy of 59.1%, 3% better than the best baseline
accuracy achieved on the train partition with acoustic feature
extraction for the respective classification algorithms.

In the second approach, we presented DemCNN, our
custom PyTorch audio CNN to detect signs of dementia in
spoken language. According to the experiments, the proposed
architecture achieved promising performance and demonstrated
the effectiveness of our method, as well as good generalization
capabilities. DemCNN overperformed the best baseline accuracy
of LDA model (ComParE feature set) by 7% on the ADReSS
training set (accuracy of 63.6%), and 1% on the test ADReSS
test set (accuracy of 62.5%). Our DemCNN and End-to-End
Convolutional Neural Network (Cummins et al., 2020) produced
the strongest performance of the acoustic systems on the
ADReSS 2020 classification task, highlighting the benefits of
self-learning features.

To conclude, we demonstrated a proof-of-concept, and
applicability of (1) audio transfer learning for feature extraction,
(2) DemCNN, a custom raw waveform based CNN in detecting
dementia through spontaneous speech. We demonstrated that
(1) audio transfer learning with a pretrained VGGish feature
extractor performs better then the baseline approach (Luz
et al., 2020) using automatically extracted acoustic features, and
that these are relatively minor improvements. Our DemCNN
method (2) overperforms our VGGish method (1) by 4%
and the baseline on the test partition (Luz et al., 2020) by
roughly 1%.

Both approaches presented are active attempts to close
the gaps in standarization of automatic AD detection, and
to improve the overall comparability of results to better
embed computational speech technology into clinical practice.
They offer simplicity, easy deployment, and they are language
independent, which could result in a wide adoption and
improved accessibility in a short space of time.

This contribution is especially important now, in the time of
current COVID-19 pandemic, when the need for a remote digital
health assessment tool is greater than ever for the elderly and
other vulnerable populations.
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