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In response to calls for research to improve human-machine teaming (HMT), we present 
a “perspective” paper that explores techniques from computer science that can enhance 
machine agents for human-machine teams. As part of this paper, we (1) summarize the 
state of the science on critical team competencies identified for effective HMT, (2) discuss 
technological gaps preventing machines from fully realizing these competencies, and (3) 
identify ways that emerging artificial intelligence (AI) capabilities may address these gaps 
and enhance performance in HMT. We extend beyond extant literature by incorporating 
recent technologies and techniques and describing their potential for contributing to the 
advancement of HMT.
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INTRODUCTION

Human-machine teaming (HMT)1 is increasingly relevant to a variety of modern industries, 
domains, and work environments. Nearly a decade ago, Amazon added robots to their warehouse 
facilities to participate in stocking (The Future of Work, 2019). More recently, Google initiated 
a research program to improve human-machine collaboration (Knight, 2017). These examples 
and others (e.g., IBM, Facebook; see Davenport, 2018) have demonstrated that machine agents, 
or machines capable of perceiving and acting upon the world autonomously (Russell and 
Norvig, 2009), can improve human and organizational performance by providing opportunities 
for increased safety and productivity.

Effective HMT is contingent upon the success of complex interactions between human and 
machine agents, and between these agents and their environment (Stowers et al., 2017). However, 
it is difficult to create machine agents that have the advanced competencies (i.e., knowledge, 
skills, and abilities) necessary to support these complex interactions (Sukthankar, et  al., 2012). 
Consequently, not all HMT results in heightened performance at the individual, team, or 
organizational level. In their respective literatures, teams researchers (e.g., Salas et  al., 2009) 
and computer scientists (e.g., Klein et  al., 2004; Ososky et  al., 2012; Seeber et  al., 2020) have 

1 We refer to human-machine teams (HMT) as humans and machines working together to accomplisha goal, with 
machines being autonomous enough to engage in decision making (Seeber et al., 2020). Limited forms of HMT have 
already begun, but additional sophistication still needs to be achievedbefore machines can be considered true teammates 
(Sukthankar et al., 2012).
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identified competencies that are important for successful teaming, 
but efforts to identify promising new technologies in this area 
have been limited. Thus, there is a need to explore recent 
technological developments that may contribute to the 
advancement of HMT research and practice regarding effective 
human-machine collaboration.

In this perspective, we  (1) briefly summarize the state of the 
science on critical team competencies identified for effective HMT, 
(2) highlight gaps preventing machines from fully realizing these 
competencies, and (3) identify emerging artificial intelligence (AI) 
capabilities that show promise for enhancing these competencies 
in machine agent teammates. Our goal is to show how HMT 
can integrate cutting edge advancements from computer science 
to improve capabilities of machines to function as teammates.

THE EVOLUTION OF HUMAN-MACHINE 
TEAMS

Psychologists and engineers have long explored the use of 
machines to augment and improve human task performance 
(Fitts, 1951; Dekker and Woods, 2002). In early work, machines 
operated as tools to facilitate taskwork by automating physical 
(e.g., product assembly) and cognitive (e.g., text generation) tasks. 
The goal of the machine was to improve the overall HMT 
performance (Dekker and Woods, 2002). Historically, the 
sociotechnical systems approach (Trist and Bamforth, 1951; 
Cherns, 1976) guided work design for HMT (Trist, 1981). 
According to this perspective, the human represents the social 
subsystem, and completes tasks using resources within the technical 
subsystem, which is represented by the machine (Eason, 2009).

As machines gained intelligence and the ability to adapt in 
their interactions with humans, researchers (e.g., Parasuraman 
and Riley, 1997) developed guidelines regarding the appropriate 
design and use of machines, including guidelines for their 
autonomy and adaptivity (e.g., Parasuraman et al., 2000). Broader 
frameworks describe the human, machine, and contextual inputs, 
and the resulting processes and states that define human-
machine performance (Pina et  al., 2008; Stowers et  al., 2017). 
These frameworks also highlight the temporal nature of 
interaction between humans and machines.

In the last decade, the conversation has shifted from machines 
as tools to machines as teammates (Phillips et al., 2011; Seeber 
et  al., 2020). The introduction of machines as a component 
of the social – rather than solely the technical – system has 
resulted in new design-related challenges (Sukthankar et  al., 
2012). For example, once machines attain a certain level of 
intelligence, humans tend to judge machines in much the same 
way they do their fellow humans, seeking human likeness 
where it may not exist (Nass et  al., 1995; Groom and Nass, 
2007). From the HMT perspective, this has been referred to 
as “teammate-likeness,” where the human perceives the machine 
as possessing agency, altruism, task-interdependence, relationship 
building, sophisticated communication, and shared mental 
models (SMM; Wynne and Lyons, 2018). Teammate-likeness 
is contingent on factors such as trust and ability 
(Schaefer et  al., 2016) and may also be  contingent on machine 

cues that imply emotional intelligence (e.g., empathy, perspective 
taking; Salovey and Mayer, 1990). Given that machines still 
lack the capacity for true emotional intelligence and other 
socio-emotional competencies that are on par with humans 
(e.g., Picard et al., 2001; Erol et al., 2020), creating technologies 
and techniques that allow machines to live up to this perceived 
teammate-likeness presents a unique challenge.

GAPS IN MACHINE COMPETENCIES 
FOR HMT

It may not be  necessary for machines to possess all human 
socio-emotional competencies to be effective teammates. However, 
the creation of certain capabilities allows machines to develop 
attitude-based competencies that have been identified as critical 
for the optimization of teams (c.f. Salas et  al., 2009), 
such as cohesion and mutual (rather than one-way) trust 
(Groom and Nass, 2007). Recent work in team science has 
emphasized three team competencies that are transportable 
across contexts (Salas et  al., 2018), namely communication, 
coordination, and adaptability (hereafter referred to as 
adaptation). These competencies, referred to as transportable 
teamwork competencies, are applicable in any effective team, 
regardless of the team or task environment (Salas et  al., 2018).

Although team researchers discuss communication, coordination, 
and adaptation strictly in the realm of human teams (Salas et al., 
2018), others have highlighted their importance to HMT (Stowers 
et al., 2017; Seeber et al., 2020). These competencies are considered 
universally relevant collaborative processes (Salas et  al., 2018; 
Seeber et  al., 2020). Due to wide applicability across team and 
tasks types, we  feature them in this perspective piece as critical 
areas, where additional technological advancements could improve 
HMT performance on a large scale. Here, we  describe the state 
of the science on these competencies in HMT and identify gaps 
where new technologies can provide benefit.

Communication
Communication, which refers the process of exchanging information 
between teammates (Salas et  al., 2009), is important for team 
performance as it contributes to the development and maintenance 
of SMMs and the successful execution of many necessary team 
processes, including planning and mission analysis (Salas et  al., 
2009). In HMT research, the process of information exchange 
between humans and machines has been examined via the concept 
of transparency, defined as “the quality of an interface (e.g., 
visual, linguistic) pertaining to its abilities to afford an operator’s 
comprehension about an intelligent agent’s intent, performance, 
future plans, and reasoning process” (Chen et  al., 2014, p.  2).

Although perfect transparency has yet to be realized in HMT 
(Nam and Lyons, 2020), machines have gained the capacity 
to share information with humans and coordinate more effectively 
in joint tasks (Lyons, 2013; Chen et  al., 2014, 2018). This 
includes using turn-taking (Chao and Thomaz, 2016), which 
is integral to human-machine fluency (Hoffman, 2019). Features 
such as turn-taking and the ability to recognize human language 
(Tellex et  al., 2020) can enhance the bidirectionality of 
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communication between humans and machines, making HMT 
in general more teamlike and efficient (Chen et  al., 2018).

Researchers studying effective HMT have identified that the 
trust a human member has in a machine is a critical factor 
in successful team communication (Nam and Lyons, 2020) as 
well as HMT fluency (Hoffman, 2019). To that end, researchers 
have looked at how communication can promote trust, and 
established guidelines for the effective design of information 
for promoting trust and overall performance (Chen et al., 2014; 
Sanneman and Shah, 2020). In addition to guidelines regarding 
the quantity and design of information, researchers have 
investigated the quality of information shared by HMT members 
and have applied frameworks of human situation awareness 
to understand and improve communication processes, such as 
the mitigation of confusion (Chen et al., 2014; Stowers et al., 2020).

Despite improvements in communication-related abilities, not 
all machines apply these skills with equal success, leaving gaps 
between high-performing machines and high-performing HMTs. 
For example, machines utilizing neural networks tend to have 
higher performance than other machines, but generally utilize 
poorer communication due to their use of distributed statistical 
representations (Nam and Lyons, 2020). Teaming done with 
machines utilizing neural networks would benefit from an 
improvement in explainability (Gunning and Aha, 2019). 
Technological advancements in the area of explainable AI (XAI) 
show promise for enhancing transparency between humans and 
machines that utilize neural networks. In short, XAI is AI that 
can be understood by humans (Gunning and Aha, 2019; Sanneman 
and Shah, 2020). A goal of XAI research (Gunning and Aha, 
2019) is to identify approaches for communicating AI models 
and their inferences in a format that human operators can 
comprehend. This research exposes recent XAI-afforded 
competencies (e.g., transparency), which contributes to 
understanding and trust between human(s) and machine(s) (e.g., 
Nam and Lyons, 2020), thus impacting HMT communication.

Communication in HMT must be a two-way street. Machines 
must be  able to effectively share information in a way that 
humans can understand, but to do so means that machines 
must possess the ability to accurately model human 
comprehension of information. This ties in closely with the 
second transportable teamwork competency: coordination.

Coordination
While communication refers to the information-sharing process, 
coordination in human teams refers to the organization of 
team members’ knowledge, skills, and behaviors to meet a 
specific goal (Salas et al., 2009). In HMT literature, coordination 
is defined as the process through which humans and machines 
manage “dependencies between activities” (Malone and Crowston, 
1990). In effective team coordination, task-relevant information 
is communicated in a timely manner, while unnecessary 
communication is avoided. In this way, effective communication 
processes can be seen as necessary but not sufficient for effective 
HMT coordination.

Human-machine teaming scholars have identified three 
requirements for effective coordination (Klein et  al., 2005): 
members must (1) each be  reliable and able to predict each 

other’s behaviors, (2) possess common historical and present 
knowledge (Clark, 1996), and (3) be  able to re-direct or help 
each other in tasks (Christoffersen and Woods, 2002). To this 
end, a machine is considered an effective coordinator if it is 
reliable, directable, able to communicate intentions, and able 
to recognize status and intentions of other team members 
(Klein et al., 2005). These qualities allow the machine to be able 
to engage in the communication and creation of SMM needed 
for successful coordination (Matthews et  al., 2021).

The primary gap in the development of coordination in HMT 
lies in the degree to which machines can engage in implicit 
coordination. Implicit coordination, which refers to the process 
of synchronizing team member actions based on assumptions 
of what each teammate is most likely to do (Wittenbaum and 
Stasser, 1996), is helpful in high workload situations as it reduces 
“communication overhead” (MacMillan et  al., 2004), and allows 
teammates to focus on the task at hand with minimal distraction. 
While machines currently possess the ability to detect certain 
implicit cues; e.g., via the recognition of facial expressions (Picard 
et al., 2001), they are limited in their ability to detect contextual 
cues. For example, because coordination involves a complex 
and varying presentation of implicit communication cues (Lackey 
et  al., 2011), it is difficult and expensive to support machine 
cue perception on a human level. Detection, interpretation, and 
reasoning about these cues from a human perspective 
(Baker et al., 2011) is imperative to ensure effective coordination.

To this end, machines would benefit from developing a 
theory of mind (Baker et  al., 2011). This would translate 
observations of teammates’ behaviors into a computational 
model of what they know/do not know, what their goals and 
preferences are, what capabilities they have, and what behaviors 
they might take next. Such a model could then be  employed 
to simulate what a teammate might do in different situations 
or what options they would prefer their machine teammate 
to take. This kind of capability would support implicit 
coordination with teammates by enabling the machine to 
anticipate its teammates’ behaviors and expectations and then 
to adapt its own behavior to align with those. We  elaborate 
more on adaptation next, including the state of the science 
and related opportunities for improvement.

Adaptation
Adaptation in HMT has been examined in two ways: (1) adaptability 
(i.e., human-controlled adaptation; Miller et  al., 2005) and (2) 
adaptiveness (i.e., machine-controlled adaptation). For example, 
adaptability can be achieved by supporting human choice regarding 
the machine’s role, behavioral parameters, and level of autonomy. 
The human might decide a machine teammate’s tasking order, 
such as choosing the next lesson given by an intelligent tutoring 
system (Chou et  al., 2015). However, research has shown that 
humans do not always effectively allocate tasking to automated 
systems (Lin et  al., 2019). To overcome this human limitation, 
machines can engage adaptiveness by prompting a human to 
take control of a task (Kaber et al., 2005), or by assuming control 
in cases of suboptimal task management by human teammates. 
However, the latter solution poses a threat to human agency 
(Wohleber et  al., 2020) and must be  carefully executed.
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In team science, adaptation or adaptability as a teamwork 
competency is examined more broadly and refers to the adjustment 
of strategies and behaviors in response to changes in the team’s 
circumstances (Driskell et  al., 2018). In considering adaptation 
through this lens, machines are capable of detecting changes 
in the internal team and external environments (Lackey et  al., 
2011), allowing them to engage both adaptive and adaptable 
mechanisms as designed. They may also detect some underlying 
causes of changing environments through common sense reasoning 
(Morgenstern et al., 2016), though this capability remains limited 
by the datasets used to train common sense (Hao, 2020).

The limitation of machines having to rely on datasets to 
train common sense has led researchers to explore “third wave 
AI” capabilities for informing machine knowledge and adaptation. 
The Defense Advanced Research Projects Agency (DARPA) has 
argued that to move beyond knowledge-based AI methods (first 
wave) and statistical machine learning AI methods (second 
wave), we  need approaches that can integrate both first and 
second wave methods to support contextual understanding and 
adaptation (third wave, Launchbury, 2017). Most machine learning 
systems operate by identifying correlational relationships between 
variables. In contrast, as part of third wave AI, causal and 
counterfactual models (Pearl, 2019) aim to understand the causal 
relationships between variables. By modeling causal relationships, 
machines can better support counterfactual inference; i.e., they 
can generalize from observed operating conditions to 
unobserved conditions.

In the last section, we  suggested that developing theory of 
mind in machines (Baker et  al., 2011) would be  beneficial to 
HMT coordination and adaptation. For the adaptation piece 
to be  fully realized, it is necessary for machines to be  able 
to not only recognize their teammates’ knowledge and behaviors, 
but also anticipate and respond to new knowledge and behaviors 
should they arise. Machines that create and apply causal links 
to new scenarios should be  able to do this and therefore 
be  more effective at modifying their behaviors to engage in 
a truly adaptive team.

CONCLUSION AND A PATH FORWARD

Communication, coordination, and adaptation have been 
identified as critical to the success of both human teaming 
and HMT, but machines have yet to fully realize the uniquely 
human cognitive abilities that are necessary for effective teaming 
(Matthews et al., 2021). However, there are new AI capabilities 
that could allow machines to maximize these competencies. 
These capabilities offer a means for machines to begin meeting 
the requirements needed for effective collaboration with humans.

The capabilities afforded by recent technological advancements 
show promise for allowing machines to possess the transportable 
teamwork competencies identified as universally critical to 
teams (Salas et  al., 2018; Seeber et  al., 2020). For example, 
machines might leverage a theory of mind reasoning capability 
to build a computational model of their teammate based on 
observations of their behavior. This model might be  used to 
infer what teammates know, what information they have available 

to make decisions, and what they are likely to do next – 
enabling better implicit coordination with humans. This theory 
of mind model, in conjunction with the ability to generate 
human-explainable outputs (via XAI), will also enable machines 
to determine when and how best to communicate with teammates, 
further enhancing the trust and ability that affords machine 
teammate-likeness. Finally, the creation of causal and 
counterfactual inference capabilities unique to third wave AI 
will allow machines to be truly adaptive teammates that possess 
the ability to recognize and reason about the underlying factors 
that produce changes in the HMT and environment.

While these new technological approaches show promise, 
more work is needed to refine them to the level required for 
effective teamwork. Current AI research focuses on developing 
specific learning and performance capabilities and often does 
not incorporate findings or insights from the teaming and 
HMT literature. For example, consider OpenAI Five, a team 
of five trained neural-network models that can coordinate 
together to beat a team of five top human champions at Dota 
2, a multiplayer online battle arena game (Berner et al., 2019). 
While the five machines were able to coordinate effectively 
with each other, a subsequent match with a HMT showed the 
machines performed worse when partnered with humans. In 
examining this phenomenon, Carroll et  al. (2019) found that 
the machines were limited by the knowledge they gained from 
initial training with fellow machines.

Contrastingly, if the OpenAI Five possessed the capabilities 
outlined in this perspective piece (XAI, theory of mind, and 
third wave counterfactual prediction), then they should better 
support communication, coordination, and adaptation with 
humans. As this example shows, more work is needed to better 
understand how insights from human teaming and HMT might 
be integrated into the development of these emerging machines. 
Increasing collaboration between computer scientists and HMT 
researchers in examining these insights would be  beneficial. 
With machines operating at new levels of sophistication, true 
HMT may become possible at a larger scale than seen before.
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