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Prominent interpreting models have illustrated different processing mechanisms of 
simultaneous interpreting and consecutive interpreting. Although great efforts have been 
made, a macroscopic examination into interpreting outputs is sparse. Since complex 
network is a powerful and feasible tool to capture the holistic features of language, the 
present study adopts this novel approach to investigate different properties of syntactic 
dependency networks based on simultaneous interpreting and consecutive interpreting 
outputs. Our results show that consecutive interpreting networks demonstrate higher 
degrees, higher clustering coefficients, and a more important role of function words among 
the central vertices than simultaneous interpreting networks. These findings suggest a 
better connectivity, better transitivity, and a lower degree of vocabulary richness in 
consecutive interpreting outputs. Our research provides an integrative framework for the 
understanding of underlying mechanisms in diverse interpreting types.

Keywords: interpreting types, holistic features, complex networks, cognitive load, interpreting mechanisms

INTRODUCTION

Interpreting is an extremely intricate language processing task for the cognitive system (Christoffels 
et  al., 2006; Tzou et  al., 2012; Pöchhacker, 2016; Defrancq and Plevoets, 2018; Liang et  al., 
2019), which involves listening and comprehending of the input speech, memory storage, 
production of target equivalents, and sometimes alternately activating and suppressing production 
in two languages (Christoffels et  al., 2003; Aparicio et  al., 2017; Lin et  al., 2018). Among 
different types of interpreting, simultaneous interpreting (SI) and consecutive interpreting (CI) 
tasks are generally supposed to be  highly cognitive demanding and with sheer complexity. 
Characterized by the simultaneity of input comprehension and output production, SI involves 
temporary storage and extraction of meaning (Christoffels et  al., 2003), reformulation of the 
earlier segments of the source message into the target language, and articulation of even earlier 
segments (Gerver, 1976; Padilla et  al., 1995). By contrast, CI is performed in such cases where 
the stages of perception and production are processed serially. Interpreters prefer to finish a 
complete session before he “pauses for interpretation,” such as in international press conferences. 
Faced with the need to render speeches lasting up to a few minutes or more, interpreters 
may resort to note-taking to assist memorization (Gile, 2009; Pöchhacker, 2011).
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Regardless of the interpreting modes, it has been substantiated 
in a volume of research that cognitive resources are crucial 
to the interpreting performances (Padilla et  al., 1995; Tzou 
et  al., 2012; Injoque-Ricle et  al., 2015; Plevoets and Defrancq, 
2018; Liang and Lv, 2020). Cognitive load is defined as a 
“multi-dimensional construct representing the load imposed 
on the working memory during performance of a cognitive 
task” (Paas and Van Merriënboer, 1994). This construct is based 
on models of working memory which is limited in capacity 
and duration (Baddeley, 1992). According to Baddeley’s (1992) 
model, only a limited number of discrete items can be  stored 
and manipulated in working memory at the same time. 
Specifically, Miller (1956) suggested that normal individuals 
can only hold seven (plus or minus two) discrete units in 
working memory at one time and only for limited duration 
(Chen et  al., 2016). Given that interpreting is a complex task 
where extremely high demands are placed on working memory, 
the explanatory potential of the concept of cognitive load for 
the interpreting process is manifest. Gile (1985) introduced 
the notion of cognitive load into the field of interpreting studies, 
aiming to explain information loss observed in professional 
interpreters (Pöchhacker, 2015). He  argued that interpreting 
failures are ascribed to deficient cognitive capacity instead of 
insufficient linguistic or extralinguistic knowledge of interpreters 
(Gile, 1999, 2009). This conforms to the “Tightrope Hypothesis” 
which postulates that interpreters generally work close to their 
maximum capacity of cognitive load (saturation) when 
performing the interpreting tasks (Gile, 1999).

Such severe cognitive constraints can be elaborated by theoretical 
models of SI and CI, which highlight the critical role of cognitive 
capacity in each proportion of efforts in the interpreting activities. 
The composition and allocation of mental operations during 
the processing of SI are best captured by the Effort Model 
(Gile, 2009, 2016), in which SI can be  conceptualized as a 
process consisting of listening and analysis effort, the short-term 
memory effort, the speech production effort, and a coordination 
effort. These efforts are largely non-automatic and concurrent 
and thus compete for the limited cognitive resources, suggesting 
that the increments of one effort are at the expense of another 
(Koshkin et al., 2018). By contrast, CI is processed in two phases, 
namely the comprehension phase and the reformulation phase 
(Gile, 2009, 2016). To ensure the smooth production in SI and 
CI, the processing capacity available must exceed the capacity 
required; otherwise, errors or infelicities may occur due to 
insufficient cognitive resources.

The above-mentioned models, albeit conceptually presented 
only, explain that there exist different cognitive mechanisms 
underlying SI and CI, indicating that the processes of SI and 
CI may consume different amount of cognitive resource. This 
stimulates discussions on whether the difference of cognitive 
load between SI and CI may influence interpreting production. 
The disentanglement of this issue can be  of great significance 
to our understanding of both cognitive processing and language 
use. On the one hand, the cognitive load of different interpreting 
types reflected by the quantifications of interpreting outputs 
helps explore the coping mechanism of interpreters. On the 
other hand, it also illustrates how language shifts under the 

extreme cognitive load, and hence complements comparative 
studies on fully fledged common language uses (Liang et al., 2018; 
Lv and Liang, 2019; Jia and Liang, 2020).

The recent 10 years has witnessed booming interest in the 
research of cognitive load in interpreting. Some of current 
attempts concern capturing and understanding the difficult and 
demanding nature of the task as well as figuring out how 
interpreters deal with the challenges (Chen, 2017). Seeber (2011) 
postulated that cognitive load in SI varies according to the 
micro-strategy (waiting, stalling, text chunking, and anticipation) 
used by interpreters between syntactically different languages, 
and further suggested that cognitive load during SI of syntactically 
asymmetrical structures increased toward the end of the sentence 
(Seeber and Kerzel, 2012). Quite in the same vein, Shao and 
Chai (2020) found a significant drop in SI performance occurred 
when local cognitive load reached four chunks, corroborating 
the notion that interpreters generally experience cognitive 
saturation even in relatively easy SI tasks. Bóna and Bakti 
(2020) examined the effect of cognitive load on temporal and 
disfluency patterns between CI and sight translation and found 
that sight translation generated more cognitive load. Additionally, 
a latest study demonstrated a positive correlation between 
cognitive load and explicitating shifts in SI (Gumul, 2021).

Indeed, one of the major challenges in applying the construct 
of cognitive load to research in interpreting has been the difficulty 
of measuring this notion (Pöchhacker, 2015). Apart from some 
techniques testing brain activations or pupillary response in the 
experiments, language complexity can be  used as a potential 
measure to monitor cognitive load (Chen et  al., 2016; Chen 
2017). For instance, Plevoets and Defrancq (2016) operationalized 
cognitive load in interpreting in terms of linguistic features such 
as delivery rate and lexical density, and a high source text 
delivery rate and a high target text lexical density were determinants 
triggering significantly higher disfluencies in the interpretations. 
Similar measurement was also adopted in the research by Lv 
and Liang (2019). To systematically probe into the connection 
between cognitive load and interpreting, a line of quantitative 
research examined the interpreting outputs between SI and CI 
from various perspectives. As a seminal research quantifying 
different interpreting modes, Liang et  al. (2017) calculated the 
dependency distance of output texts and suggested that CI bears 
heavier cognitive demands than SI. Later on, they found consistent 
evidence in the lexical features (Lv and Liang, 2019) and language 
sequences (Liang et  al., 2019). A more recent study (Jia and 
Liang, 2020) probed into the lexical category realm with the 
activity index and found that CI outputs yield greater activity 
than SI outputs, indicating “a dynamic adaptive mechanism of 
language representations to accommodate cognitive constraints.”

Clearly, prior studies on the comparison of SI and CI 
cognitive processes were conducted from syntactic, lexical and 
language sequential perspectives, but without taking an 
interconnected and comprehensive feature into consideration. 
Since language is represented in an integrated way, the complex 
network (Newman, 2018), as a systematic approach, may be  a 
possible solution to investigate the features of different 
interpreting types from a macroscopic view. Therefore, we employ 
a novel approach of complex network to pin down the 
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characteristics of interpreting production motivated by different 
cognitive constraints during SI and CI.

The rationale of complex networks as an operational approach 
for linguistic inquiry is from the representative theories which 
posit language as a system (Saussure, 2001; Hudson, 2007). Such 
a system is deemed as a network of relations which can 
be  described by a number of vertices and edges. The vertices 
represent entities, while edges denote relationships among the 
vertices (Barabási, 2002; Čech et  al., 2007). Linguistic networks 
generally exhibit scale-free structure (Liu, 2008a; Čech and 
Mačutek, 2009), where only a small number of vertices have 
extremely great combinatorial capacity, while most vertices have 
rather low combinatorial capacity. Among all these vertices, the 
well-connected vertices in the networks serve as hubs, which 
play an important role in the topology of a linguistic network. 
Displayed in Figure  1 is a panorama of dependency syntactic 
network based on the language data obtained from speeches 
on the international forums. Although there are only about 
3,000 vertices in this network, it has already presented a clear 
picture of the complexity. Also, language sub-systems of various 
types generally possess the small-world structure, where there 
is a low degree of separation between vertices and a high level 
of clustering (Cong and Liu, 2014a). Such a structure can enhance 
the communication efficiency between the vertices and thus 
facilitates mental navigation (Ferrer-i-Cancho, 2005; Vitevitch, 
2008). Complex networks thus provide a quantitative measure 
and an interdisciplinary context to explore the properties of 
linguistic units at the system level (Cong and Liu, 2014b).

Prior studies demonstrate the feasibility of using the complex 
network approach to characterize and classify human languages, 
including the exploration of statistical patterns of different 
languages, stylistic research (Ferrer-i-Cancho et  al., 2004; Liu, 
2008a), typological properties of languages (Liu and Xu, 2011), 
hierarchical structures of a language (Chen et  al., 2015), the 
evolution of languages (Cui et  al., 2017; Chen et  al., 2018), 
and linguistic features in language learning (Jin and Liu, 2016; 

Jiang et  al., 2019; Hao et  al., 2021). It is probable that network 
properties can also discriminate linguistic features of different 
interpreting types. By utilizing this approach to interpreting, 
it is likely to examine the quantitative properties of interpreting 
outputs at the system level. In other words, both the linguistic 
units and their relations can be  taken into consideration.

Meanwhile, given that the ultimate goal of our study is to 
explore whether different cognitive processing in SI and CI 
has impact on language production during SI and CI, it will 
be beneficial to adopt an approach which can effectively connect 
to the cognitive constructs. In this regard, the network approach 
is a good choice to realize our goal, since this approach has 
been proved to be  advantageous for the representation of the 
cognitive system by capturing the interaction of structure and 
processes in the networks (Siew et  al., 2019). For instance, 
research concerning human semantic memory conceptualizes 
cognitive system as networks in which concepts are connected 
based on their semantic similarity to account for behavioral 
phenomena (Collins and Loftus, 1975; Steyvers and Tenenbaum, 
2005). Besides, cognitive impairment (Lerner et  al., 2009), 
lexical retrieval (Goldstein and Vitevitch, 2017; Siew, 2018) 
and human navigation (Sudarshan Iyengar et  al., 2012) are 
frequently investigated via the network science. The network 
representations serve as a mental map of the cognitive space, 
according to which, we  can make predictions about how 
structural properties of such network maps influence cognitive 
search behavior (Siew et  al., 2019). Collectively, research in 
this domain demonstrates the accessibility and feasibility of 
this measure to exploit cognitive constructs.

To examine the quantitative properties between different 
interpreting types at the system level and to connect these 
properties to cognitive constraints, here in the current research, 
we intend to build syntactic dependency networks. The adoption 
of the syntactic complex network approach has two primary 
considerations. On the one hand, syntax is a fundamental feature 
of language that concerns the organization of words and the 
structure of sentences. Hence, it serves as an essential foundation 
for understanding the processes of communication. Prior research 
demonstrated that dependency distance, the number of words 
intervening between two syntactically related words in a sentence, 
can reflect the cognitive constraints during varying interpreting 
tasks (Liang et  al., 2017; Liu et  al., 2017). This suggests that 
the syntactic feature is an applicable dimension to reflect the 
cognitive load. The employment of syntactic dependency networks 
thus conforms to the aim of our study. On the other hand, 
syntactic dependency networks based on syntactic relations are 
not related to the text content. However, the features of other 
types of networks such as co-occurrence networks and semantic 
networks can easily be  affected by the content of texts. The 
choice of syntactic networks can exclude the influence of this 
factor. Given the two reasons above, the present study employs 
the syntactic dependency network approach.

To sum up, firstly, prior quantitative investigations into the 
underlying differences across different interpreting types generally 
focus on one particular aspect, whereas a global and systematic 
view into the macroscopic features between SI and CI is rather 
limited. The network approach is beneficial in that all the FIGURE 1 | Overall view of a language network.
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words in a text can be  linked together and generate a holistic 
picture, instead of investigating linguistic features based on 
separated sentences. Secondly, the network approach proved 
to be very fruitful in examining linguistic features systematically 
and representing cognitive constructs. Thus, complex networks 
may facilitate our understanding of the properties of interpreting 
outputs under the extreme cognitive load, providing insights 
into the interconnection between language and cognitive sciences.

The present study therefore investigates different properties 
of syntactic dependency networks between SI and CI outputs, 
to explore whether different underlying mechanisms between 
SI and CI can influence interpreting production in SI and CI. 
The following questions will be  addressed:

 1. Do the syntactic networks of CI and SI outputs display the 
scale-free and small-world network structures?

 2. What are the differences in the cognitive complexity between 
SI and CI processes reflected by the main properties of 
syntactic networks?

 3. Can the characteristics of central vertices in the networks 
discriminate SI and CI?

MATERIALS AND METHODS

Corpus Descriptions
We adopted the transcribed real-world interpretations and the 
input texts of SI and CI as the corpus of the current research. 
The CI sub-corpus consisted of speeches given by Chinese Premiers 
Wen Jiabao and Li Keqiang at the annual press conference of 
two sessions (the National People’s Congress and the Chinese 
Political Consultative Conference), where the Prime Minister met 
and answered the questions raised by Chinese and overseas 
journalists. The SI sub-corpus comprised keynote speeches delivered 
by Chinese government leaders such as Wen Jiabao, Li Keqiang, 
and Xi Jinping on the international forums including sessions 
of the UN General Debate, the Davos Forum, the BRICS summit, 
the Boao Forum for Asia, the G20 Summit, the World Economic 
Forum, the ASEM Summit, and China-ASEAN Business and 
Investment Summit during the same time span. All the 
corresponding interpretations were from the interpreters’ mother 
tongue (Mandarin Chinese) into their second language (English).

To maximize the consistency of the text content, our corpus 
was composed of 12 SI input texts and 12 CI input texts, 
together with their corresponding outputs, without synthesizing 
all the texts into one. Therefore, all together, we  built 24 input 
networks and the corresponding 24 networks of SI and CI. 
To ensure comparability and integrality, each text was trimmed 
to be of similar length without separating a complete paragraph, 
and the alignment between input and output on the sentence 
level was also taken into consideration. The summary of the 
corpus is presented in Table  1.

The input speeches in the CI and SI corpus are comparable 
in the following aspects. First, the input texts of CI and SI 
were all public speeches delivered on internationally high-level 
conferences from 2007 to 2018, with equivalent topic areas in 
political and economic fields. Thus, the source speeches were 

homogeneous in formality, delivery rate, language register, topic 
area, and time span. Second, the results of type–token ratio 
(TTR), an indicator of lexical diversity, showed that no significant 
difference was observed between CI and SI input speeches 
(t = −0.775, p = 0.447), ensuring the comparability of the input 
speeches in terms of lexical diversity. Third, as for the syntactic 
complexity, a previous study of Liang et  al. (2017) using an 
identical corpus computed the mean dependency distance (MDD) 
of the input speeches and demonstrated that SI and CI input 
speeches are homogeneous in terms of syntactic complexity. 
Fourth, regarding the speakers and interpreters, all the speeches 
were addressed by the Chinese government heads and interpreted 
by top-level professional interpreters from the Department of 
Translation and Interpretation of China’s Ministry of Foreign 
Affairs, and both the CI and SI interpreters were seated at a 
table or in an interpreting booth during interpreting, ensuring 
the consistency of the speaking and interpreting style.

The Construction of Networks
The focus of our study is to build the syntactic dependency 
networks of SI and CI interpreting texts, in which vertices 
represent the word forms, and edges are syntactic dependencies 
between them (Liu, 2008a). A syntactic dependency network 
is usually converted from a dependency-annotated tree bank 
which is constructed with dependency grammar (Cong and 
Liu, 2014a). Dependency grammar is a syntactic analysis approach 
which concerns asymmetric pairwise relations with one of the 
two-word units as Governor and the other as Dependent 
(Mel’čuk, 1988). Each pair of relations is indicated by a directed 
arc pointing from Governor to Dependent with a label of 
dependency type on the top of the sentence. Given that 
dependency analysis involves binary relation between two 
linguistic units (Nivre, 2006; Hudson, 2007), it is more suitable 
to be  employed in the network analysis. From the perspective 
of the complex network, the dependent and the governor are 
vertices, and the links of dependency are edges (Liu, 2008a). 
The analysis of the sentence “The man bought a car” using 
dependency grammar is illustrated as in Figure  2.

Treebanks are syntactically annotated corpus based on 
dependency analysis (Abeillé, 2003), from which the syntactic 
dependency networks can be  constructed. Therefore, to start 
with, we  built a dependency-annotated treebank of authentic 
speeches based on the input texts and the interpreted texts 
of SI and CI. The syntactic treebanks were automatically built 
by Stanford Parser 3.6.0 (Marneffe and Manning, 2008), and 
the annotation accuracy was manually checked. Then, two 

TABLE 1 | Summary of the selected texts in the corpus.

Interpreting types Text types Number Size (tokens)

CI IT 12 55,692
OT 12 75,211

SI IT 12 59,141
OT 12 77,149

Total 48 267,193

IT, input texts; OT, output texts.
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columns of words which represent the governors and the 
dependents were extracted from the treebanks. Hence, the 
dependency relation of the example sentence extracted from 
its treebank is displayed in Table  2.

In this way, a list of binary relations of all the words in 
each text were generated in the EXCEL which can be  easily 
converted into the net. File format by Createpajek1 (a network 
converting software). These files were then put into Pajek2 (version 
5.06) to construct syntactic dependency networks. The network 
of the sample sentence built by Pajek is shown in Figure  3. 
The parameters of each syntactic dependency network were 
calculated, which would be  introduced in the following section.

Network Parameters
A multitude of quantitative measures were adopted to investigate 
the characterization of complex networks (Newman, 2010; 
Estrada, 2011). The present study focuses on some commonly 
used measures of a linguistic network involving degree, average 
degree, clustering coefficient, average path length, diameter, 
density, centrality, and small-world and scale-free structures.

In a linguistic network, a vertex’s degree refers to the number 
of edges which connect to it, representing the connectivity of 
a linguistic unit in the language sub-system. In a syntactic 
dependency network, degree denotes the range of a word’s 
possible dependency connections with other words (Chen et al., 
2011). It is a measure for the corresponding word’s combinatorial 
capacity to form syntactic dependency relations.

1 Createpajek can be  downloaded from http://vlado.fmf.uni-lj.si/pub/networks/
pajek/howto/excel2pajek.htm
2 Pajek is used for analysis and visualization of large networks. It can be downloaded 
from http://mrvar.fdv.uni-lj.si/pajek/default.htm

The average degree (⟨k⟩) is the mean of degrees of all its 
vertices, frequently used to estimate any given linguistic unit’s 
connectivity (number of edges) in the sub-system:

 
k

N
k

i
i= å1

 
(1)

In this formula, N denotes the number of vertices, and ki 
represents the number of edges of the vertex i in the network.

The clustering coefficient C is defined as a measure of the 
degree to which the vertices in a network tend to cluster 
together, or of the patterns of clusters. It reflects the proportion 
of a node’s neighbors that are themselves neighbors, or the 
degree to which a cluster’s connectivity is perfect (Cong and 
Liu, 2014b). The clustering coefficient Ci of a vertex i is 
formulated as:
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where Ei is the number of edges among the vertices in the 
nearest neighbors of vertex i (Liu, 2008a) and ki is the degree 
of vertex i or the number of neighbors that the vertex i has 
(Watts and Strogatz, 1998). The clustering coefficient of the 
network is defined by the average of Ci over all the vertices 
in the network:
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The average path length L is the average distance of the 
shortest path length over all possible pairs of vertices, which 
represents the degree of separation between a pair of 
linguistic units:
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d
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-( ) >
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where N is the number of vertices in the network and dij is 
the distance of the minimal path between vertex i and vertex j.

FIGURE 2 | Dependency structure of sample sentence “The man bought 
a car.”

TABLE 2 | Dependency relations of the sample sentence extracted from the 
treebank.

Dependent Governor

1 The man
2 man bought
3 bought
4 a car
5 car bought

FIGURE 3 | An example of syntactic dependency network.
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Diameter D is the maximal shortest path length in a network.
Density (ρ) is defined as “the ratio of the actual number 

of edges in the network to the maximal possible number of 
edges (Cong and Liu, 2014a).”

The centrality of a node reflects its importance and authority 
in the complex network. It is usually defined by different measures, 
such as degree centrality, betweenness centrality and closeness 
centrality (Jin and Liu, 2016). Degree centrality quantifies the 
number of edges which are directly linked to the vertices. 
Betweenness centrality is calculated by the number of the shortest 
distance paths passing through a vertex v, which is defined as:

 
C

G i j
G i jB

i j

v
v

, 

, 
( ) = ( )

( )¹
å

 
(5)

where Gv(i, j) is the number of shortest pathways between 
i and j running through v and G(i, j) = ∑vGv(i, j) (Ferrer-i-
Cancho et  al., 2004).

Based on the above-mentioned parameters, the scale-free 
and small-world properties of a network can be  evaluated. 
The scale-free property is examined by degree distribution 
which is presented by a distribution function P(k), representing 
the probability that a randomly chosen node will have degree k.

Generally, the real-world networks have the characteristics 
of the scale-free feature, that is, the degree distribution of a 
linguistic complex network follows the power-law formula 
(Barabási and Albert, 1999; Caldarelli, 2007):

   
P k k( ) ~ -g

      
(6)

The scale-free feature indicates that only a small number 
of vertices have extremely high degrees whereas most vertices 
have rather low degrees (Cong and Liu, 2014a).

The small-world property is evaluated by the relations between 
the average path length L and the clustering coefficient C of 
an actual network and those of its corresponding random 
network which has the same number of vertices and edges 
as the actual one. If a network satisfies the condition that 
L ~ Lrand and C ≫ Crand, it is a small-world with the feature of 
a low degree of separation between vertices and high level of 
clustering (Watts and Strogatz, 1998; Cong and Liu, 2014a). 
Humphries and Gurney (2008) also define a precise measure 
of small-worldness which is denoted as:

 
S C C

L L
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=

/
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(7)

Small-world networks often have S ≫ 1 (Humphries and 
Gurney, 2008; Rubinov and Sporns, 2010).

RESULTS

We first checked the equivalence of the text size of inputs by 
an independent-samples t-test to ensure the comparability of 

two sets of networks. Then, one-way ANCOVAs were performed 
to examine the differences of the network parameters between 
SI and CI by excluding the interference from the input values 
of the parameters. The values of each input network parameter 
were used as a covariate, and the interpreting mode was utilized 
as an independent variable. The values of each output network 
parameter were adopted as a dependent variable. Furthermore, 
to investigate the features of the hubs in the two interpreting 
modes, the proportion of function words in the top-ranking 
values of centrality was calculated and the differences were 
evaluated by a Mann–Whitney U test.

The sizes of CI and SI input texts conformed to the normal 
distribution, and no outlier was detected. The independent-
samples t test indicated no significant difference in the sizes 
of SI and CI input texts, t (22) = −1.954, p > 0.05.

Small-World and Scale-Free Properties of 
SI and CI Networks
To investigate the global characteristics of the output networks, 
the scale-free and small-world properties, we  first observed 
the cumulative degree distributions of the two types of syntactic 
dependency networks, respectively, for the evaluation of the 
scale-free feature. Figures  4, 5 display the cumulative degree 
distributions (in log–log scales) of SI and CI output networks.

Obviously, all the cumulative degree distributions of CI and 
SI networks followed the power law with all the determination 
coefficients R2 above 0.9, indicating that the degrees of CI 
and SI fit the power-law distribution well and all the networks 
possess the scale-free property.

With regard to the small-world property, the values of 
average path length and clustering coefficient of the syntactic 
dependency networks and their corresponding random networks 
yielded expected results. As is introduced in the previous 
section, the small-world structure of a complex network is 
defined by two key parameters: the average path length L and 
the clustering coefficient C. To determine this property precisely, 
Crand and Lrand of all networks were calculated first, and then 
the values of S were obtained. Statistical results of key parameters 
measuring small-worldness of input and output networks are 
displayed in Tables 3 and 4, respectively. According to the 
above-mentioned measure of small-worldness (Humphries and 
Gurney, 2008), since the values of S of all these networks all 
satisfied S ≫ 1, all the networks possess the small-world property.

Distinctions in Main Parameters of CI and 
SI Syntactic Dependency Networks
The values of some common-used parameters of SI and CI 
dependency networks of inputs and outputs are presented in 
Appendix I in Supplementary Material. To investigate the 
discrepancy of CI and SI output network properties by excluding 
the interference from the input values, a series of one-way 
ANCOVAs were conducted. As is shown in Table  5, significant 
differences were observed in the number of vertices (N), 
F(1,21) = 23.675, p < 0.001, partial η2 = 0.53, and the estimated 
marginal means showed that SI networks had more vertices 
than CI networks (M = 1493.47, SD = 19.725 for CI, M = 1641.53, 
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SD = 19.725 for SI). Significant differences also existed in average 
degree [<k>; F(1,21) = 16.511, p = 0.001, partial η2 = 0.44], clustering 
coefficient [C; F(1,21) = 8.019, p = 0.01, partial η2 = 0.276], density 
[ρ; F(1,21) = 48.166, p < 0.001, partial η2 = 0.696], betweenness 
centrality [F(1,21) = 51.636, p < 0.001, partial η2 = 0.711], and degree 
centrality [F(1,21) = 22.916, p < 0.001, partial η2 = 0.522]. Comparing 
the estimated marginal means, the results showed that, for 
parameter <k>, the average degree of CI output networks was 
significantly larger than that of SI networks (M = 6.318, SD = 0.06 
for CI, M = 5.971, SD = 0.06 for SI); for parameter C, CI output 
networks had a larger clustering coefficient than SI (M = 0.33, 
SD = 0.01 for CI, M = 0.30, SD = 0.01 for SI); for parameter ρ, 
the networks of CI yielded a larger density than SI (M = 0.0042, 
SD = 0.00 for CI, M = 0.0037, SD = 0.00 for SI); and for betweenness 
centrality and degree centrality, SI was significantly larger than 
CI (betweenness centrality: M = 0.196, SD = 0.009 for CI, M = 0.297, 
SD = 0.009 for SI; degree centrality: M = 0.13, SD = 0.006 for SI, 
M = 0.185, SD = 0.006 for SI). However, no significant difference 
of the shortest path length (L; p = 0.38) and diameter (D; p = 0.479) 
was observed between SI and CI.

Characteristics of Central Vertices in SI 
and CI
The degree centrality and betweenness centrality of SI and CI 
output networks demonstrated significantly different results, 
suggesting that distinctions exist in the prominence of vertices 

in the SI and CI networks from a global perspective. However, 
the centrality of each vertex, which is a proxy for the combinatorial 
capacity of a certain linguistic unit behaving as a hub, is also 
worthy of examination. Vertices with higher centrality behave 
as the powerful hubs of a network, representing more importance 
and a stronger combinatorial capacity. It is well documented 
that, in a syntactic dependency network, the hubs have the 
tendency to be  function words (e.g., articles, conjunctions, and 
prepositions; Ferrer-i-Cancho and Solé, 2001; Solé et  al., 2010), 
which play an important role in identifying grammatical 
relationships and the structure of a sentence (Jin and Liu, 2016). 
In the context of interpreting, the comparison of function words 
used in the interpreted speech among the highly connective 
linguistic units between SI and CI may reflect different processing 
mechanisms and cognitive demand in diverse interpreting modes.

Hence, to probe into the characteristics of central vertices 
in the networks of SI and CI, we  investigated the percentages 
of function words in the top 20 values of betweenness centrality 
and degree centrality. The results are shown in Table  6.

The Mann–Whitney U test showed that significant differences 
existed between SI outputs and CI outputs in both betweenness 
centrality (p = 0.001) and degree centrality (p < 0.001). The 
difference of distribution between CI and SI output texts is 
illustrated in Figures  6, 7. The percentages of CI outputs were 
significantly higher than SI outputs for both betweenness 
centrality and degree centrality.

FIGURE 4 | The cumulative degree distributions of the syntactic dependency networks of CI outputs.
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DISCUSSION

The current research examined the properties of syntactic 
dependency networks of SI and CI outputs. To our knowledge, 
this is the very first effort in quantifying interpreting types 
by adopting the complex networks approach from a macroscopic 
perspective, complementing to previous findings pertaining to 
the features of individual linguistic units.

Our results showed that, firstly, all the networks of SI and 
CI exhibited the scale-free and small-world properties. The 
syntactic networks of CI showed higher degrees, clustering 
coefficients, and density with a larger number of vertices, 
suggesting that CI has a higher connectivity between vertices 
and a higher transitivity of information than SI. Second, the 
parameter of the network centrality can differentiate CI and 
SI syntactic dependency networks. CI networks demonstrate 
a more important role of function words among the central 
vertices than SI networks.

Small-World and Scale-Free Properties of 
SI and CI Networks
Judging from the observed data, all the networks of SI and 
CI displayed the small-world properties. According to 
measurement of small-world structure introduced in the previous 
section, the small-world structure is determined by clustering 
coefficient and the shortest path length. The clustering coefficient 

indicates that two neighbors of a given vertices are also connected 
to each other. As contrast to the corresponding random networks, 
real networks with the small-world structures have much greater 
clustering coefficients (Watts and Strogatz, 1998). Our results 
indicate that the neighbors of a given vertex are highly 
interconnected in both SI and CI networks, which promotes 
the efficiency of transmitting the message from the input 
language and eases the cognitive burden imposed in the 
interpreting processes.

Similarly, a network with the small-world structure has a 
shorter average path length which denotes higher global efficiency 
of information transmission. In the process of the interpreting 
production, interpreters have to retrieve the expressions and 
information stored in the long-term memory as soon as possible 
as well as comprehending the source message simultaneously. 
As proposed by Collins and Loftus (1975), the fundamental 
mechanism of information retrieval in the human mind is 
spreading activation, and the resources allocated to the activation 
can be  inevitably consumed during the course of spreading. 
The small-world topology observed in the SI and CI syntactic 
networks reveals that each pair of vertices can be  linked by 
a small path length, thus minimizing the loss of activation 
energy and maximizing the success of the information retrieval 
during the process of interpreting. Moreover, given the 
associations between the shortest path length and dependency 
distance (Liu, 2008b), Our findings are also in line with the 

FIGURE 5 | The cumulative degree distributions of the syntactic dependency networks of SI outputs.
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tendency of minimization of dependency distance in natural 
language (Liu, 2008b; Futrell et  al., 2015; Liu et  al., 2017) and 
adhere to the principle of Least Effort (Zipf, 1949).

The scale-free structure of SI and CI syntactic networks 
denotes the heterogeneity of connectivity of vertices. Our results 
showed the power-law-like distribution of degree, suggesting that 
only a small number of linguistic units have extremely great 
combinatorial capacity while most vertices have rather low degrees. 
Hence, the scale-free networks of SI and CI possess the properties 
of “extreme resilience to random deletion of vertices coupled 
with extreme sensitivity to the targeted deletion of the most 
connected vertices” (Albert et  al., 2000; Baronchelli et  al., 2013).

Furthermore, the non-trivial properties of networks of CI 
and SI are in line with the findings by Liu (2008a), in which 
Chinese syntactic dependency networks are observed to exhibit 
similar patterns. These results converge to reinforce the 
universality of such network patterns in human languages 
(Ferrer-i-Cancho et  al., 2004; Ferrer-i-Cancho, 2005).

Distinctions in Main Parameters of CI and 
SI Syntactic Dependency Networks
The disparity of the properties in SI and CI networks can 
be  explicated by cognitive mechanisms during SI and CI and 
thus have cognitive implications.

The most important findings point to the distinctions between 
average degree and clustering coefficient of CI and SI. The 
average degree, on the one hand, denotes the efficiency of a 
word type being used in the texts. Our results showed that, 
with a similar size of word tokens, the average degrees of CI 
networks were significantly larger than SI, suggesting that the 
same word types are more repeatedly and frequently used in 
CI networks. This is in line with our result of a lower degree 
of lexical diversity in CI networks, which provides support 
for the heavier cognitive load demanded in CI. As postulated 
by Cowan (1999), working memory is a complex construct 
which contains activated elements of long-term memory, and 
the focus of attention is basically capacity limited. In SI, the 
input information is comprehended in segments, and only the 
most local content is stored in working memory. The cognitive 
load for accommodating and processing the chunks of 
information can instantly be  relieved once it is interpreted 
(Liang et  al., 2017). However, CI interpreters need to hold 
more chunks of information in the focus of attention, and 
the cognitive load may keep accelerating and accumulating. 
Additionally, due to limited time of note-taking, CI interpreters 
can take down only part of information. Thus, the cognitive 
burden from memorizing long chunks of information and 
insufficient note-taking information may result in heavier 
cognitive load in the reformulation phase in CI than in SI. 
To reduce the processing burden, CI interpreters have an 
inherent tendency toward using less-varied words.

On the other hand, in the context of a syntactic dependency 
network, the degree of a given vertex implies the combinatorial 
capacity of a word to form syntactic dependency relations. 
The average degree of a whole network reflects the connectivity 
between linguistic units in the syntactic sub-system (Cong and 
Liu, 2014a). The higher average degree of CI networks 
demonstrates the better connectivity and communicating 
efficiency in CI than SI. Such an efficient organizational 
sub-system of CI may be  due to the accumulation of long 

TABLE 3 | Results of key parameters measuring network small-worldness 
(networks of input texts).

Networks 
of input 
texts

C L Crand Lrand S

CI-1 0.041 3.671 0.004 4.418 11.250
CI-2 0.045 3.681 0.005 4.417 11.747
CI-3 0.048 3.601 0.005 4.236 10.419
CI-4 0.042 3.638 0.005 4.353 10.088
CI-5 0.050 3.610 0.005 4.227 11.227
CI-6 0.042 3.687 0.003 4.402 14.701
CI-7 0.045 3.701 0.004 4.540 14.915
CI-8 0.046 3.761 0.005 4.482 10.926
CI-9 0.042 3.663 0.003 4.474 15.858
CI-10 0.054 3.525 0.004 4.205 14.819
CI-11 0.049 3.754 0.005 4.385 12.642
CI-12 0.045 3.789 0.005 4.499 11.211
SI-1 0.064 3.868 0.005 4.316 14.550
SI-2 0.058 3.862 0.005 4.425 13.007
SI-3 0.028 3.596 0.003 4.526 10.125
SI-4 0.030 3.637 0.003 4.490 10.839
SI-5 0.053 3.867 0.003 4.498 21.173
SI-6 0.049 4.000 0.004 4.676 12.905
SI-7 0.062 3.813 0.004 4.412 19.713
SI-8 0.056 3.864 0.003 4.430 20.063
SI-9 0.049 3.946 0.004 4.527 12.677
SI-10 0.051 3.916 0.004 4.538 15.444
SI-11 0.060 3.747 0.006 4.258 11.599
SI-12 0.049 3.920 0.003 4.654 17.895

TABLE 4 | Results of key parameters measuring network small-worldness 
(networks of output texts).

Networks 
of output 
texts

C L Crand Lrand S

CI-1 0.032 3.496 0.004 4.212 9.750
CI-2 0.034 3.425 0.004 4.084 9.887
CI-3 0.037 3.388 0.004 4.010 9.798
CI-4 0.032 3.484 0.004 4.105 9.209
CI-5 0.037 3.495 0.005 4.114 9.259
CI-6 0.033 3.476 0.005 4.151 8.489
CI-7 0.030 3.527 0.004 4.224 8.549
CI-8 0.030 3.684 0.004 4.361 8.402
CI-9 0.030 3.561 0.005 4.198 7.097
CI-10 0.032 3.536 0.004 4.185 10.363
CI-11 0.037 3.544 0.005 4.161 9.114
CI-12 0.032 3.621 0.004 4.213 8.261
SI-1 0.033 3.512 0.004 4.251 9.343
SI-2 0.030 3.576 0.003 4.376 11.403
SI-3 0.028 3.596 0.004 4.425 8.435
SI-4 0.030 3.637 0.005 4.410 7.258
SI-5 0.027 3.582 0.004 4.392 8.350
SI-6 0.031 3.583 0.003 4.373 11.438
SI-7 0.033 3.534 0.004 4.376 9.430
SI-8 0.033 3.519 0.004 4.311 9.996
SI-9 0.029 3.586 0.003 4.353 12.002
SI-10 0.034 3.504 0.003 4.299 13.112
SI-11 0.034 3.542 0.004 4.303 11.701
SI-12 0.028 3.674 0.003 4.402 12.469
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chunks of information from the source language before 
articulating the interpreted speech. A higher average degree 
of CI networks thus greatly facilitates the understanding of 
the original message as a whole and enables CI interpreters 
to reformulate the intended meaning in a comprehensive way. 
By contrast, the process of SI requires the simultaneity of 
listening and production. The lag between the hearing of the 
source speech segment and its corresponding reformulation 
(the Ear-Voice Span) is much shorter (Gile, 2009). To avoid 
the potential overloading of memory, interpreters sometimes 
even shorten the lag to reduce the requirements of short-term 
memory, which may deprive SI interpreters of adequate 
understanding and increase the risks of misunderstanding and 
infelicities such as the incompleteness of the sentence structure 
and incoherence of the target information (Gile, 2009). In 
such cases, a smaller volume of information stored in the 
short-term memory for comprehension may result in lower 
degree of connectivity in SI output networks, while the overall 
grasp of intended meaning and the integration of more 

information segments in CI contributes to the enhancement 
of connectivity in CI output networks.

As a quantitative measure of transitivity, the clustering 
coefficient offers another perspective for the understanding of 
cognitive complexity (Watts and Strogatz, 1998; Baronchelli 
et  al., 2013). The higher clustering coefficient values in CI 
networks indicate a better transitivity of information in CI 
than SI, which is consistent with the result of density that 
the probability of any pair of CI linguistic unit to be  involved 
in a relation is larger than SI. Given the high memory load 
during CI reformulation phase which has been explicated above, 
these findings suggest a natural requirement for CI interpreters 
to lessen cognitive burden by generating less cognitively costly 
output. The evidence of the association between cognitive costs 
and clustering coefficient has been presented in several studies 
(Vitevitch, 2006, 2008; Goldstein and Vitevitch, 2014), among 
which it has been demonstrated that words with a high clustering 

TABLE 5 | Results of ANCOVAs on main parameters of CI and SI output networks.

Measures Networks N Mean SD Adjusted mean F Partial η2

N
CI outputs 12 1475.17 62.98 1493.47 23.675** 0.53
SI outputs 12 1659.83 69.38 1641.53
CI outputs 12 6.324 0.283 6.318 16.511** 0.44
SI outputs 12 5.964 0.138 5.971

C
CI outputs 12 0.0329 0.0027 0.033 8.019* 0.276
SI outputs 12 0.0308 0.0025 0.03

L
CI outputs 12 3.52 0.08 3.529 0.804
SI outputs 12 3.57 0.051 3.561

D
CI outputs 12 8.417 0.669 8.391 0.52
SI outputs 12 8.583 0.793 8.609

Density
CI outputs 12 0.00429 0.00022 0.0042 48.166** 0.696
SI outputs 12 0.0036 0.00017 0.0037

BC
CI outputs 12 0.202 0.024 0.196 51.636** 0.711
SI outputs 12 0.29 0.027 0.297

DC
CI outputs 12 0.149 0.021 0.13 22.916** 0.522
SI outputs 12 0.165 0.014 0.185

BC, betweenness centrality; DC, degree centrality.  
*p < 0.05; **p < 0.01.

TABLE 6 | The percentages of function words in the top 20 values of 
betweenness centrality and degree centrality.

Network 
number

SI outputs 
(BC; %)

CI outputs 
(BC; %)

SI outputs 
(DC; %)

CI outputs 
(DC; %)

1 45 55 60 70
2 40 60 50 75
3 60 50 60 65
4 50 55 65 65
5 45 50 60 60
6 45 55 55 70
7 40 60 50 60
8 40 55 60 70
9 45 50 60 70
10 40 55 50 70
11 40 60 55 70
12 50 55 60 65

BC, betweenness centrality; DC, degree centrality. FIGURE 6 | Distributions of percentages of function words in the top 20 
values between SI and CI outputs. BC, betweenness centrality.
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coefficient were responded more quickly than words with a 
low clustering coefficient (Vitevitch, 2006). Hence, in this case, 
to save more time and energy for the reformulation of the 
unfolding sentences, CI interpreters are inclined to retrieve 
words that have more syntactic relations with each other.

The average clustering coefficient of a network is a parameter 
of local communitization, whereas the average path length is 
a proxy for macro-scale communitization in a network (Borodkin 
et  al., 2016). The higher clustering in CI networks helps ease 
the cognitive burden and facilitates the local processing of 
information segments in CI. It is noted that the average path 
lengths and diameter of CI and SI networks were similar, 
suggesting that the two types of networks have no significant 
difference in terms of the macro-scale communitization. Although 
the disparity of local processing exists between SI and CI due 
to various cognitive demands in the processes of interpreting, 
the global integration of information in the process of SI and 
CI remains the same in a broader sense.

Besides the average degree and clustering coefficient, several 
other parameters that distinguish SI and CI are worthy to 
be  discussed. Since the vertices in a syntactic dependency 
network represent word types, our finding that the number 
of SI vertices was significantly higher than CI indicates higher 
degree of vocabulary richness and lexical complexity in SI. 
This result, on the one hand, might stem from the fact that 
CI interpreters tend to build a mental map which focuses on 
interconnections and general architecture of the intended 
meaning, without much attention to lexical reformulation. This 
is consistent with previous findings that CI output texts yields 
more simplified outputs than SI (Lv and Liang, 2019). On the 
other hand, the differences in lexical complexity might arise 
from cognitive load. According to the Effort Model (Gile, 2009), 
interpreting is conceived as comprising functional “efforts” 
which compete with each other in terms of processing capacity, 
and thus the increments of one effort will result in the decrements 
in another. Given that CI interpreters have to maintain a large 
volume of information segments from the source language, 

the burden on the memory is constantly accumulating to 
saturation in the reformulation phase. Moreover, due to the 
long time lag between listening and production, reformulation 
during CI is more self-paced and independent from the source 
structure (Gile, 2005). In this case, CI interpreters may tend 
to use less sophisticated and more repetitive vocabulary to 
reduce cognitive efforts (Liang et al., 2017; Lv and Liang, 2019). 
On the contrary, SI interpreters generally maintain the syntactic 
structure of source speech due to the simultaneity of perception 
and production in SI (Bacigalupe, 2010), and the cognitive 
load for the storage of previous information segments can 
soon be  alleviated (Liang et  al., 2017). Thus, lexical access, 
even of complex words, might be  less challenging for the mind 
than syntactic reformulation in SI.

With regard to the network property of centralization, degree 
centralization and betweenness centralization can differentiate 
SI and CI syntactic dependency networks. Degree centralization 
reflects the degree of variation among the vertices, and 
betweenness centralization indicates the tendency of a network 
to exhibit a star-like topology. Here in the present study, a 
larger degree of variation was observed in SI compared with 
CI. Among all the vertices in a network, linguistic units with 
relatively greater connectivity are more important, and these 
powerful vertices are regarded as hubs (Cong and Liu, 2014a). 
Convergent evidence suggests that hubs tend to be  function 
(grammatical) words (e.g., Ferrer-i-Cancho and Solé, 2001; Solé 
et  al., 2010; Cong and Liu, 2014a; Jin and Liu, 2016). Given 
the significance of function words in identifying grammatical 
relationships as well as its potential to reflect different processing 
mechanisms and cognitive complexity in diverse interpreting 
modes, the following section will discuss the proportion of 
function words in the hubs of SI and CI networks.

Characteristics of Central Vertices in SI 
and CI
In exploring the characteristics of central vertices, our result 
showed that the percentages of function words in the hubs 
of CI networks were higher than SI networks. This indicates 
a better use and higher importance of function words in the 
processes of CI, conforming to previous findings that function 
words are conceived to be  more densely distributed in CI 
than SI output (Liang et  al., 2019). The distinction of the 
proportion of function words among the central vertices in 
CI and SI networks may be  explicated by different processing 
mechanisms and cognitive complexity in CI and SI.

For SI interpreters, the interpretation begins immediately after 
the articulation of the original speech, with several units of 
information stored in the working memory. According to Cowan 
(1995), the number of units that can be  held in the “focus of 
attention” in working memory is said to be  3 to 4 chunks. 
Constrained by the limited cognitive resources, the outputs of 
SI generally follow the structure of the original chunks without 
much altering the order of the input text segments (Bacigalupe, 
2010; Liang et  al., 2017, 2019). To minimize the chunks held 
in the working memory, the SI production needs to be generated 
in an efficient way, which renders interpreters to give priority 
to the content words with specific meanings other than the 

FIGURE 7 | Distributions of percentages of function words in the top 20 
values between SI and CI outputs. DC, degree centrality.
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function words which has limited meaning but occupy the 
cognitive resources in the process of word selections. In this 
way, not only can the meaning of the source speech achieve 
the maximum retention, but also the efficient processing of the 
current information segments reduces the number of items to 
be  held in the working memory and avoids any delay of the 
processing of subsequent chunks (Mizuno, 2017). Moreover, as 
suggested by Hatim and Mason (2002), because the reception 
and production of the text occur almost simultaneously, SI 
interpreters receive the input in piecemeal, and thus they generally 
make tentative anticipations of the context and structure. Since 
these various hypotheses have to be  confirmed or disapproved 
by the incoming detailed information, SI interpreters “rely more 
heavily on the emerging texture in order to make and maintain 
sense. In other words, the rich variety of detailed information 
must be  “relied upon the most tangible point of reference” 
(Hatim and Mason, 2002). The content words, which are variable 
and rich in meaning, thus outweigh the function words for SI 
interpreters when handling the production.

By contrast, given the distinctive feature of CI that the 
utterance of the production has a long time lag after the source 
speech, interpreters start interpreting when a large proportion 
of the input information is fully processed, and hence, they 
can have a holistic comprehension of the original meaning. 
With longer segments stored in the working memory, CI 
interpreters tend to discard the linguistic form of the source 
language and restructure the sentence instead of interpreting 
in the word-for-word consistency to relieve the pressure (Ouyang, 
2018). That means, the extra load on memory makes it hard 
to retain the detailed information of the texture and context 
from the input text. To achieve smooth and successful production, 
CI interpreters generally utilize the manifestation of the detailed 
information as the means to arrange the structure in a 
comprehensive manner (Hatim and Mason, 2002). Such a way 
of relying on the structure in CI outputs indicates that the 
use of function words is of vital necessity, since function words 
define and signal sentence structure. As claimed by Gervain 
et  al. (2013), function words act as entry points “with respect 
to which the structural roles and sequential positions of other 
constituents can be  encoded and remembered.” Consequently, 
the role of function words in CI is demonstrated to be  more 
significant than in SI. CI interpreters may resort to the function 
words more frequently than in the SI tasks to produce smooth 
and coherent outputs with the added pressure on the memory.

Connections Between Complex Network 
and Cognition
The networks we  constructed provide important insights into a 
deeper understanding of cognition by capturing the interplay 
between the structure of the underlying networks and cognitive 
processes operating in interpreting. The small-world structure of 
SI and CI outputs networks has close associations with the domain 
of cognition. As claimed by Siew et  al. (2019), the small-world 
structure “may emerge from systematic growth processes that 
may adapt to environmental constraints to give rise to a beneficial 
structure.” Considering the context of interpreting which represents 
a special case of language use under the extreme cognitive load, 

such a structure may mirror the trade-off effect between the 
path length among the words and the cost of creating connections 
between the words. A similar process has been found in the 
brain networks, and these findings support the view that the 
small-world structure may offer a quantitative means to optimize 
the organizational structure (Bullmore and Sporns, 2012). It also 
provides a vital clue into the representation of the structure of 
cognitive systems which can maximize the efficiency of interpreting 
processes under the cognitive constraints and minimize cognitive 
load of interpreting in the language system. In short, the 
construction of interpreting networks demonstrates how different 
types of interpreting tasks mediate the global structural organization 
of the interpreting outputs to achieve cognitive load minimization. 
This echoes previous research quantifying interpreting types by 
language sequence (Liang et  al., 2019).

Our results also indicate that the networks of interpreting 
outputs are inherently dynamic due to different cognitive 
constraints in various modes of interpreting processes. The 
properties and representations of interpreting networks vary 
among different manipulations in the interpreting processes. 
We  posit that the disparate properties between CI and SI 
networks reflect different cognitive processes operating in 
interpreting. As is shown in our findings, CI output networks 
display a better connectivity, more efficient transitivity and 
higher importance of function words than SI. These results 
show the convergent evidence of a more efficient organizational 
sub-system of CI, which may be  partly associated with a 
cognitive load accumulation in CI and a cognitive load relief 
process in SI. Therefore, our study demonstrates the role of 
complex network in re-conceptualizing the cognitive processes 
of complex interpreting tasks as dynamic processes. This novel 
approach offers an avenue to explore the processing mechanisms 
of interpreting that lead to cognitive insights.

Furthermore, the measure of complex networks in the current 
research, together with such a quantitative approach as the 
calculation of dependency distance (Liang et  al., 2017) and 
the quantification of lexical features in the output interpreting 
texts (Lv and Liang, 2019) which are adopted in the prior 
studies, serves as a means to calculate the cognitive processing 
underlying different types of interpreting tasks. Hence, 
information processing is an important concept in understanding 
how interpreting processes operate, and it points toward 
computing as a fundamental instrumental approach for modeling 
and exploring cognitive complexity (Cioffi-Revilla, 2014).

In synthesizing the above analyses, our study provides valuable 
evidence from the domain of interpreting to support the view 
that the network of interconnected vertices is closely connected 
with the study of cognition. The complex network offers a 
unifying framework to investigate different system under the 
same conceptual lens and facilitates our understanding of 
cognitive processes (Barabási, 2011; Baronchelli et  al., 2013).

CONCLUSION

In the present study, we  examine the properties of syntactic 
dependency networks of SI and CI outputs. We  find that both 
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SI and CI networks exhibit the scale-free and small-world 
structures, corroborating the universality of such network 
patterns in human language. Most of the network parameters 
can discriminate SI and CI networks, and CI networks 
demonstrate higher degrees, clustering coefficients and density 
with a larger number of vertices, suggesting a better connectivity, 
transitivity and a lower degree of vocabulary richness in CI 
outputs. These may be  ascribed to the constant accumulation 
of memory burden as well as the long chunks of information 
in the process of CI. In terms of the characteristics of central 
vertices, our results also reveal the higher importance of function 
words in the processes of CI, which can be  explicated by 
different underlying mechanisms and cognitive complexity in 
CI and SI.

Our study offers a valuable integrative framework for the 
understanding of processing mechanisms during SI and CI, 
shedding light on interpreting training. Specific strategies 
can be given to interpreters in reference to distinctive cognitive 
features and coping mechanisms of a particular interpreting 
type. The findings also offer insights into the artificial 
intelligence that cognitive factors can be  integrated into the 
development of the machine translation to approach 
human cognition.
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