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The ability to represent, discriminate, and perform arithmetic operations on discrete

quantities (numerosities) has been documented in a variety of species of different

taxonomic groups, both vertebrates and invertebrates. We do not know, however, to

what extent similarity in behavioral data corresponds to basic similarity in underlying

neural mechanisms. Here, we review evidence for magnitude representation, both

discrete (countable) and continuous, following the sensory input path from primary

sensory systems to associative pallial territories in the vertebrate brains. We also

speculate on possible underlying mechanisms in invertebrate brains and on the role

played by modeling with artificial neural networks. This may provide a general overview

on the nervous system involvement in approximating quantity in different animal species,

and a general theoretical framework to future comparative studies on the neurobiology

of number cognition.

Keywords: brain, numerosity, number, comparative cognition, comparative neurobiology, approximate number

system

INTRODUCTION

The ability to represent, discriminate, and perform operations on discrete quantities has been
documented in species of different taxonomic groups, proving that non-symbolic numerical
cognition is not a human prerogative (Vallortigara, 2015, 2017; Butterworth et al., 2018). Since
the early work by Koehler (1951), there has been accumulating evidence that both vertebrates
and invertebrates are able to use non-verbal and non-symbolic quantities for relative numerosity
judgments and to compute arithmetic operations. Among mammals, primates have been the main
focus of research on comparative numerical cognition and not only different species demonstrated
to possess this ability (Thomas and Chase, 1980; Brannon and Terrace, 1998; Anderson et al.,
2005; Beran et al., 2008) but also they showed patterns of behavior very similar to those of
humans (Cantlon and Brannon, 2006; Merten and Nieder, 2009). Numerical competences have
been reported in rats (Davis and Albert, 1986), dogs (Ward and Smuts, 2007), cats (Pisa and
Agrillo, 2009), lions (McComb et al., 1994), elephants (Perdue et al., 2012), and several other
mammals. The main feature reported by these behavioral experiments is the animals’ capacity to
perceive the numerosity of sensory stimuli in an analog and noisy way, relying on an isomorphism
between the physical quantity and its internal representation. Similar results have been obtained
also in birds (e.g., Lyon, 2003; Templeton et al., 2005; Rugani et al., 2009, 2015; Scarf et al.,
2011; Vallortigara, 2012; Kirschhock et al., 2021), reptiles (e.g., Gazzola et al., 2018; Miletto
Petrazzini et al., 2018), amphibians (e.g., Uller et al., 2003; Stancher et al., 2015), and fish (e.g.,
Agrillo et al., 2010; Potrich et al., 2015, 2019), which constitute more phylogenetically distant
taxa with respect to humans. Even more compelling is the evidence that comes from studies on
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invertebrates (for a complete review, see Skorupski et al., 2018;
Bortot et al., 2020a) that unlighted further how widespread and
biologically relevant is the ability to perform estimation and
operations with numerical quantities in the animal kingdom.
Besides, such evidence reveals how numerical cognition abilities
can be implemented in small brains without the cortex (Giurfa,
2019).

Overall, these studies suggest the existence of an ancient
mechanism which has been conserved through evolution and
which is at the heart of the ability of animals to approximately
estimate the numerosity of stimuli, which is the number of
elements contained in a set (Brannon and Merritt, 2011). This is
what has been dubbed Approximate Number System (ANS) and
which is chiefly characterized by being based on Weber’s law, the
psychophysical rule which formalizes the systematic relationship
that exists between the magnitude of physical stimuli and the
power of discriminating them. According to Weber’s law, the
ratio of the increment threshold to the background intensity of
a stimulus is a constant.

The animal numerical competence must undoubtedly
be associated with increasing probability of survival and
reproduction (Nieder, 2019, 2020a), thanks to the capacity to
better discriminate and avoid predators or enemies (McComb
et al., 1994), to navigate in the environment, and to find food,
social partners, and sexual mates (Lyon, 2003). The ability to
discriminate quantity in a natural environment seems to be so
biologically crucial that even unicellular organisms are provided
with mechanisms of “quorum sensing” to fulfill it (Waters
and Bassler, 2005). An open question, however, is whether
this numerical competence emerges out of a homologous trait
conserved from the last common ancestor of all these species
or if instead a process of convergent evolution has led to its
development independently in each of these vertebrates and
invertebrates (Ferrigno and Cantlon, 2017).

Aside fromANS, the existence of another mechanism possibly
involved in the non-symbolic representation of numbers, namely,
the Object Tracking System (OTS), has been hypothesized
(Feigenson et al., 2004; Piazza, 2010). The OTS should account
for simultaneous, fast, and unconscious visual perception of
small sets of objects with an upper bound of three to four
items, a process also known as “subitizing” (though whether
subitizing and OTS are identical processes is unclear). It is well-
differentiated from ANS in being precise and dependent on the
absolute number of items, while in contrast numerical ratio
is the main feature of ANS. More importantly, OTSs are not
dedicated to numerosities, but they are implicitly represented in
the objects tracked. The discussion on whether there exist two
systems is still open (Nieder, 2019; and see for animal research,
e.g., Rugani et al., 2013a), a possibility being that the peculiar
phenomena of subitizing can be explained by ANS without
any need to postulate the existence of a second mechanism,

Abbreviations: ANS, approximate number system; Dc, dorsocentral division of
fish telencephalon; IPS, intraparietal sulcus; LIP, lateral intraparietal cortex; LGN,
lateral geniculate nucleus; NCL, nidopallium caudolaterale; OTS, object tracking
system; PFC, prefrontal cortex; VIP, ventral intraparietal cortex; V1, primary visual
cortex, striate cortex; V2–V3, extrastriate cortices.

for scalar variability for small numbers would be so low that
it may appear as corresponding to precise counting (Gallistel
and Gelman, 1992; Dehaene and Changeux, 1993; Vetter et al.,
2008). However, in this review we shall focus only on ANS and
its neural representations, since we are interested in reviewing
this more general system, which is primarily characterized by
the perceptual feature of the ratio effect, and several evidences
support it as the only truly quantitative system.

The ANS is the biological mechanism underlying the intuitive
and noisy estimation of quantity that Dehaene has called—
actually taking the expression from Tobias Dantzig—“the
number sense” (Dehaene, 2011). This epithet precisely lingers
on the sensory, thus approximate and spontaneous, component
of this ancient numerical competence. It involves the estimation
of both small and large sets of quantities, without any upper
boundary (Cordes et al., 2001). It has to be noticed that
while vertebrates with bigger brains succeed in managing larger
numerosities without constraints, it has long been maintained
that invertebrates would tend to have a limit of four objects that
they are able to discriminate and onto which they can be made
arithmetic (Skorupski et al., 2018); however, recent studies seem
to extend abilities at least up to six elements (e.g., Howard et al.,
2018; see for a review Bortot et al., 2020a). Approximate number
system is a presymbolic and preverbal system; indeed, in humans
it seems to fulfill the peculiar role of preceding ontogenetically
and giving foundation to the symbolic representation of numbers
(Gallistel and Gelman, 1992, 2000; and work with innumerate
indigenous peoples would support this, e.g., Gordon, 2004; Pica
et al., 2004). It explains why 5-year-old children without any
scholastic education are able to compare large sets of stimuli both
visually and acoustically, whether simultaneous or sequential,
excluding any influence by spontaneously learned symbolic
knowledge (Barth et al., 2005). Additionally, ANS is employed
both in simultaneous and sequential numerical tasks and across
sensory modalities (Hauser et al., 2003; Jordan et al., 2005, 2008).
Indeed, numerosity can be considered an amodal property of a
physical set (Giaquinto, 2018), and as such, it can be displayed
through the physical sense more relevant for a givenmoment and
a particular species.

The main signature of the ANS is the ratio effect, i.e., the
fact that the ability to differentiate two quantities—in terms of
accuracy and rapidity—is a function of their ratio, rather than
their absolute value. This effect is accounted for by Weber’s law
and emphasizes that a perceptual process is involved in numerical
judgments (Moyer and Landauer, 1967). The discrimination of
numerosity obeys Weber’s law in humans (Moyer and Landauer,
1967) as well as in other vertebrate (Mechner, 1958; Ditz and
Nieder, 2016) and invertebrate (Skorupski et al., 2018) species.
The dependence on the ratio between numerosities has two
sequels called distance effect and size effect. The distance effect
consists in the greater discriminability of two distant numbers
rather than two close ones. The size effect instead refers to the
reduced accuracy in differentiating at a given numerical distance
two large numbers with respect to two smaller ones (Dehaene and
Changeux, 1993).

Several behavioral evidences report a non-linear dependence
between the perceptual and numerical objects. Two hypotheses
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have been put forward as an explanation for these phenomena:
the scalar variability proposal and the logarithmic proposal
(Brannon and Merritt, 2011). The first is mainly endorsed by
Gallistel and Gelman (1992); according to them, numerosity is
characterized by a linear scale and variance is proportional to
numerosity itself. This implies that higher numerosities have
noisier representations (Merten and Nieder, 2009). The second
hypothesis states a constant variability, but according to it
mental magnitudes are proportional to the logarithm of the
objective magnitude (Dehaene, 2003). Despite both hypotheses
being congruent with the behavioral data, their disentangling
could be made looking at the neural encoding of numbers,
which according to a principle of parsimony seems to be better
described by a logarithmic scale (Dehaene and Changeux, 1993;
Nieder and Miller, 2003; Ditz and Nieder, 2016).

Another important aspect of numerical cognition is that the
preverbal discrimination of numerosity has been hypothesized
to belong to a general magnitude system, responsible for the
representation of space, time, and quantity (Gallistel, 1989;
Walsh, 2003). Indeed, several studies demonstrated that the
temporal and numerical features of stimuli can interact and bring
to indistinguishable psychophysical functions both following
Weber’s law, suggesting a common mechanism for counting and
timing (Meck and Church, 1983; De Corte et al., 2017). Discrete
quantities could be represented as continuous magnitudes
(Gallistel and Gelman, 2000), which are the same currency used
to quantify duration.

Concerning this tight relationship of numerosity with
other systems of magnitude, some authors have advanced the
hypothesis that continuous magnitudes which naturally covary
with numbers—such as area, perimeter, and density—might
be the leading information processed in tasks on numerosity
(Leibovich et al., 2017). Several studies try to control for
these variables, at least once at a time so as to tease apart
their impact on numerosity tasks from effects of ANS (Rugani
et al., 2011, 2013b; DeWind et al., 2015; Testolin et al.,
2020a). Animals for example should be aware of the direction
of the correlation between numerosity and the alternative
continuous variable, in order to rely on the second one to
complete those tasks (Ferrigno and Cantlon, 2017). However,
one recent experiment in bees demonstrated how problematic
it is to assess whether an animal is actually learning numerical
information instead of the continuous one (MaBouDi et al.,
2021), butmostly that behaviors relying on continuous cues could
reproduce signatures indicative of numerical cognition. Indeed,
bees that were trained to discriminate numerosity according
to conventional paradigms on further controls revealed to
rely on continuous quantities. We cannot exclude a narrow
association of numerosity and these covarying aspects of physical
stimulation, and indeed the difficulty in distinguishing them
is also proved by the fact that these variables are similarly
represented (Meck and Church, 1983); however, this is not
sufficient to exclude the existence of a numerical competence
among the others. Indeed, many (training) studies went at great
length to exclude non-numerical factors and to demonstrate
real numerical quantity discrimination (see for a review Nieder,
2019).

Given all these theoretical and behavioral premises, in this
review we shall focus on the neural underpinnings of the number
sense. While much has been reported and discussed about
the behavioral proofs of this numerical capacity, the literature
around the neural correlates is still in its infancy and presents
discrepancies, which are testified also by the slow growth with
respect to the early studies regarding this topic (Thompson et al.,
1970). In particular, little attention has been devoted to the
comparative aspects of number representation in the brains. On
one side, we have behavioral evidence for number representation
spanning from primates to cephalopods and insects, and striking
suggestions that the basic signatures of the ANS system would
be apparent for all these organisms. On the other side, we know
that the nervous systems of all these creatures are enormously
different, and most of the direct neurobiological evidence comes
from a bunch of organisms, mostly non-human primates and one
species of birds.

NUMEROSITIES AND OTHER KIND OF
MAGNITUDES IN THE BRAINS

From a neurobiological perspective, most studies on number
cognition focused on primates’ cortical areas and on the
nidopallium caudolaterale (NCL) of corvids, which is supposed
to be equivalent to the primates’ prefrontal cortex (Mogensen
and Divac, 1982; Divac et al., 1985; Güntürkün, 2005; Nieder,
2018; Stacho et al., 2020). In comparison, few studies investigated
the contribution of subcortical (sub-pallial) regions. This is
partly due to the idea that number cognition should be
regarded as an advanced cognitive skill, implying involvement
of associative and “higher-order” neural mechanisms located in
the pallial territory of vertebrate animals. However, as noted
in the previous section there is substantial evidence for the
“number sense” (ANS) being deeply rooted into primary sensory
mechanisms and highly shared among phylogenetically distant
animal species, from humans to honeybees (Butterworth et al.,
2018; Bortot et al., 2020a). Moreover, several authors argued
for the existence of a general magnitude system, of which
discrete (countable) numerosity would be only a part, dealing
with quantity information whatever the format (continuous or
discrete) and the domain (space, time, and number; Gallistel,
1989; Gallistel and Gelman, 2000; Walsh, 2003; Lourenco and
Longo, 2010; Merritt et al., 2010; Rugani et al., 2015, 2020;
Bortot et al., 2020b). Numerosity perception mirrors to a certain
degree sensory activity, appearing to obey to Weber’s law and
showing the same adaptation phenomena that we know to exist
for perceptual features such as color or stimulus orientation
(Burr et al., 2018; see also Burr and Ross, 2008). Furthermore,
species that do not possess pallial homologs, such as insects,
or even artificial neural networks seem capable of quantity
discrimination on the basis of (discrete) numerical information
(Skorupski et al., 2018).

Here, we will review evidence for magnitude representation
(both discrete and countable, and continuous) following the
sensory input path from primary sensory systems to associative
pallial territories (see Figure 1). This may help give a general
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FIGURE 1 | Candidate regions for number processing in the vertebrate brains, a comparison. Schematic representations of different vertebrate brains are provided on

the left, respectively, from the top, for fish, birds, and mammals. Pallial territories are depicted in red, subpallial in green, thalamic in yellow, and midbrain in blue. Fine

subdivisions of the pallium are depicted in pencil, the dorsocaudal division (Dc) in fishes, the visual Wulst, and the nidopallium caudolaterale (NCL) in birds, the

dorsolateral prefrontal cortex (dlPFC), the intraparietal sulcus (IPS), and the striate and extrastriate visual cortices (V1–V3) in mammals. On the right, a diagram depicts

in a simplified fashion the two main visual pathways, and an example of a stimulus used for studying number estimation is shown. The interconnections between the

different hubs are depicted with black arrows, while motor afferences are shown in gray.

overview on the central nervous system involvement in
numerical cognition in different animal species and provide a
general theoretical framework to future comparative studies on
the neurobiology of number cognition.

Primary Sensory Systems
Rising evidence points to a primary sensory involvement in
estimating magnitudes. As noted above, numerosity perception
is susceptible to sensory adaptation similarly to primary sensory
properties such as size or color (Burr et al., 2018; for a review
see Burr and Ross, 2008). Numerosity estimates increase after
a period of adaptation to small sets, and the opposite occurs
for large sets. Therefore, as it is the case for other primary
sensory properties, sensory systems should be able by themselves
of coarse number estimates (Burr and Ross, 2008).

Number and size representations are likely to be associated
in the brain. Using high-field functional magnetic resonance
imaging (fMRI), Harvey et al. (2013, 2015) showed that in the
human posterior parietal lobe there are regions responsive to
different stimulus sizes and that both sizes and numerosities are
topographically organized into maps. As it is the case for primary
sensory and motor cortices, preferences in the neural response
for similar numerosities, as well as for similar sizes although
in distinct subpopulations, are contiguous and gradually change
across the cortical territories.

Tectofugal Pathway
The tectum is a midbrain structure shared among vertebrates,
which is involved in sensorimotor functions (Ingle and
Sprague, 1975). A crucial relay of visual and auditory
systems, the tectum receives direct sensory input and is
reciprocally connected with the forebrain and the spinal cord
(see Figure 1).

The optic part of tectum, also known as superior colliculus in
mammals, is involved in competitive visual stimulus selection.
It controls rapid orienting behaviors, directly selecting and
estimating the value of the target stimulus (Gardner and
Lisberger, 2002; McPeek and Keller, 2004; Lovejoy and Krauzlis,
2010; Mysore et al., 2011; for a comparative perspective see
Mysore and Knudsen, 2011). The tectum represents the visual
space and converts a visuotopic sensory map into a map of
directed motor outputs (Nevin et al., 2010). It appears to be
organized into layers, with the superficial layers receiving direct
information from retinal ganglion cells (Sajovic and Levinthal,
1982; Del Bene et al., 2010). Some neurons in this region tune
to distinct visual properties such as looming, moving, or size.
Actually, size selectivity is an emergent property of the intratectal
circuitry (Sajovic and Levinthal, 1982; Del Bene et al., 2010).
Seminal work on anurans’ prey-catching behavior revealed tectal
selectivity for many different visual features. In particular, some
neurons appear to be selectively sensitive to different object sizes
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(Ewert and Gebauer, 1973; Cervantes-Pérez et al., 1985; Ewert,
1987).

Neurobiological studies on zebrafish larvae (Danio rerio)
revealed that the optic tectum encodes and classifies object size.
Different subpopulations of tectal neurons are tuned to small or
large objects, and their receptive fields are shaped through direct
afferent input from retinal ganglion cells (Preuss et al., 2014;
Barker and Baier, 2015).

Estimations of immediate-early gene (IEG) expression in
adult zebrafishes confirmed an optic tectum involvement
during stimulus size changes: using a habituation/dishabituation
paradigm, it was found that changes in stimulus size during
the dishabituation phase were inversely proportional to c-fos
expression in the tectum (Messina et al., 2020a).

In pigeons (Columba livia), electrophysiological recordings
in the optic tectum revealed the presence of some neurons that
modulate their activity in response to stimulus size changes
(Gusel’nikov et al., 1971).

Receiving direct visual information from the retina, the
optic tectum progressively, from the outer to the deeper layers,
segregates information and performs a fast stimulus classification
based on sensory parameters (Luksch, 2003; Wylie et al., 2009).
Subsequently, it can promote itself a behavioral response, while
the classified visual information proceeds to higher-order visual
and associative areas.

Quick estimation of stimulus magnitude, such as number
discrimination, is often essential to performing adaptive behavior
in the shortest time. For instance, group-living animals, such as
some fish or anuran tadpole, in the presence of a predator need to
rapidly estimate the largest group of conspecifics and to aggregate
with it, thus maximizing their survival rate (Hoare et al., 2004;
Agrillo et al., 2008; Gómez-Laplaza and Gerlai, 2011; Balestrieri
et al., 2019). The tectum could be an ideal candidate region
to perform fast and coarse number discrimination classifying
sensory information, in this case larger and smaller number of
conspecifics, and give rise directly to motor output toward the
larger group.

Evidence from another sensory domain has revealed the
presence of neurons in the torus semicircularis that appear
to count auditory signals, dubbed interval-counting neurons
(Rose, 2018). Male toads, which compete with each other to
mate, usually emit complex advertisement calls comprised of
several different pulses to attract females. Females evaluate
the complexity of the calls in order to choose the partner.
In the anurans inferior colliculus, the main tectal nucleus of
the auditory pathway homolog among vertebrates, whole-cell
recordings revealed that a first pulse inhibits the interval-
counting neurons, while as progressively other pulses arrive the
cells depolarize and spike when a certain number of pulses
(threshold) is reached (Rose, 2018). Note, however, that the
neurons in the anuran torus semicircularis require very specific
inter-pulse intervals and do not generalize across variations of
interval times. Therefore, it is uncertain whether such neurons
can be regarded as true “counting neurons.”

Indirect evidence suggests a subcortical involvement in
quantity estimates even in humans (Collins et al., 2017).
Exploiting the separation of the visual signals coming from

each eye until layer IV of the primary visual cortex (V1), pairs
of stimuli were presented sequentially either to the same or
to different eyes. Human participants were asked to compare
the numerical magnitude within each pair (same/different).
Numerosity estimation was facilitated in the monocular
condition for large ratios (3:1 or 4:1) for both small (<4) and
large (>5) numerosities. Given the prestriate separation of
monocular signals, ratio-dependent monocular judgments could
have benefited from a substantial subcortical contribution, for
beyond layer IV of V1 very fewmonocular neurons exist (Horton
et al., 1990; Menon et al., 1997; Bi et al., 2011).

Such findings fit in well with studies on number
discrimination in newborns (Izard et al., 2009). Forty-eight-
hour-old newborns are able of number discrimination when
the ratio is 3:1 or larger. The collothalamic pathway, which
comprises the tectum, is functional already at birth, while the
geniculocortical pathway probably becomes fully functional
later in development, around 2 months of age (Bronson,
1982; Atkinson, 1983; Braddick et al., 1986; Atkinson and
Braddick, 1989; Atkinson et al., 1992). This may suggest a
major involvement of the collothalamic pathway in newborn
number cognition.

One electroencephalogram (EEG) study in young children
(3–10 years) revealed little cortical involvement for numerosity
processing, which gradually increases throughout development
(Park, 2018). From this perspective, coarse numerical abilities
could be implemented in subcortical (possibly inborn see,
e.g., Di Giorgio et al., 2019) mechanisms. As in the case
of face perception (Johnson, 2005; Di Giorgio et al., 2017;
Lorenzi and Vallortigara, 2021; Rosa-Salva et al., in press), an
inborn subcortical mechanism would provide the basics for
number cognition, while subsequent experience and learning
would then capitalize on this mechanism to shape the more
sophisticated cortical computations for complex numerical tasks.
Note, however, that Izard et al. (2008) reported a cortical
involvement of number representation in 3-month-old infants.

Lesion studies in primates showed that even in the absence
of the striate cortex (V1) the input from the superior colliculus
still reaches the cortical dorsal stream (Rodman et al., 1989;
Rosa et al., 2000). Such direct connection may support a
superior colliculus involvement in numerical abilities early
in development. Functional magnetic resonance studies also
confirm a midbrain activation during numerical tasks in human
adults, which progressively enhances with the increase in the
number of items (Piazza et al., 2002).

Altogether, this evidence strongly supports a midbrain
involvement in coarse number discrimination among
vertebrates. From this perspective, the tectum appears to
be an ideal candidate region for fast quantity discrimination,
highly conserved through phylogeny, and early maturing
in ontogeny.

Thalamofugal Pathway
Another important hub and relay for primary sensory
information is in the dorsal diencephalon, the thalamus.
Different thalamic nuclei receive primary sensory information
from different sensory modalities and send it to multiple cortical
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fields (Herrero et al., 2002). Other thalamic nuclei, instead, act as
motor relays connecting basal ganglia to motor cortices (Evarts
and Thach, 1969; Kurata, 2005).

The lateral geniculate nucleus (LGN), a visual thalamic
nucleus part of the geniculocortical visual system, is a layered
structure that, similarly to the optic tectum, receives direct input
from the retinal ganglion cells (Perry et al., 1984). The LGN is
highly conserved among vertebrates, and its superficial layers are
topographically organized (Glees, 1941; Crossland and Uchwat,
1979). It projects to the primary visual areas in the pallium (Rezak
and Benevento, 1979; see Figure 1).

Responses of neurons in the LGN of cats (Felis catus) to
different light intensities were shown to obey Weber’s law
(Podvigin and Chueva, 1977; Podvigin and Elefandt, 1983).
Weber’s law being a signature of the ANS, this could suggest an
involvement of the LGN in coarse number (quantity) estimates.
Strengthening such hypothesis, IEG’s expression in zebrafish
revealed a thalamic involvement in number processing and
quantity estimation (Messina et al., 2020a). After a habituation
phase with either a small (3) or a large (9) number of dots,
fish faced a change in numerosity during a dishabituation phase.
Then, c-fos and egr-1 expression following the dishabituation
were quantified in the brain. Intriguingly, thalamus expression
of both genes was significantly affected by different directions of
change: after a change from large to small numbers of dots, the
IEGs’ expression decreased in the thalamus, while it increased
after a change from small to large number of dots (Messina et al.,
2020a).

The thalamus sends visual and auditory sensory inputs to
the visual and auditory regions in the pallium in all vertebrate
brains (Medina and Reiner, 2000; Bloch et al., 2020). The LGN
in mammal relays retinotopic information to the primary visual
cortex (V1; Sefton et al., 2015), and similarly thalamic nuclei in
the other vertebrates topographically project visual information
to a portion of the dorsal pallium (Karten, 2015; Suryanarayana
et al., 2017, 2020). Different neurons in these pallial visual regions
are sensitive to different visual properties such as orientation
or color.

Interestingly, change in numerosity of visual stimuli in
zebrafish also revealed selective expression of IEG in a
dorsocentral division of the pallium (Messina et al., 2020b). Such
selectivity could be the result of the thalamic as well as tectal input
to pallial regions (Bloch et al., 2020). Further studies are needed to
clarify the precise pattern of afference to the dorsocentral division
of pallium.

Evidence in human adults also suggests a role of early
pallial/cortical regions of the thalamofugal pathway in visual
magnitude estimations. Primary visual cortices, both striate and
extrastriate, are selectively involved in response to magnitudes
of visual items. Positron emission tomography (PET) as well
as fMRI studies showed an involvement of middle occipital
extrastriate visual cortices when subjects were explicitly required
to enumerate dots in a visual array (Piazza et al., 2002;
Demeyere et al., 2014). However, numerosity-sensitive signatures
arise from early visual cortices also when subjects were only
passively exposed to different numbers of dots. Amedial occipital
cortical component in event-related potentials was observed,

monotonically modulated by number 75–90ms after stimulus
presentation (Park et al., 2016). This early response likely reflects
an involvement of primary visual cortices (V1, V2, and V3)
when subjects were simply exposed to numerosity, as confirmed
by a study in which different numerosity arrays were presented
in the upper or in the lower visual hemifield, taking advantage
of the peculiar organization/polarization of the primary visual
cortices around the calcarine sulcus (Fornaciai et al., 2017).
Visual cortices distribute around the sulcus so that the upper
bank receives retinotopic input from the lower visual hemifield,
while the opposite happens for the lower bank. This distribution
is apparent from the polarity inversion of event-related potentials
arising from these regions by EEG (Ales et al., 2013; Kelly et al.,
2013a,b). An early robust inversion of polarity was detected for
numerosities presented in either the upper or the lower visual
hemifield, suggesting the origin of the response in V2 and/or
V3. Importantly, these early responses were more selective to
numerosity than to other continuous variables that covary with
numerosity, such as overall area or contour length (Park et al.,
2016; Fornaciai et al., 2017).

Remarkably, other studies showed that the activity pattern
measured in the visual striate cortices was different when the
task required to estimate the number or the overall surface of dot
arrays (Fink et al., 2001; Castaldi et al., 2019). This suggests that
different mechanisms may be involved in estimating continuous
and discrete quantities already at the level of the striate cortex.
Employing a set of stimuli rigidly controlled for continuous
physical variables, the occipital involvement in encoding discrete
variables (number) was not influenced from continuous variables
(DeWind et al., 2019).

Evidence from the auditory domain strengthens the
hypothesis of number as a primary perceptual feature, for
similarly to the visual cortex, the auditory cortex was found
to be selectively involved when estimating the number of
sequential sounds presented (Cavdaroglu et al., 2015). From this
perspective, sensory pathways could play a prominent role in
coarse number estimations and, subsequently, the associative
parietal cortices could further process numerosity categorized
along the sensory pathways. Indeed, evidence from the visual
domain suggests a pathway following the occipitoparietal stream
for numerical information processing (Roggeman et al., 2011).

Associative Regions
A considerable amount of evidence points toward number
being an abstract concept emerging from associative pallial
regions. A pallial involvement in numerical cognition has
been argued for in both primates and corvids. Although
conceptually this perspective seems to exclude the idea of
number as a primary sensory feature early encoded in the
sensory pathways, from a neurobiological perspective the two
ideas may not be mutually exclusive. It could be that while
numerousness is extracted early in the sensory stream it is further
processed and manipulated in more associative areas when the
numerical task is more demanding. Here, we will briefly review
evidence for associative pallial regions’ involvement in coarse
number estimation.
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Posterior Parietal Cortex
The posterior parietal cortex in mammals is an integration
hub where visual and auditory information is combined to
the somatosensory one (see Figure 1). It comprises the dorsal
visual stream and the cortex around the intraparietal sulcus
(IPS). The dorsal visual stream receives retinotopic information
from striate and extrastriate cortices (V1–V3; Mishkin and
Ungerleider, 1982). The IPS is particularly involved in merging
sensory information to plan movements of the eyes or the limbs
(Cohen and Andersen, 2002). Moreover, important outputs are
sent from the posterior parietal lobe to motor and premotor areas
of the frontal lobe.

Functional MRI studies on human adults revealed IPS activity
in numerical estimation, using both visual and auditory stimuli
(Castelli et al., 2006; Piazza et al., 2006). Crucially, such activity
does not depend on explicit numerical task demands. Simple
exposure to numerosity elicits activation in the IPS (Piazza et al.,
2004). Intraparietal sulcus involvement has been detected also in
4-year-old children and earlier in 3-month-old infants measuring
event-related potentials (Temple and Posner, 1998; Cantlon et al.,
2006; Izard et al., 2008; Kersey and Cantlon, 2017). A similar
pattern of activation, although more generally distributed in
the parietotemporal cortex, was observed when dogs (Canis
familiaris) passively watched set of dots in an fMRI study (Aulet
et al., 2019). Activity measured in this region crucially depended
on the ratio between different numerosities, obeyingWeber’s law.

In human and non-human primates, two subregions of the
IPS have been reported to be involved in number cognition, the
lateral intraparietal area (LIP) and more deeply inside the sulcus
the ventral intraparietal area (VIP; for a review see Nieder and
Dehaene, 2009).

One study of single-cell recordings in macaques’ (Macaca
mulatta) LIP revealed the presence of neurons that seem to act
as an abacus (Roitman et al., 2007). These neurons increase
their firing rate progressively as the number of items increases.
It is worth stressing, however, that this was reported for a
task in which numerosity had not to be discriminated by the
monkeys. Nonetheless, as we will see more thoroughly in section
Neural Networks, numerical estimation has been proposed to be
computationally based on two possible neuronal mechanisms,
either a summation one or a number-selective one (Chen and
Verguts, 2013).

The summation mechanism postulates the existence of
neurons that would respond monotonically to numbers,
increasing their firing rate with increasing numerosity (Verguts
and Fias, 2004). The response of the neurons recorded in
the macaque’s LIP acts in a summation fashion. Similarly do
the interval-counting neurons observed in the anuran inferior
colliculus (Rose, 2018). These pieces of evidence point toward
a possible summation coding mechanism extracting numerosity
from the environment in different neural substrates at different
processing levels.

On the other hand, the number-selective mechanism
postulates the existence of number neurons that respond to a
preferred numerosity and to other numerosities proportionally
to the distance from the preferred one (Verguts and Fias, 2004).
Single-cell recordings in monkeys’ VIP revealed neurons tuned

to a specific numerosity, dubbed number neurons (Nieder et al.,
2002; Sawamura et al., 2002; Nieder and Miller, 2004; Nieder
and Merten, 2007). Such tuning seems to be not affected by
continuous variables, being instead specifically elicited from the
discrete quantity represented. The selectivity in the neuronal
response reaches its peak for the preferred numerosity, while
adjacent numerosities elicit weaker responses coherently with
the distance from the preferred numerosity. Such property
exhibited by the neuronal response would explain the behavioral
distance and size effects, thus obeying Weber’s law (Nieder,
2020b). These number neurons respond also when the preferred
numerosity is passively perceived and in number-naïve monkeys
that did not experience any number training (Viswanathan
and Nieder, 2015). This evidence would be in agreement with
the hypothesis of an unlearned number-selective mechanism
underlying number estimation.

The two mechanisms, summation and number-selective, are
not however mutually exclusive. For example, a three-stage
computational model has been proposed for number estimation
(Dehaene and Changeux, 1993; Verguts and Fias, 2004) that
would account for a role of both mechanisms. The first stage
of the model would involve an item-location map, where
discrete items are encoded with respect to the different spatial
location in which they appear. Secondly, the location information
passes through a summation mechanism, in which the different
discrete locations are accumulated and transformed into a
quantity. Finally, the quantitative information is generalized
and transformed into an abstract number-selective code. An
fMRI study exploiting an adaptation paradigm found plausible
neural candidates for these three different stages, along an
occipito-parietal gradient (Roggeman et al., 2011). From inferior-
through middle-occipital gyrus to the superior parietal lobe,
BOLD responses modulated coherently with the location map,
the summation code, and finally the number-selective code
(Roggeman et al., 2011).

However, evidence from lesion studies suggests some caution
in interpreting results from number-selective neurons (DeWind
et al., 2019). When LIP or VIP is selectively inactivated in
monkeys, a general impairment is observed in numerical as well
as in color discrimination tasks. No specific effect on number
over color discrimination was detected. This could be due to the
role played by the IPS in general attentive or decision-making
processes. Evidence that these neurons are behaviorally relevant
was previously provided in another lesion study by Sawamura
et al. (2010). Further investigations therefore need to disentangle
the exact IPS involvement in numerical estimation tasks.

Mammalian Prefrontal Cortex, Avian Endbrain, and

Fish Dorsocentral Pallium
The prefrontal cortex (PFC) in mammals is widely recognized as
a fundamental hub for high-level and flexible cognitive control,
so-called executive functions. Executive functions comprise skills
ranging from decision-making, inhibitory control over behavior,
to planning (Fuster, 2015). Strategically, the PFC receives sensory
information from all the different modalities and projects back
to them (Pandya and Yeterian, 1991). It is a crucial site where
sensory input and motor output are combined (see Figure 1).
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In human and non-human primates, different evidences
suggest the existence of a frontoparietal network involved in
numerical estimations (Nieder et al., 2002). A portion of the
lateral PFC and the IPS are intensely interconnected with each
other (Selemon and Goldman-Rakic, 1988). Similarly to the
IPS, populations of neurons in the dorsolateral PFC selectively
respond to preferred numerical proportions (Jacob and Nieder,
2009). Using an fMRI adaptation paradigm with human adults,
PFC and IPS both showed a similar response to changes in the
numerical ratio. Such response was proportional to the change
from the preferred ratio (Jacob and Nieder, 2009).

Single-cell recordings in monkeys confirmed that number-
selective neurons in the PFC follow Weber’s law, as it is the case
for IPS’ number neurons (Nieder and Merten, 2007). Differently
from parietal neurons, however, frontal number neurons seem
to be directly related to the behavioral performance in the
numerical task, for a correspondence has been observed between
incorrect trials and a decrease in the spiking rate for the preferred
numerosity (Nieder and Merten, 2007; Viswanathan and Nieder,
2015).

Interestingly, PFC number-selective neurons respond to their
preferred numerosity both when presented visually or auditorily
(Nieder, 2012). While in the IPS different neurons respond
to the same numerosity presented in the two modalities, a
large proportion of neurons in the PFC responded to both
modalities suggesting a supramodal generalization step achieved
in this region. Moreover, strengthening the role of the abstract
generalizator played by the PFC, a direct comparison between
neuronal responses in the PFC and IPS revealed that frontal
neurons are less influenced from continuous variables that
covary with discrete numerosities (Nieder and Miller, 2004).
Moreover, the difference in the latency of response between the
earlier parietal (100ms) number neurons and the later frontal
ones (160ms) strongly suggests a hierarchy between these two
regions for number estimations. It has been hypothesized that
IPS is involved in extracting number information from the
sensory input, while PFC further processes and generalizes such
information from a behavioral goal-directed perspective (Nieder,
2016).

Comparative studies revealed extraordinary functional and
organizational similarities between the PFC and a caudal part
of the pallium in birds, the caudolateral nidopallium (NCL;
Mogensen and Divac, 1982; for comprehensive reviews see
Güntürkün, 2005; although Stacho et al., 2020, showed that the
NCL is explicitly not layered and thus similarity with mammalian
PFC is likely to reflect homoplasy rather than homology for this
region; see Figure 1). Similarly to primates’ PFC, responses to
numbers were measured in single cells in the NCL of corvids
(Ditz and Nieder, 2015). Number-selective neurons were found
to increase their firing rate to a preferred numerosity while
obeying Weber’s law (Ditz et al., 2018). Moreover, such number
neurons were found also in number-naïve birds, confirming
their unlearned tuning properties across mammals and birds
(Wagener et al., 2018).

A pallial involvement in numerical changes was found also
in the telencephalon of zebrafishes (Messina et al., 2020a).
A dorsocentral division of zebrafish caudal telencephalon was

found to be selectively involved during numerosity changes
(Messina et al., 2020b; see Figure 1). This pallial region, as we
speculated in section Thalamofugal Pathway, could be a visual
area. It could also be a more associative nidopallial-like region
involved in more flexible cognitive skills and behavioral control.
However, further studies need to elucidate the peculiar afferent
and efferent connections’ pattern of such telencephalic division
of zebrafish brain.

Overall, it can be reasonably stated that a general involvement
of a pallial network has been revealed across different classes of
vertebrates in number estimation (Figure 1).

INVERTEBRATES

As already noted, the evidence coming from invertebrates
constitutes a strong argument in favor of a widespread numerical
competence, deconstructing the priority that the mammalian
cortex has held even in the field of comparative studies on
numerosity. Since small brains in the order of one million
neurons can discriminate numerosity among other continuous
variables (Gross et al., 2009; Bortot et al., 2019), it seems plausible
that small circuits and somewhat restrained computational
resources are sufficient in order to accomplish it. Furthermore,
looking for homologs of the prefrontal or parietal cortex in other
species might not be necessary in order to study the neural
correlates of this ability. It may represent a possibility, however,
that deep homologies (see Held, 2017) exist as to the mechanisms
underlying encoding of discrete and continuous quantity among
widely separate taxa.

While literature presents several data about the behaviors of
invertebrates in numerical tasks (review in Bortot et al., 2020a),
almost nothing is known about their neural implementations.
However, we can try to focus on the strategies employed in
these tasks in order to draw hypotheses about their underlying
biological mechanisms.

Bees (Apis mellifera)—which have been used as the
main animal model for studying numerical competence in
invertebrates—seem to make use of a sequential visual scanning
(Skorupski et al., 2018; MaBouDi et al., 2020), which means
that they process stimuli in a sequential order through active
visuomotor exploration. This has been supported by their
failure in simple tasks when stimulus presentation is limited
in time (Nityananda et al., 2014), the increase in time needed
for discriminations for higher numerosity patterns (MaBouDi
et al., 2020), the documented scanning behaviors from a distance
of only few centimeters from stimuli when the animals have
to avoid specific numerosities (Guiraud et al., 2018), and the
fact that they exhibit serial processing of visual scenes even for
other features of stimuli (Spaethe et al., 2006). Nevertheless,
a possibility is that some combination of parallel and serial
processing is involved in numerical tasks (MaBouDi et al.,
2020). Besides, it cannot be excluded that also some vertebrates
use similar strategies for numerical estimation (Dawkins and
Woodington, 2000).

The use of sequential scanning appears to be in agreement
with insects’ photoreceptor architecture and the active vision
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shown by bees (Skorupski et al., 2018). Indeed, bees have a small
visual acuity (Spaethe and Chittka, 2003; Rigosi et al., 2017)
and possess 3,000–4,000 ommatidia (Spaethe and Chittka, 2003),
which limit the visual scene perceived and thus the possibilities
of parallel visual processing. Conversely, the fastest temporal
response of their photoreceptors appears to be highly functional
to this type of behavior (Skorupski and Chittka, 2010), thus
profiting of a great amount of information collected through fast
movements. In other words, sequential scanning might exploit
the biological repertoire with a computational advantage.

An implication of this scanning behavior is the involvement
of working memory circuits which must help the animal in
tasks where counting is required to discriminate numerosities.
Indeed, during sequential inspections of visual stimuli bees
were very rarely observed to come back to rescan some items
(MaBouDi et al., 2020). The one-to-one inspection of stimuli then
requires a storing and progressive integration of information
in working memory. Moreover, the decay span of working
memory in sequential visual scanning can be the reason for the
limited amount of items that bees seem to be able to distinguish
(Skorupski et al., 2018).

Which areas of insects’ brains might thus be more involved
in numerical tasks? The visual system of vertebrates and insects
shows similar morphogenetic mechanisms (Joly et al., 2016),
especially for what regards the first somatotopic stages of visual
processing accomplished by the retina, the optic tectum, and the
LGN in vertebrates and by the retina, the lamina, the medulla,
and the lobula in insects. Hypotheses about a phylogenetic
conservation of these visual circuits have been advanced (Sanes
and Zipursky, 2010).

Studies on the visual system of bees reported evidence
for segregated pathways for processing of color and motion,
respectively, in the distal lobula (layers 1–4) and in the
proximal lobula (layers 5–6) (Paulk et al., 2008). Moreover,
this functional segregation appears to be maintained along
the anterior–posterior axis of the protocerebrum (Paulk et al.,
2009), suggesting a differential computation of color and pattern
information from achromatic motion and orientation features
which are relevant for the more posterior motor areas.

Accordingly, numerical quantity could be encoded already in
these early stages of visual pathway as a result of integration of
sensory information from the achromatic pathway and recurrent
circuits present at the level of the lobula (Haag and Borst, 2001)
and of the medulla (Douglass and Strausfeld, 2003). Indeed, as
noted above numerosity is mostly conceived as a primary sensory
attribute (Burr and Ross, 2008), and recurrent circuits are known
to constitute the ground for working memory (Wang, 2001).
Alternatively, numerosity might be represented by the central
complex (Giurfa, 2019), a higher cognitive area of insects’ brain.
The central complex is a center of sensory integration—mostly
visual—but of importance also for motor control (Pfeiffer and
Homberg, 2014). Furthermore, its involvement in short visual
memory and in navigation strategies such as path integration
(Stone et al., 2017) suggests a relevance also for numerical tasks.

However, a critical view must be taken in mind regarding the
feasibility of a neural module dedicated to numerosity detection.
The existence of neurons only devoted to the perception of a

specific visual feature, such as numerosity, has been argued to
be both not necessary and not easily experimentally detectable
(Skorupski et al., 2018). The number of cells required to
accomplish a similar task may be too exiguous to be precisely
detected anatomically, and even the evidence for segregated
feature processing in the optic lobes of insects does not exclude
that these neurons might have more complex response patterns,
thus responding to more than one attribute depending on the
context. This argument points against too much enthusiasm for
number-detecting neurons and the neuron doctrine, i.e., the
tendency to ascribe to specific neurons the discrimination of
particular physical properties (Barlow, 1972; von der Malsburg,
1994).

NEURAL NETWORKS

On the wake of this minimalist approach to numerical cognition,
several theoretical models have tried on the one hand to
experimentally validate if very low-level computations can
accomplish tasks of numerical discrimination, on the other to
describe plausible implementations of the numerical ability at the
level of neuronal circuits.

Computational modeling and neural networks in particular
are mathematical tools that enable to test and investigate
biological and cognitive questions through simulations and
exploiting artificial neural architectures that attempt to emulate
the brain. Specifically, some of these models—namely, artificial
neural networks—are architecturally inspired by the brain
(Pillow and Sahani, 2019) and are used in a variety of contexts,
such as for classification of images or decision-making and
learning. Networks consist of thousands of non-linear units
disposed in several layers where units have specific connections
and weights for them. They learn to perform particular tasks
through training during which the strength of the connections
between units is learned, for this purpose using a cost function
that estimates the error of the model and trying to minimize
it. In this regard, some artificial networks have been used
to replicate animal behaviors and thus being able to link
artificial representations to biological ones. However, the real
correspondence between the brain and such artificial settings is
a contentious issue, given that most of these networks lack of
biological realism (Cichy and Kaiser, 2019).

All models for numerical cognition come roughly to the
same results, namely, the ability of artificial neural networks to
simulate human and non-human animals’ behaviors in numerical
judgments, i.e., the discrimination of one numerosity from
another (Rapp et al., 2020), comparison tasks for relationships of
sameness (Nasr et al., 2019), or inequality (Testolin et al., 2020a).
However, their relevant implications and proposals regarding the
implementation of numerical ability rely on their architectures
and main functional properties.

First among all, the model of Meck and Churck proposed a
counting mechanism where numerosity and time are encoded
by the same magnitudes (Meck and Church, 1983). At the core
of their idea, there is the concept of an accumulator that sums
the sensory quantity—expressed through sequential impulses or
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a continuous impulse—which is isomorphic to the magnitude
represented. The value of the accumulator is stored as working
memory and then compared to another numerosity.

Dehane and Changeaux also employed a summation
representation of numerosity in their model (Dehaene and
Changeux, 1993). Their functional system consisted of a deep
network with four layers. The visual object numerosity is
encoded as an ensemble of local Gaussian distributions of
activation, which are firstly localized and normalized for size.
The information then projects to 15 “summation clusters,” each
of which is activated if the overall activity exceeds a certain
and different threshold. For every summery summation cluster,
there is a final “numerosity cluster,” which is activated only
when the preferred numerosity is encoded in the summation
cluster. Thus, in this case summation units are just precursors of
number-selective units. Even if the model has a very simplified
view of relevant biological mechanisms involved and handle only
one to five numerosities, nevertheless with only 530 neuronal
units it is able to discriminate and account for the behavioral
typical signatures of ANS, namely, size and distance effects.

Also, unsupervised models can bring spontaneously to the
same numerosity detectors, as demonstrated by another model
employing, a very similar architecture and summation-coding
principle (Verguts and Fias, 2004). Besides the similar results,
this time the network was trained with a backpropagation
algorithm for mapping the summation units of the hidden layer
to the output layer. Therefore, number-selective neurons can
be learned.

Additionally, hierarchical convolutional neural networks have
been recruited as models to study sensitivity to numerosity
(Nasr et al., 2019). These deep neural networks have been
particularly used in computer vision (Fukushima and Miyake,
1982; Krizhevsky et al., 2017), and their architecture is inspired
to the visual cortex. They consist of thousands of non-linear
units disposed in several layers with sparse connections. Units
have specific weights representing specific filters that are applied
to the image one after another, in this way modifying the
image in order for the network to classify it. Importantly,
these weights are autonomously learned by the network during
training. In the study on numerosity, the network was trained on
1,2 million images from 1000 categories. Then, it was provided
with images representing dot patterns of different numerosities
(1–30) and found that 9.6% of the final layer of the feature
extraction network units was selective for numerosities. Each
of these numerosity-selective neurons was tuned to a preferred
numerosity among the 30 presented, and showed approximate
tuning with decreased response when deviating from it and
a better fit on a logarithmically compressed number line.
Moreover, this study suggests the non-necessity of summation
units that monotonically modulate—increasing or decreasing—
responses with increasing numerosities, due to the the exiguous
presence of these types of number coding in the network and the
non-necessity of it for the overall conduct of the network.

Another model demonstrated that information about
numerosity does not need to be made explicit and does not
require specific training. It can emerge as a property of visual
stimuli which is spontaneously coded by hidden neurons of deep

neural networks (Stoianov and Zorzi, 2012). Indeed, generative
neural networks—which are a type of artificial network which
aims to reconstruct sensory inputs instead of classifying them—
have been used to study the distributed internal representation
generated by binary images containing a number of objects up to
32. After training it with 51,200 images, some units were found to
be selective for numerosity, others with size. Importantly, these
neurons were spatially selective and monotonically represented
numerosity, thus resembling results from the parietal cortex in
other studies in animals (Roitman et al., 2007). On the contrary,
this evidence pushes toward a summation code of numerosity
while avoiding the necessity of “number detecting neurons,”
since selectivity for numerosity does not necessarily require
those properties.

As already mentioned, although the two hypotheses about
summation coding and number-selective neurons are not
exclusive and could characterize different neuronal populations,
there is evidence that suggests summation coding as a more
general mechanism (Chen and Verguts, 2013; Zorzi and Testolin,
2018), capable of explaining the properties of the neurons
described in monkeys without numerical learning (Viswanathan
and Nieder, 2015). A possibility is that number-selective neurons
are instead an outcome of training.

Furthermore, basic visuospatial processing in a hierarchical
structure together with statistical properties of the object
may be sufficient for the emergence of numerical competence
even in non-trained networks (Zorzi and Testolin, 2018);
moreover, progressive experience can refine and improve this
representation resembling developmental advances. It has been
suggested that a dedicated system for numerosity also in animals
might not be necessary since learning mechanisms of the neural
system could be sufficient to extract that information from
natural environments, as it is in the case of artificial networks
(Testolin et al., 2020b).

These types of neural networks have been also usefully
employed in order to disentangle the spiny issue of non-
numerical perceptual features that covary with numerosity
(Testolin et al., 2020a). Using the stimulus space designed
in another study (DeWind et al., 2015), they have been able
to statistically estimate the contribute of each non-numerical
feature to numerical comparison tasks. They thus showed that
whereas both in humans and in the artificial network numerosity
is the dominant dimension shaping the decision, the influence
of other variables congruent with the magnitude information
significantly impacted performance. Numerosity, despite being
the primary operator, is not the only one.

All these models that make use of deep neural networks
represent different possible solutions to a given problem.
Nevertheless, they cannot be considered as true simulations of
realistic biological processes, since none of them is actually such.
Indeed, despite displaying a great exploratory power for the
study on neural processes and demonstrating the feasibility of
particular approaches to a problem (Richards et al., 2019), they
appear as black boxes (Cichy and Kaiser, 2019) and thereby
we should not look for isomorphisms onto which to build
explanations. In particular, convolutional neural networks have
been shown to be very far from exhibiting a type of classification

Frontiers in Psychology | www.frontiersin.org 10 April 2021 | Volume 12 | Article 641994

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Lorenzi et al. Numerosities and the Brains

similar to human one (Szegedy et al., 2014; Goodfellow et al.,
2015) and to rely on features that are really obscure to us.

Conversely, other studies employing minimal neural circuits
or even single spiking neurons have been able to propose more
plausible models of numerical abilities (Vasas and Chittka, 2019;
Rapp et al., 2020). Indeed, with minimum training and scarce
computational resources, they could simulate sequential visual
discrimination of bees and thus demonstrate that even action
potentials produced by a single spiking neuron can endow with
basic discrimination of numerosity.

CONCLUSIONS

The main goal of this review was to provide a comparative
portrait of the neurobiology of numerical cognition. Considering
the several possible solutions to the “numerical” computational
problem in many organisms, in order to understand the
why and the how underlying it, we must look at the
biological implementations. For this reason, we tried to
cover the main subpallial and pallial contributes to the
approximate representation of quantity, encompassing evidences
from organisms of different taxonomic groups. Above all, what
emerged is that numerosity might be processed straightforward,
without the need to speculate on complex networks or
sophisticate brains. However, numerical estimation reveals to be
at the crossroad of other cognitive processes—such as attention,

decision-making, or memory—which have been shadowed by the
great amount of research pointing toward the ability of different
organisms to discriminate or not discrete quantities. Therefore,
as highlighted by others (Cheyette and Piantadosi, 2019; Vasas
and Chittka, 2019), further studies should try to characterize
better the strategies involved in numerical tasks in order to
disclose important neurobiological features engaged.
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