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Despite growing interest in improving cognitive abilities across the lifespan through

training, the benefits of cognitive training are inconsistent. One powerful contributor may

be that individuals arrive at interventions with different baseline levels of the cognitive skill

being trained. Some evidence suggests poor performers benefit the most from cognitive

training, showing compensation for their weak abilities, while other evidence suggests

that high performers benefit most, experiencing a magnification of their abilities. Whether

training leads to compensation or magnification effects may depend upon the specific

cognitive domain being trained (such as executive function or episodic memory) and the

training approach implemented (strategy or process). To clarify the association between

individual differences in baseline cognitive ability and training gains as well as potential

moderators, we conducted a systematic meta-analysis of the correlation between these

two variables. We found evidence of a significant meta-correlation demonstrating a

compensatory effect, a negative association between initial ability on a trained cognitive

process and training gains. Too few papers met our search criteria across the levels

of proposed moderators of cognitive domain and training approach to conduct a

reliable investigation of their influence over the meta-analytic effect size. We discuss the

implications of a compensatory meta-correlation, potential reasons for the paucity of

qualifying papers, and important future directions for better understanding how cognitive

trainings work and for whom.
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1. INTRODUCTION

There has been steady and growing interest in developing effective methods to manipulate an
individual’s cognitive abilities. Work on this topic has exploded in recent decades, motivated by
rehabilitative and therapeutic goals for impaired or aging populations (Lustig et al., 2009; Dahlin,
2011; van der Donk et al., 2017), by interest in cognitive enhancement for children or the general
public (Diamond and Lee, 2011; Diamond, 2012; Simons et al., 2016), as well as by a desire to find
means of testing cognitive theories (Cepeda et al., 2001; Chevalier et al., 2014). However, results of
cognitive training research have not always been consistent.
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While some research finds clear benefits to a trained ability,
and even benefits to untrained abilities (both near and far
related), other studies yield little to no evidence of benefit
from cognitive training. This variation among findings is well-
documented and presents serious problems for determining
the true effectiveness or utility of cognitive training in both
clinical and research contexts (Shipstead et al., 2012; Melby-
Lervåg and Hulme, 2013; von Bastian and Oberauer, 2014;
Au et al., 2015; Melby-Lervåg et al., 2016; Simons et al.,
2016; Rossignoli-Palomeque, 2018). While the design and
methodological rigor with which cognitive training research is
conducted is an established source of this variation (Noack
et al., 2014; Tidwell et al., 2014; Simons et al., 2016; Smoleń
et al., 2018) variability remains even when accounting for these
concerns. Sources of this remaining variability are of great
interest as they could both provide insight into the reasons
for the effectiveness or ineffectiveness of cognitive training—
illuminating the mechanisms of how trainings work and for
whom—and allow for administration of more tailored cognitive
trainings in clinical or therapeutic contexts.

Recent evidence suggests that individual differences account
for a sizeable amount of the lingering variability in findings
over and above methodological differences (Jaeggi et al., 2014;
von Bastian and Oberauer, 2014; Borella et al., 2017; Guye
et al., 2017). Participants’ ages, socio-economic statuses (SES),
levels of motivation, and more have all been implicated in
influencing the effects of various cognitive trainings (Kliegl et al.,
1990; Katz et al., 2014; Segretin et al., 2014, respectively). In
particular individual differences in baseline cognitive ability (i.e.,
an individual’s pre-training level of cognitive skill) have been
implicated as a prominent source of variation (e.g., Rueda et al.,
2005; Jaeggi et al., 2008; Karbach and Unger, 2014; Foster et al.,
2017)—suggesting that one way to understand who benefits from
what cognitive training is to understand individual abilities upon
entering training.

It makes sense that each individual comes into cognitive
training with unique abilities, and that baseline could influence
effects of training. Multiple theories hypothesize that learning
opportunities are most effective when they are tailored to
an individual’s ability: in child-caregiver interactions (Zone of
Proximal Development - Vygotsky, 1978), educational settings
(Desirable Difficulty - Bjork and Bjork, 2011), and cognitive
interventions (Aptitude by Treatment Interactions - Snow,
1989). Moreover, the influence of other individual difference
effects on cognitive training, such as SES and age, appear to
be mediated by participants’ cognitive baselines (Bürki et al.,
2014; Segretin et al., 2014, respectively), suggesting that their
influence is actually due in part to baseline cognitive ability.
For example, results on individual differences effects of SES
suggest that SES does not directly cause differences in cognitive
training outcomes, but instead results in a situation that produces
different cognitive baseline proficiencies across participants.
Given this, one potentially impactful approach to developing a
mechanistic understanding of how individual differences give
rise to variability in cognitive training outcomes is to focus
specifically on individual differences in baseline cognitive ability.

However, we do not have a clear picture of the size, or even the
direction, of baseline individual differences effects on cognitive
training (see Lövdén et al., 2012; Karbach and Unger, 2014; Au
et al., 2015, for review). This makes it difficult to get a handle
on the importance and informativeness of this phenomenon.
Some training studies yield compensation effects: a negative
relationship between a participant’s initial cognitive ability and
the results of training such that worse performing participants
demonstrate the greatest benefits from training. In these cases,
training appears to allow poor performers to compensate
for their weaknesses, such that overall individual differences
among participants at pre-training are reduced post-training
(Figure 1A). Other training studies yield magnification effects: a
positive relationship between participants initial cognitive ability
and the results from training. In these scenarios, individuals with
the highest levels of performance prior to training experience the
most substantial benefits—with individual differences among the
training group becoming magnified post-training (Figure 1B).

What might lead to these opposing patterns? Compensation
effects may result from a need to master certain skills in order
to achieve high levels of performance on a task. These skills may
be acquired during training by low performers, bolstering their
scores, whereas high performers have already mastered them
and receive little benefit (e.g., Lustig et al., 2009). In contrast,
magnification effects may result from a certain level of skill being
necessary to benefit from a cognitive training intervention. Those
who have not reached that threshold do not benefit, while their
peers who have reached threshold improve. However, neither of
these accounts, laid out in their simplest forms, explain why the
literature demonstrates both compensation and magnification
effect patterns as opposed to just one or the other.

One clue is that these opposing patterns appear to come
from qualitatively different types of cognitive training (see
Lövdén et al., 2012; Karbach and Unger, 2014, for review).
Most magnification effects come from cognitive training of
episodic memory, the ability to retrieve specific information
in memory such as the definition of a word or location of a
favorite cafe (Kliegl et al., 1990; Verhaeghen et al., 1992; Cox,
1994; Brehmer et al., 2007) (cf. Gaultney et al., 1996; Lövdén
et al., 2012). In contrast, most compensation effects come from
cognitive training of executive function, abilities related to the
control and regulation of behavior (Diamond and Lee, 2011;
Zinke et al., 2012, 2014; Karbach et al., 2017) (cf. Loosli et al.,
2012; Foster et al., 2017; Wiemers et al., 2019). This raises
the possibility that episodic memory and executive function
require differing initial levels of proficiency to change with
training or that change in these domains develops along different
growth functions. For instance, change in episodic memory
may necessitate individuals to have already achieved a certain
level of proficiency to improve from cognitive interventions.
Executive function, on the other hand, may develop in such a
way that prior to achieving proficiency there is extensive room
for improvement via training—but beyond that point, changes
in executive function performance may be more nuanced and
difficult to achieve via current training approaches or just difficult
to detect in behavioral tasks.
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FIGURE 1 | Example of opposing patterns of the relationship between baseline cognitive ability and gains after cognitive training. (A) Compensation effect

demonstrating lower performing individuals accruing the most gains after training. (B) Magnification effect demonstrating higher performing individuals accruing the

most gains after training.

Executive function and episodic memory trainings also differ
in the type of training approach utilized, raising the question of
whether training approach, and not training domain, determines
whether the worst performers or the best performers benefit the
most (Lövdén et al., 2012; Karbach and Unger, 2014). Cognitive
training of episodic memory primarily utilizes a strategy-based
approach, during which participants are given explicit strategy
instruction (such as Method of Loci) intended to improve their
ability (e.g., Kliegl et al., 1990). Cognitive training of executive
function tends to utilize a primarily process-based approach,
during which participants practice on one or several related
executive function tasks—presumably bolstering their ability
implicitly through practice (e.g., Jaeggi et al., 2008). Thus,
episodic memory trainings may give rise to magnification effects
because explicit strategy instruction could require mastery of
an initial skill set. Executive function trainings may give rise
to compensation effects because high performers have already
acquired the skill set provided through process-based training,
leaving them little room to improve compared to less skilled
participants still mastering that skill set.

It does not appear that any studies have directly tested
the effects of training domain (episodic memory vs. executive
function), or tested for an interaction of training domain
with training approach (process- vs. strategy-based). To our
knowledge, only one study has explicitly investigated questions
of training approach (strategy- or process-focused) in baseline
individual differences effects on cognitive training, conducting
a detailed investigation of change across an episodic memory
training by sequentially administering strategy followed by
process training manipulations. Analyses showed an initial
reduction in individual differences post-strategy instruction (a
compensation effect), but magnification of those differences
after further process based practice (Lövdén et al., 2012). While
these results highlight potential differences in training approach
within the episodic memory domain, they are inconsistent
with the aforementioned pattern of findings in which strategy
training leads to magnification and process training leads to

compensation. The design of the study also makes it difficult
to rule out the possibility that initial administration of strategy
training altered the latter administration of process training via
carryover effects. These results highlight that while many studies
have tested the association of baseline individual differences with
training outcomes, few papers have investigated moderators of
this association, leaving many questions unanswered.

Synthesis of investigations into the influence of baseline
individual differences is complicated both by conflicting findings
and by notable definitional and analysis differences between
studies. Studies frequently differ in how they define and
operationalize baseline and outcome measures. Precisely what
qualifies as “baseline cognitive performance” or “training
outcomes” are essential points that change the question
ultimately being asked by an analysis. Baseline cognitive ability,
for example, is used interchangeably to refer to cognitive skills
with varying distance and relation to the exact domain being
trained broad and generalized. It could refer to broad cognitive
domains operationalized via measures of general cognitive ability
or intelligence (e.g., Rueda et al., 2005; Jaeggi et al., 2008; Fu
et al., 2017; Hering et al., 2017), but it could also refer to a
narrow cognitive domain specific to the to-be-trained cognitive
domain, such as a measure of baseline performance on a working
memory task administered prior to a working memory training
(e.g., Zinke et al., 2012, 2014). Both approaches provide essential
information about evaluating whomay benefit the most and why,
but address conceptually different questions. The former probes
how an overall cognitive level may impact training attempts,
testing whether a stronger general level of cognitive skill aids
training. But, the latter approach asks how ability within the
specific cognitive domain or skill targeted by training influences
the effects of training.

Near transfer tasks comprise those within the same domain
as training but different from the precise task trained (e.g.,
two different measures of working memory). Far transfer tasks
comprise those which measure performance on an ability
other than that being trained (e.g., general fluid intelligence
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performance after working memory training). While some
papers address the degree of transfer with regard to training
outcomes and individual differences (e.g., Jaeggi et al., 2014),
some analyses or discussions do not distinguish between the
specific types of training outcomes. This means that some
analyses and discussions of baseline individual differences are
based on a distant (and potentially tenuous) relationship between
cognitive training and far transfer, while others are based on
a close relationship between training and final performance on
that training. Studies probing this dimension have suggested
compensatory effects on trained tasks or near transfer tasks and
magnification effects on far transfer tasks (e.g., Borella et al.,
2017), (cf. Karbach et al., 2017), emphasizing the importance of
being clear about this distinction.

The actual score of training outcomes also takes on many
forms—being analyzed as raw training performance during
the cognitive training task, scaled training performance (e.g.,
rank-ordered or z-scored), assignment to low/high performance
groups (e.g., based on a median split of performance or another
procedure), or calculated gain scores (e.g., change in performance
from baseline to post-test). Each of these approaches has unique
drawbacks. The use of only raw or scaled training performance to
probe the influence of baseline individual differences may merely
capture stable individual differences in general ability among
participants, as opposed to differences in training outcome
specifically. The use of low/high performance groups reduces the
power of analyses (Iacobucci et al., 2015). The use of gain scores
can lead to uncovering a compensatory association caused by
regression to the mean as well as other possible statistical pitfalls
(Smoleń et al., 2018).

Analyzing all of these measurement approaches, as opposed
to looking at a single means of capturing outcomes, means
contending with all of their associated issues. For example,
two papers showing conflicting compensation (Karbach
et al., 2017) and magnification (Foster et al., 2017) findings
on process-based executive function training were derived
from studies using very different methods for interrogating
individual differences questions. These studies differed
both in the characteristics of baseline data analyzed and
analysis approach. One paper utilized a continuous measure
of each participant’s individual performance on baseline
and a latent modeling approach (Karbach et al., 2017)—
whereas the other changed baseline into a categorical
measure, grouping participants into high and low baseline
performance groups for analysis combined with ANCOVA
procedures (Foster et al., 2017). These differences in
capturing baseline performance and analyzing it makes
it difficult to compare the two before even considering
methodological differences.

Such differences across studies make it difficult to make sense
of who benefits most from which kinds of training. Evaluation
of any version of questions about individual differences in
cognitive baseline and training outcomes is clouded by the
likely differing relationships between various combinations of
“cognitive baseline” and “training outcomes.” To best leverage
individual differences approaches for making theoretical and
mechanistic claims about cognitive trainings, we must be

clear about what exactly is being analyzed when we look at
individual differences.

The current review seeks to provide a systematic synthesis
of the literature on individual differences in cognitive baseline
and cognitive training outcomes by conducting a planned
meta-analysis. A meta-analytic approach to this problem
provides several advantages. First, it brings a systematic method
to evaluating currently available findings by requiring clear
definitions and eligibility criteria to be used in evaluating findings
for inclusion in analysis. Second, it leverages the extensive
existing work on cognitive training to make inferences. Third, it
allows for a powerful investigation of the known heterogeneity
of baseline individual differences influences on cognitive training
outcomes—turning the methodological diversity of experimental
work into an informative tool as opposed to an obstacle to
be overcome. Differences in study approaches allow for an
investigation into the reliability of this phenomenon as well
as possible moderators: cognitive domain trained, training
approach, and their interaction. It allows us to test whether
accounting for these differences brings clarity to the nature
of baseline individual differences association with training
outcomes. Lastly, even in the event of null results, a meta-
analysis clarifies the existing literature and can produce a more
robust synthesis of that literature than non-systematic reviews.
This systematic synthesis can then support a more effective
design of causal studies to investigate questions surrounding
moderators of the association between cognitive baseline and
training outcomes.

However, not all of the variability in the literature is
helpful, such as the aforementioned variability in definitions
and statistical approach. Differences in the variables used
in analyses mean that not every study is testing the same
type of baseline/outcome association, such that including all
of these approaches above in a meta-analysis could obscure
relationships. The present review thus focuses the problem
space on studies that are comparable in their definitions of
cognitive baseline and training outcome, as well as studies that
operationalize training outcomes similarly. This was done to
limit the introduction of variability unrelated to the theoretical
question into the meta-analysis.

First, this review focuses on baseline ability defined as
the pre-training performance in the target cognitive domain
manipulated by training (e.g., baseline working memory abilities
of participants in a working memory training). It therefore
excludes studies that define this measure by some general
cognitive ability such as fluid intelligence or studies that evaluate
baseline individual differences in a cognitive domain different
from that being trained. Second, this review constrains outcomes
to measures derived from training or near transfer (provided the
near transfer task is of the same cognitive domain as training),
excluding far transfer outcomes. Far transfer measures could
take on an array of forms and vary in how different they are
from the trained ability. Currently there is no clear picture of
what the relationship between gains in training, near transfer,
and far transfer is (Thompson et al., 2013; Au et al., 2015; Sala
and Gobet, 2017)—making it unwise to combine all three in the
present meta-analysis. Lastly, this review focuses on studies using

Frontiers in Psychology | www.frontiersin.org 4 May 2021 | Volume 12 | Article 662139

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Traut et al. Cognitive Training and Baseline Meta-Analysis

a consistent form of operationalizing training outcomes as gain
scores, as opposed to raw or scaled performance, because this was
the most readily available scoring procedure across the literature.

As such, the purpose of this meta-analysis is to (a) examine
and synthesize evidence for the association of individual
differences with baseline cognitive ability on cognitive training
outcomes through correlation coefficients of this relationship
and (b) investigate how this correlation is moderated.
Specifically, these analyses are designed to answer the following
research questions:

1. What is the estimate of the average correlation coefficient
of the association between baseline abilities and cognitive
training outcomes?

2. Is this correlationmoderated by the targeted cognitive domain
(i.e., episodic memory or executive function)?

3. Is this correlation moderated by the cognitive training
approach (i.e., strategy or practice)?

4. Is this correlation moderated by an interaction between
domain and training approach?

2. METHODS

This review was conducted in accordance with recommendations
outlined by the Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) group guidelines (Liberati et al.,
2009).

2.1. Information Sources & Search Protocol
Based on several practical considerations, all literature searches
were conducted through Google Scholar. First, a database was
sought that allowed for full text searches (i.e., title, abstract, and
body of article) due to (a) the diversity of terms utilized in
titles, abstracts, and keywords to describe research on cognitive
training, and (b) the frequency with which individual differences
analyses are discussed only in the body of an article, given
that many of these analyses are exploratory or secondary to
the primary question of the article. At the time this study
was conducted, this restriction limited potential databases for
systematic search to Google Scholar or PsychINFO. Google
Scholar was selected because it is both an openly accessible
and un-curated database. Unlike other “curated” academic
databases such as PsychINFO, PubMed, Web of Science, and
others—Google Scholar procures search results through an
entirely automated algorithmic search of the internet-at-large,
as opposed to searching a limited, pre-selected body of entries.
While the downside of this approach is that the nature of
this algorithm is unknown, this still arguably makes Google
Scholar a more unbiased method of searching the literature.
Google Scholar is neither beholden to specific database and
publisher relationships nor are its searches influenced by curated
database add-ons such as enhanced keywords. It also provides
the substantial advantage of crawling a diversity of sources
that include dissertations, conference proceedings, posters,
unpublished work, and similar “gray” literature because of its
broad un-curated search approach. Therefore, the use of Google
Scholar helps to circumvent potential issues resulting from both

a lack of common terminology in titles, abstracts, and keywords,
as well as issues resulting from bias in search results attributed to
the curated and financial nature of curated database services.

As such, all searches were conducted in Google Scholar
utilizing the following protocol:

“cognitive training” AND “individual differences”
While the use of such a broad protocol in a full-text search was
expected to produce a large initial pool of studies, it was selected
to ensure the capture of the majority of studies likely to contain
relevant data in order to provide as unbiased a review of the
available data as possible. The search protocol was constrained
to the years 1980 to 2018 (inclusive) to best capture the modern
literature on cognitive training. Searches were conducted within
specific year intervals (e.g., 1999 to 1999) to address Google
Scholar’s 1,000 results limit. This allowed for access to the
complete set of articles determined by Google Scholar’s search.
For individual years with results exceeding 1,000 articles, the
search protocol was separated into two parts by searching
for articles based on the required inclusion or exclusion of a
common word, “baseline”:

“cognitive training” AND “individual differences”
AND “baseline”

“cognitive training” AND “individual differences”
NOT “baseline”

Returned search results were extracted from Google Scholar
results pages using an automated script implemented in
Python (see Supplementary Materials). This script extracted
title, author, journal, digital access (e.g., website), and related
publication information. Complete abstracts for each search
result were extracted manually by trained research assistants
and saved in a complete document of all search results and
retrieved information as Google Scholar search results do not
return complete abstracts. All information was recorded in a
single tracking document.

2.2. Eligibility Criteria
Eligibility was determined by the first author of this paper (H.J.
Traut) over the course of unblinded reviews of retrieved search
results. Eligibility criteria were designed along the “PICOS”
recommendations of the PRISMA guidelines (Liberati et al.,
2009) to account for Participants, Intervention, Comparators,
Outcome, and Study design. Additional categories of criteria
were included as necessitated by the demands of the present
systematic review.

2.2.1. Participants
Studies were not excluded based on the nature of participants
provided that participants were human (e.g., excluding cognitive
training studies conducted with rodents or other common animal
subjects). Participants of any age, neurological status, or other
characteristics were eligible for inclusion. This decision wasmade
to allow for the maximum number of results to be retrieved and
due to the absence of hypotheses explicitly regarding differences
in baseline individual difference effects between typical and
atypical individuals.
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2.2.2. Intervention (i.e., training)
To be eligible, studies were required to include experiment(s)
in which at least one group of participants underwent training
with a task intended to manipulate the participants’ executive
function (EF) or episodic memory (EP) abilities according to the
following definitions:

EpisodicMemory Training: Training intended tomanipulate
an individual’s ability to retrieve explicit information such as
facts, definitions, or experiences (Tulving, 1972).

Executive Function Training: Training intended to
manipulate an individual’s ability to control and regulate
their behavior or the components of that ability, such as
inhibition, updating, and shifting (Miyake et al., 2000; Miyake
and Friedman, 2012).

Examples of episodic memory training studies would include
mnemonic trainings such as Method of Loci (e.g., Cox, 1994).
Examples of executive function training studies would include
many working memory or inhibition trainings (e.g., von
Bastian and Oberauer, 2014). Studies including training on both
executive function and episodic memory were excluded as they
would not allow for differentiation of the theorized interaction
effect between training domain and the influence of baseline
individual differences on outcomes.

Trainings were further required to consist of a task or
procedure that directly involved a cognitive skill and was either
a strategy or process-based training following the definitions
provided by Lustig et al. (2009):

Strategy Training: The explicit instruction of a strategy with
the intent of helping participants improve their performance on
the target domain.

Process Training: The administration of either a single task or
set of tasks directly derived from or related to the target domain
for participants to practice with.

Studies including trainings that integrated both strategy
and process elements were excluded because the inclusion of
both approaches would make it impossible to dissociate their
effects in the proposed moderator analysis. Similarly, studies
administering process or strategy-based trainings alongside
additional manipulations were also excluded (i.e., multi-
modal interventions). This included, but was not limited
to, trainings with manipulations such as cardio-vascular
exercise, mindfulness, commercial/popular video-games (e.g.,
World of Warcraft), social skills training, and emotional
skills training. It also included training interventions that
involved administration of neurostimulation, neurofeedback,
pharmacological interventions, therapeutic interventions (such
as cognitive behavioral therapy), or other concurrent additional
manipulations to cognitive training. These exclusions were
included to ensure that analyzed effects could reasonably be
assumed to result from cognitive training manipulations alone
and not the influence of additional manipulations not of interest.

2.2.3. Comparator
Studies were required to include at least one eligible treatment
group based on the criteria described above. They were not
required to include a comparison group of any kind. If present,

the type of comparison group was recorded for all eligible studies
(e.g., active or passive controls).

2.2.4. Baseline & Outcome Measures
Studies were required to have measured participants baseline
ability in the trained cognitive skill(s) prior to training. For
example, if a study tested the effects of a working memory
training, a baseline measure of working memory ability prior
to training was required for inclusion. This baseline measure
could come from the same task that was later used for training
or from a different task that assessed the same cognitive skill.
Studies were required to have measured participants cognitive
training outcomes using gain scores. Gain scores were defined
as any calculation of the difference in performance between
baseline performance and final performance. To be eligible these
outcomes needed to measure the trained cognitive skill(s), and
were thus derived from either final training performance or
performance on a near transfer task.

2.2.5. Study Design
Studies were required to include a pre- and post- design such that
there were measurements of participants performance before and
after the cognitive training. Studies needed to be experimental or
quasi-experimental in nature. Observational studies, case studies,
case-series, qualitative studies, or studies not using a pre-/post-
design were excluded.

2.2.6. Other
Studies were not excluded for administration of multiple types of
cognitive training across multiple groups, provided that at least
one cognitive training group met the above criteria. No exclusion
criteria were imposed based on the country of origin, but only
papers for which a full-text English version of the article was
available were evaluated for eligibility.

2.3. Study Selection
After search results were collected using the search protocol
described above, results were saved in a systematized electronic
format to be reviewed for eligibility. Prior to review, duplicate
papers were flagged through the use of an automated script.
To confirm automated results, the first author manually verified
duplication of flagged entries.

Post-duplication flagging, results were scanned for inclusion
based on titles and abstracts. Results were flagged and removed
at this stage if they were obviously ineligible (i.e., pertaining to
unrelated topic or clearly not conducting a cognitive training
intervention) or failed to meet eligibility criteria (e.g., subjects
were not human). Full text documents were obtained for
remaining articles. Each full-text document was screened for
eligibility based on the established eligibility criteria discussed
above. Results are reported below.

2.4. Data Collection & Coding
All papers that passed the eligibility screening processes were
coded for relevant data. These data included number of
training groups, sample size (broken down by training group),
cognitive training characteristics (including trained domain,
training approach, training tasks, etc.), and relevant statistical
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analyses. From the relevant statistical analyses, baseline measures
and outcome measures were recorded. Data were also coded
for participant characteristics (e.g., age(s), neurological status,
population). Coders were not masked to the article’s authors,
institution, or place of publication.

2.5. Correlation Coefficient Extraction
Correlations between baseline ability and gain scores were
selected for meta-analysis as this presented the most readily
available effect size measure across retrieved studies. Studies
were allowed to contribute multiple correlation coefficients if
more than one was provided. For example, if a study reported
multiple eligible correlation coefficients assessing the relationship
between cognitive baseline and training outcomes—all of these
correlations were recorded. This was done to allow the maximum
amount of observations to be included in meta-analysis as well as
to avoid introducing bias by determining an ad-hoc method of
selecting a single effect size from each study for inclusion. Study
is included as a level in our multi-level model as described below.

2.6. Analysis Plan
After extraction, correlation coefficients were scaled using a
Fisher’s Z transformation (Lipsey and Wilson, 2001). Publication
bias was evaluated using Egger’s regression test and visual
inspection for funnel plot asymmetry. This permitted evaluation
of the degree to which the characteristics of the funnel plot
deviate from normal based on their precision (Egger et al.,
1997). Heterogeneity between studies was evaluated using both
Cochrane’s Q and I2 measures. If a significant amount of
heterogeneity was observed, initial analyses were followed with
those described below.

2.6.1. Model 1: Meta-Analytic Correlation
To estimate the mean association between individual differences
in baseline and cognitive training gains, a three-level meta-
analytic model was implemented. A multi-level model was
selected to allow for multiple correlation coefficients to be
clustered within a study to both account for similarities between
those correlations inherent to having been collected from
the same study and control for the possibility of one study
with multiple significant observations from over-contributing to
results (Konstantopoulos, 2011; Van den Noortgate et al., 2013;
Cheung, 2014). This approach also incorporates weighting each
observation in analysis according to its respective sensitivity—
i.e., sample size—such that effect sizes derived from larger
samples contributed more to analysis (Borenstein et al., 2010).
The complete model therefore included random effects of both
study (Level 3) and correlation coefficient (Level 2). Level 3
captured variance between studies in which effect sizes were
clustered. Level 2 captured variance among the effect sizes within
these studies. Level 1 captured the sampling variance of the
actual correlation coefficient effect sizes themselves. Thismodel is
outlined in Equation (1), where i refers to individual correlation
coefficient observation, j refers to individual studies. κ refers to
the average correlation coefficient within study j, β refers to the
average population level correlation coefficient, θ refers to true
correlation coefficient, and θ̂ refers to the estimate of observation

i within study j.

Level1 : θ̂ij = θij + ǫij

Level2 : θij = κj + ξ(2)ij

Level3 : κj = β0 + ξ(3)j

(1)

2.6.2. Model 2: Meta-Regression
To evaluate the prediction that training approach and trained
domain moderate the association between baseline ability and
training gains, a second three-level mixed effects meta-analytic
model was planned. Levels 1 and 2 were identical to those of
Model 1. At Level 3, fixed effects for training approach (strategy
or process) and trained domain (episodic memory or EF) were
included as predictors.

Level1 : θ̂ij = θij + ǫij

Level2 : θij = κj + ξ(2)ij

Level3 : κj = β0 + β1(CognitiveDomain)+

β2(TrainingApproach)+ ξ(3)j

(2)

Both training approach and trained domain predictors were
dummy coded.

FIGURE 2 | PRISMA 2009 flowchart depicting literature retrieval process from

initial database querying to studies included in analysis.
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3. RESULTS

3.1. Search Results
The initial search protocol within Google Scholar (run between
November–December 2018) produced 9,502 documents, of
which 405 were identified as duplicates. During the screening
of the remaining 9,097 unique documents abstracts and titles,
8,542 documents were excluded. The remaining 555 underwent
full text screening for eligibility. A total of 42 papers met the
eligibility criteria described above. Of these, 15 reported sufficient
information for extraction or calculation of a correlation
coefficient. Twenty-seven papers met eligibility criteria but did
not report sufficient information for calculation of relevant effect
sizes. Authors of these papers were contacted and requested to
provide either the requisite correlation or the raw data necessary
to calculate the requisite correlations. Ten papers were added via
this contact procedure for a final sample of 25 papers (Figure 2;
Table 1). All reported meta-analytic tests were conducted based
on a total of 82 correlation coefficients extracted from this set of
papers reporting correlation coefficients (see Table 1). A range of
1 to 8 correlation coefficients were reported in each paper with
an average of 2.5. One study (Lövdén et al., 2012) conducted a
two-part training consisting of a strategy approach followed by a
process approach. Eligible correlation coefficients were presented
after each training, so correlation coefficients presented after the
initial strategy training are included whereas the post-process
training data are excluded. Of retrieved papers, 3 were episodic
memory trainings and 22 were executive function trainings
(including 18 working memory, 2 inhibition, 1 task switching,
and 1 selective attention). There was a 1:1 ratio of cognitive
domain and training approach such that all 3 episodic memory
trainings were strategy-based and all 22 executive function
trainings were process-based approaches.

3.2. Analysis Results
All analyses were carried out using the R Opensource
Framework, R version 3.6.0, (R Core Team, 2020) and the
metafor package (Viechtbauer, 2010; Assink and Wibbelink,
2016). Correlation coefficients were standardized via Fisher’s Z
transformation (Lipsey and Wilson, 2001). For extended analysis
reports see Supplementary Materials.

3.2.1. Bias
Publication bias was assessed over both individual effect sizes
and averaged effect sizes within a study. This was done to
most accurately reflect the inclusion of multiple effect sizes
from within a single study and adhere to the purpose of bias
evaluation methods to be conducted over individual studies
(Fernández-Castilla et al., 2020). In both cases, bias was assessed
by visual inspection of a funnel plot and testing for funnel
plot asymmetry using Egger’s regression. Across all effect sizes,
Egger’s regression suggested asymmetry was present within the
corresponding funnel plot at the recommended threshold of
below p = 0.10 (z = –1.7653; p = 0.0775) (Egger et al., 1997).
Visual inspection suggested two small n effect sizes in the lower
right (both from the paper Hickey, 2018) might be the source
of this asymmetry (see Figure 3). Evaluation of bias across

effect sizes aggregated within study would suggest this is the
case. The aggregated effect size funnel plot (Figure 4) shows
little indication of asymmetry with visual inspection, revealing
a more symmetrical funnel. Egger’s regression correspondingly
returns non-significant findings for asymmetry (z = –0.4545, p
= 0.6495). Variability in the upper strata along the x axis suggests
notable heterogeneity among observations, which is supported by
heterogeneity analyses discussed below, and is not in-and-of itself
indicative of asymmetry or bias (Sterne et al., 2011).

3.2.2. Model 1: Meta-Analytic Correlation
The initial model stipulated in Equation (1) estimated the
average correlation of baseline ability with training gains. Results
demonstrated a significant negative correlation between baseline
cognitive performance and training gain (β0 = –0.4490, z = –
4.1584, p < 0.0001) (Figure 5). The direction of the correlation
is consistent with a compensation effect; individuals who show
worse performance prior to training tend to reap greater
gains, but the result is inconclusive. A significant amount of
heterogeneity between observations was evidenced [Q(81) =

924.5982, p < 0.0001; I2 = 91.17, p < 0.0001] indicating a large
amount of variability across the collected literature (Higgins and
Thompson, 2002). This high level of heterogeneity was expected
due to the diversity of training approaches, ages, and populations
included in this review, as well as the hypothesized relevance
of the training characteristic predictors for this correlation. The
multi-level nature of this model allowed for further separation
of this heterogeneity across between- and within-study clusters
(Nakagawa and Santos, 2012). This break-down indicated that
20.37% of heterogeneity was between clusters (i.e., between
individual studies) and the remaining 70.8% was within clusters
(i.e., within individual studies) (Figure 6). Complete model
results are reported in Table 2.

3.2.3. Model 2: Meta-Regression
As analysis of heterogeneity in the base model indicated a
significant amount of variability between observations, meta-
regression analyses were conducted. However, the characteristics
of the collected eligible correlations did not allow for the original
model analyzing both the main effects and interaction between
cognitive training domain and cognitive training approach to be
carried out. As foreshadowed by prior work, executive function
and episodic memory training studies in the present sample
perfectly aligned with the use of process and strategy training
approaches, respectively (see Table 1).

Level1 : θ̂ij = θij + ǫij

Level2 : θij = κj + ξ(2)ij

Level3 : κj = β0 + β1(DomainApproach)+ ξ(3)j

(3)

A large amount of residual heterogeneity remained after the
addition of the domain/approach predictor [QE(80) = 891.1806,
p < 0.0001]. There was no evidence for a significant relationship
between training domain/approach and the correlation of
baseline individual differences with cognitive training gain (β1

= –0.3082, z = –0.9537, p = 0.3402). The estimated average
correlation remained negative and significant (β0 = –0.4099, z

Frontiers in Psychology | www.frontiersin.org 8 May 2021 | Volume 12 | Article 662139

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Traut et al. Cognitive Training and Baseline Meta-Analysis

TABLE 1 | List of all observations used in reported analyses.

Author

(Year)

Correlation

ID

Training

domain

Training

approach

n r

Chan et al. (2015) 1 EF Process 25 –0.72

” 2 EF Process 25 –0.51

” 3 EF Process 25 –0.50

” 4 EF Process 25 –0.81

” 5 EF Process 25 –0.17

” 6 EF Process 25 –0.30

” 7 EF Process 25 –0.53

” 8 EF Process 25 –0.37

Chooi (2011) 1 EF process 9 -0.04

” 2 EF Process 13 –0.48

Fellman et al. (2018) 1 EF Process 25 –0.62

Foster et al. (2017) 1 EF Process 30 –0.26

” 2 EF Process 30 –0.15

” 3 EF Process 36 –0.34

” 4 EF Process 36 0.06

Gade et al. (2017) 1 EF Process 10 –0.86

” 2 EF Process 16 –0.71

” 3 EF Process 10 –0.95

” 4 EF Process 10 –0.74

Gunn et al. (2018) 1 EF Process 70 –0.01

Hickey (2018) 1 EF Process 5 0.05

” 2 EF Process 5 0.70

Jones et al. (2020) 1 EF Process 41 0.34

Karbach et al. (2017) 1 EF Process 126 0.81*

Karbach et al. (2015) 1 EF Process 14 –0.39

Lövdén et al. (2012) 1 EP strategy 50 –0.85

” 2 EP Strategy 29 –0.99

” 3 EP Strategy 29 –0.90

” 4 EP Process 50 0.33

” 5 EP Process 29 –0.02

” 6 EP Process 29 –0.09

McKitrick et al. (1999) 1 EP Strategy 224 –0.33

” 2 EP Strategy 224 –0.44

O’Brien et al. (2013) 1 EF Process 11 –0.63

De Simoni and von Bastian (2018) 1 EF Process 59 –0.4

” 2 EF Process 59 –0.26

” 3 EF Process 59 –0.52

” 4 EF Process 59 –0.58

” 5 EF Process 66 –0.28

” 6 EF Process 66 –0.48

” 7 EF Process 65 –0.15

” 8 EF Process 66 0.05

Singer et al. (2003) 1 EP Strategy 96 0.14

Stepankova et al. (2014) 1 EF Process 20 –0.01

” 2 EF Process 20 0.02

Strobach and Huestegge (2017) 1 EF Process 76 0.15

” 2 EF Process 76 0.16

” 3 EF Process 76 0.40

” 4 EF Process 76 0.39

” 5 EF Process 76 0.24

(Continued)
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TABLE 1 | Continued

Author

(Year)

Correlation

ID

Training

domain

Training

approach

n r

” 6 EF Process 76 –0.47

Vermeij et al. (2017) 1 EF Process 21 0.03

” 2 EF Process 21 –0.58

” 3 EF Process 20 –0.63

” 4 EF Process 20 –0.39

” 5 EF Process 14 –0.16

” 6 EF Process 14 –0.30

” 7 EF Process 10 –0.22

” 8 EF Process 10 –0.50

Volckaert and Noël (2015) 1 EF Process 24 –0.55

Volckaert and Pascale Noel (2017) 1 EF Process 16 –0.72

von Bastian and Oberauer (2013) 1 EF Process 30 –0.27

” 2 EF Process 30 –0.54

” 3 EF Process 31 –0.79

de Vries et al. (2018) 1 EF Process 81 0.51

Weicker et al. (2018) 1 EF Process 20 –0.13

” 2 EF Process 20 –0.25

” 3 EF Process 20 –0.60

” 4 EF Process 20 –0.31

” 5 EF Process 20 –0.63

” 6 EF Process 20 –0.59

” 7 EF process 20 –0.53

” 8 EF Process 20 –0.55

” 9 EF Process 19 –0.56

Zinke et al. (2012) 1 EF Process 20 –0.66

” 2 EF Process 20 –0.59

” 3 EF Process 20 –0.65

” 4 EF Process 20 –0.89

” 5 EF Process 20 –0.80

Zinke et al. (2014) 1 EF Process 40 –0.46

” 2 EF Process 40 –0.17

” 3 EF Process 40 –0.32

” 4 EF Process 40 0.10

” 5 EF Process 40 –0.64

” 6 EF Process 40 –0.30

EF, executive function; EP, episodic memory.

*Indicates correlation was multiplied by -1 for interpretability purposes in analysis.

= –3.5574, p = 0.0004). Complete model results are reported in
Table 3.

3.2.4. Model 3: Exploratory Meta-Analytic Correlation

of Executive Function Papers Only
Given the paucity of qualifying episodic memory/strategy
cognitive training papers, a third exploratory analysis was
conducted using only executive function/process cognitive
training papers. This analysis evaluated the meta-analytic
correlation coefficient for this subset of the retrieved effect sizes
using the same equations described in Equation (1). A total of 22
papers with 76 effect sizes were included. Complete model results
are reported in Table 4.

Evaluation of publication bias in this restricted dataset
demonstrated similar patterns to the complete dataset with
significant results in an Egger’s test for funnel plot asymmetry
(z = –2.5614, p = 0.0104). This restricted dataset again
demonstrated a significant negative association between baseline
ability and gains in that ability as a result of training (β0 = –
0.4101, z = –4.1074, p < 0.0001) with a significant amount of
heterogeneity [Q(75) = 676.4997, p < 0.0001) (Figure 7).

4. DISCUSSION

We highlight three main findings from this systematic meta-
analysis of the cognitive training literature. First, baseline
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FIGURE 3 | Contoured funnel plot of all effect sizes. Fisher’s Z transformed correlation coefficients for each reported effect size are plotted against the standard error.

The dark dashed line indicates the summary effect size on which the funnel is centered. The lighter dashed line indicates a null effect. The funnel is centered on the

summary effect size. Egger’s regression suggests mild asymmetry present in the plot (z = –1.7653; p = 0.0775).

individual differences in the cognitive ability trained yield
significant compensatory effects. Participants with initially
weaker targeted abilities gain more from cognitive training
than those who are initially more proficient. This meta-
analytic finding is consistent with multiple prior accounts of
the influence of individual differences on cognitive training
gains, particularly for executive function and process based
cognitive training approaches (Lövdén et al., 2012; Karbach
and Unger, 2014), and is the first to demonstrate it via a
systematic literature synthesis. Second, the literature did not
support an interrogation of how this effect might differ based on
cognitive domain being trained (executive function vs. episodic
memory) and/or training approach (process- vs. strategy-based).
Our review retrieved too few eligible papers reporting results
of episodic memory or strategy-based training to compare
correlations to those of executive function or process-based
cognitive trainings—raising questions as to why these papers in
particular did not qualify for inclusion. This was accompanied
by little variation in the use of process-based approaches
with executive function trainings and strategy-based approaches
with episodic memory trainings (with a handful of notable
exceptions, e.g., Lövdén et al., 2012). Third, despite our sample
being predominantly executive function and process-based, a
significant amount of heterogeneity was evidenced, suggesting
a range of moderators outside of cognitive domain and training

approach are at play. We discuss each of these important findings
in turn.

4.1. A Compensatory Meta-Correlation
Why would the weak gain the most? Cognitive training
may close the proficiency gap by providing exposure to
the targeted cognitive skill, bolstering individuals’ mastery
of fundamentals necessary for succeeding with that skill—
fundamentals that more advanced participants may have
already mastered. Relatedly, compensatory patterns could be
the result of ceiling effects, with higher performing individuals
having little to no room to improve on existing measures
with further cognitive training due to their already high
abilities. A ceiling-effect account of compensatory effects
could be explored in future systematic reviews that analyze
the extent to which effective ceilings were reached across
different measures and potential moderating effects of this
measurement factor.

Compensatory effects could also arise from participants’
expectations about how much they will improve from
training, if participants with worse initial abilities hold
stronger beliefs that an intervention will be beneficial
to them—in comparison to more proficient participants
who might feel confident in their existing abilities. This
possibility highlights the importance of measuring or
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FIGURE 4 | Contoured funnel plot of effect sizes aggregated by paper. Fisher’s Z transformed correlation coefficients for each reported effect size are plotted against

the standard error. The dark dashed line indicates the summary effect size on which the funnel is centered. The lighter dashed line indicates a null effect. The funnel is

centered on the summary effect size. Egger’s regression suggests no asymmetry present in the plot (z = -0.4545, p = 0.6495).

manipulating expectations to address their role in training
gains (Boot et al., 2013) and their potential interactions with
initial ability.

Lastly, compensatory effects could be the result of the
specific effect size coefficients extracted for this study: correlation
coefficients reflecting the association between baseline ability
and gain. Gain scores are most commonly calculated as the
difference between performance at test and that original baseline
score. The use of this method has been argued to be subject
to demonstrating regression to the mean, leading to a greater
chance of yielding a compensatory effect (Smoleń et al., 2018).
A growing body of work on individual differences in cognitive
training gains has moved toward analyzing individual differences
effects on cognitive training gains through alternative metrics.
These studies test the impact of training via approaches such as
latent growth curve modeling or structural equation modeling,
which account for variability to support better estimates of the
relationship between baseline ability and gain (e.g., Lövdén et al.,
2012; Foster et al., 2017; Guye et al., 2017, and others). Given that
correlations were the dominant available coefficient from which
to calculate a meta-analytic effect, this review highlights the need
for both consistency and deeper methodological consideration
in future analyses of effects of individual differences in baseline
ability on benefits from cognitive training.

4.2. Consequences of Eligibility Criteria
There are multiple potential reasons for the difficulty in
retrieving eligible papers across our moderators of interest
and their combinations. First, our eligibility requirements were
stringent. An unexpected difficulty during eligibility screening
of retrieved papers was the number of studies utilizing a multi-
modal training approach that did not permit for a controlled
analysis of the influence of cognitive training in the absence of
other approaches (e.g., group therapies, aerobic exercise, and
other educational interventions). Future work might include
such multi-modal studies to increase the number of usable
observations for analysis and more thoroughly represent the
current characteristics of the cognitive training literature. While
it was important to narrow our scope of inquiry to clearly
identify sources of variation as was done here, it will also be
valuable to evaluate the possible true effect size of baseline
individual differences within the types of studies that are
frequently conducted.

Similarly, the eligibility criteria used in this systematic review
revealed a paucity of studiesmeeting requirements for the specific
baseline cognition and training gains association being analyzed.
Eligibility for inclusion required studies to have investigated the
association between individual differences in baseline cognitive
ability, with that cognitive ability defined as being of the same
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FIGURE 5 | Forest plot of Model 1 results. Each correlation coefficient is plotted according to its Fisher’s Z transformation. Size of square indicates weight assigned to

the observation during analysis. Length of lines extending from square indicates variance associated with observation based on sample size. Each observation’s

Fisher’s Z transformation and confidence interval are presented on the right. The diamond at the bottom indicates the estimated Fisher’s Z transformed correlation

coefficient derived from Model 1.
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FIGURE 6 | Meta-correlation (Model 1) variance breakdown by level. The majority of heterogeneity within this model results from Level 3.

type as the one trained, and with cognitive training gains derived
from either the final training performance or near transfer
performance. This isolated the specific relationship in question
to initial ability in cognitive construct “X” and gains in “X”
from training in “X.” Many papers were disqualified for deviating
from either or both of the baseline cognitive measure and
training outcome requirements, highlighting inconsistencies in
what these common terms actually represent across the literature.
For example, one of the most cited works on this topic analyzed
the association of a baseline measure of general fluid intelligence
with far transfer outcomes on another fluid intelligence task,
after working memory training (Jaeggi et al., 2008). This work
is relevant to understanding individual differences in cognitive
training, and many papers talk about results such as these

in tandem with the types of studies included in this meta-
analysis (e.g., Lustig et al., 2009; Lövdén et al., 2012; Karbach
and Unger, 2014; Borella et al., 2017; Karbach et al., 2017).
However, individual differences in baseline abilities may predict
the effectiveness of training in different ways depending on
whether baseline, training, and gains target the same ability (e.g.,
workingmemory) or target different abilities that require transfer
(e.g., training working memory and testing fluid intelligence
gains and baseline). Cognitive training could show greater
magnification effects in the context of transfer tasks (e.g., Borella
et al., 2017; cf. Karbach et al., 2017), given the need to not
only acquire a relevant skill but to apply it to another domain,
which might require sufficient initial proficiency in that domain.
Future work could systematically assess this question, with the
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TABLE 2 | Model 1: Meta-correlation results.

Model Estimates

Estimate SE p-value Lower bound Upper bound

Correlation value –0.4490 0.1080 <0.0001 –0.661 –0.2374

Variance

Estimate Sqrt Levels

Level 1: σ 2 0.0657 0.2564 82

Level 2: σ 2 0.2284 0.4479 25

Heterogeneity

Q(df) I2

924.598(81) 91.17

TABLE 3 | Model 2: Meta-regression results.

Model Estimates

Estimate SE p-value Lower bound Upper bound

Correlation value –0.4099 0.1152 0.0004 –0.6357 –0.1841

Factor value –0.4490 0.1080 0.3402 –0.9416 0.3520

Variance

Estimate Sqrt Levels

Level 1: σ 2 0.0666 0.2580 82

Level 2: σ 2 0.2264 0.4758 25

Heterogeneity

QM(df) QE(df)

0.9096(1) 891.181(80)

challenge of comparing transfer measures that span a wide range
of distances from trained cognitive abilities.

4.3. Alternative Moderators
While we were unable to sufficiently explore the hypothesized
moderators of cognitive domain and training approach,
analyses indicated a significant amount of heterogeneity among
correlations in both our complete dataset and our exploratory
EF-process only dataset. Other moderators not investigated here
likely influence whether baseline individual differences predict
cognitive training benefits. For example, different age groups
respond differently to training, which has been interpreted
through the lens of age group differences in cognitive baseline
(Lövdén et al., 2012; Bürki et al., 2014; Borella et al., 2017;
Karbach et al., 2017). We did not explore age effects within
dataset as many observations incorporated multiple age groups
(see Supplementary Table 1).

Responsiveness to training is likely also influenced by
typical or atypical cognitive status—with specific aspects of
an individual’s condition potentially impacting the potency of
baseline individual differences effects. Many meta-analyses of
cognitive training effects limit eligibility to healthy populations
for this reason (e.g., Au et al., 2015). Our dataset included
a range of atypical populations including individuals with
ADD/ADHD, autism, Parkinson’s disease and other conditions
(see Supplementary Table 1), making it difficult to pose a

TABLE 4 | Model 3: Exploratory Meta-correlation results with executive

function/process studies only.

Model Estimates

Estimate SE p-value Lower bound Upper bound

Correlation value –0.4101 0.0998 <0.0001 –0.6057 –0.2144

Variance

Estimate Sqrt Levels

Level 1: σ 2 0.0521 0.2283 76

Level 2: σ 2 0.1629 0.4036 22

Heterogeneity

Q(df) I2

676.499(75) 86.51%

unified hypothesis for how atypical groups with disparate
etiologies might be differently affected by cognitive training
when compared to healthy samples. An exploration of typical
vs. atypical cognitive status yielded no significant effect on the
meta-analytic correlation (β1 = -0.1758, z = -0.8930, p < 0.3719),
likely because of the small number of atypical observations
and the range of conditions within our sample. Future work
might focus on the question of how typical vs. atypical groups’
baseline abilities influence cognitive training outcomes within
a specific condition (e.g., ADD/ADHD) to probe the nuances
of magnification or compensation effects based on specific
patient characteristics.

Outside of participant characteristics, compensation and
magnification effects may also vary based on characteristics of
cognitive trainings, such as the specific cognitive components
trained. The present dataset, for example, included trainings
of distinct executive function processes. Because of the small
number of non-working memory executive functions trainings
retrieved we were not able to examine the influence of specific
executive function effects within the present dataset. Our work
sought to determine the meta-analytic effect most representative
of existing studies including analysis of baseline individual
differences effects on cognitive training outcomes without regard
for specific executive function components. This was done to be
consistent with the prevailing discussion on the nature of these
effects—which typically does not distinguish between specific
executive function components. Future work should delve into
the potential differences that might arise in this effect between
different types of executive functions, as has been done in meta-
analytic work looking at the overall effect of cognitive training
specific to component types (e.g., Au et al., 2015).

Lastly, the overall potency of a cognitive training (i.e.,
how effective that training is compared to an active control)
could influence who benefits from that training, with weaker
interventions tending to benefit those who need them most
and stronger interventions showing more equitable benefits.
Heterogeneity in the present sample might be driven by
moderating effects of any of these factors.While our investigation
sought to clarify the pattern of compensation and magnification
results seen across executive function and episodic memory
training studies using process- and strategy-based approaches,
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FIGURE 7 | Forest plot of Model 3 results including only executive function trainings. Each correlation coefficient is plotted according to its Fisher’s Z transformation.

Size of square indicates weight assigned to the observation during analysis. Length of lines extending from square indicates variance associated with observation

based on sample size. Each observation’s Fisher’s Z transformation and confidence interval are presented on the right. The diamond at the bottom indicates the

estimated Fisher’s Z transformed correlation coefficient derived from Model 3.
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an important direction for future work will be to systematically
test the role of these other types of factors to more fully
understand to what extent baseline abilities predict benefits from
cognitive training.

4.4. Recommendations for Future Work
The availability of data limited both the number of eligible papers
and the type of effect size coefficients that could be extracted
for meta-analysis. To aid in future meta-analytic endeavors, our
minimum recommendation is that papers include the following
in their main or supplementary materials: complete correlation
tables by group as well as complete descriptive statistics by
group for all recorded measures. Complete correlation tables
would aid in extraction of correlation coefficients (as was
meta-analyzed in the present paper) and complete descriptive
statistics would aid in the calculation of Cohen’s d for meta-
analysis of group mean comparisons. Explicit separation of
both types of information by group (if multiple groups are
present) is essential to extracting information pertinent to
cognitive training.

Further, the inclusion of open data sets would greatly assist
in the pursuit of meta-analytic work. Within the context of
the present study, open datasets would allow for calculation
of gain scores when otherwise eligible papers did not report
results in this manner. Moving forward, they would allow for
the additional calculation of alternative measures and effect sizes
not reported in a specific paper. For example, open data sets
could support the calculation of indices designed to account
for ceiling effects, such as scaling gain scores by dividing
them by how much an individual could have improved (i.e.,
the difference between the maximum scoring of the test and
the score obtained by the individual at baseline). In addition,
in cases where studies include treatment and control groups,
open datasets could allow for post-hoc calculation of treatment
effects controlling for baseline covariates. For example, baseline
scores could be included as a covariate in an ANCOVA
model, with group as an independent variable and outcome
score as the dependent variables, to account for individual
differences in cognitive training effects (Bonate, 2000; Nunes
et al., 2011). Open data sets could further support contemporary
recommendations for the investigation of individual differences
in cognitive training effects including the use of latent variables
(e.g., Lövdén et al., 2012; von Bastian and Oberauer, 2014;
Guye et al., 2017) (for extensive discussion see Smoleń et al.,
2018).

5. CONCLUSION

Using a focused, systematic approach to evaluate the literature,
the present meta-analysis demonstrates evidence for a
compensatory effect of initial baseline ability on cognitive
training gains, suggesting that those best positioned to benefit
from cognitive trainings are those who are relatively weaker in
ability. Despite finding that few episodic memory or strategy-
based studies met our stringent eligibility criteria, preventing us

from evaluating the influence of cognitive domain and training
type, we found that a substantial amount of heterogeneity
still remained among our primarily executive function and
process-based studies. This indicates that even in this refined
sample, other pertinent moderators of the baseline individual
differences effect are at play. The prolific complexity in this field
was evident in this study. Future work should tackle defining
the problem space of individual differences in initial ability and
cognitive training gains. What initial abilities are we interested
in—those directly related to the cognitive skill being trained,
those nearly related, or those with a far relationship? The same
question applies for change after cognitive training. What are
the most productive definitions of cognitive training to use—the
narrow ones implemented here or broader definitions including
multi-modal trainings? What are the most appropriate means of
capturing these questions statistically? The present meta-analysis
indicates a productive direction forward in targeting cognitive
training toward lower performing individuals, and reaffirms the
urgency of continuing systematic work on this topic.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/Supplementary Material, further inquiries can be
directed to the corresponding author/s.

AUTHOR CONTRIBUTIONS

HT conceived of the idea with feedback from YM. HT and
RG carried out data collection. HT performed all analyses.
All authors discussed the results and interpretation. HT took
the lead in writing the manuscript. YM provided critical
revisions. RG provided input. All authors gave final approval of
the manuscript.

FUNDING

NICHD R01 HD086184 covered the costs of personnel on
this project.

ACKNOWLEDGMENTS

We would like to thank Drs. Akira Miyake, Marie Banich,
and Laura Michaelson for their valuable input on this
project. We would also like to thank undergraduate
research assistants of the Cognitive Development Center at
the University of Colorado Boulder for their assistance in
retrieving abstracts.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fpsyg.
2021.662139/full#supplementary-material

Frontiers in Psychology | www.frontiersin.org 17 May 2021 | Volume 12 | Article 662139

https://www.frontiersin.org/articles/10.3389/fpsyg.2021.662139/full#supplementary-material
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Traut et al. Cognitive Training and Baseline Meta-Analysis

REFERENCES

Assink, M., and Wibbelink, C. J. (2016). Fitting three-level meta-analytic

models in R: a step-by-step tutorial. Quant. Methods Psychol. 12, 154–174.

doi: 10.20982/tqmp.12.3.p154

Au, J., Sheehan, E., Tsai, N., Duncan, G. J., Buschkuehl, M., and Jaeggi, S. M.

(2015). Improving fluid intelligence with training on working memory: a

meta-analysis. Psychon. Bull. Rev. 22, 366–377. doi: 10.3758/s13423-014-0699-x

Bjork, E. L., and Bjork, R. A. (2011). “Making things hard on yourself, but in a good

way: creating desirable difficulties to enhance learning,” in Psychology and the

Real World: Essays Illustrating Fundamental Contributions to Society, eds M. A.

Gernsbacher, R. W. Pew, L. M. Hough, and J. R. Pomerantz (New York: Worth

Publishers), 59–68.

Bonate, P. L. (2000). Analysis of Pretest-Posttest Designs. Boca Raton, FL: Chapman

and Hall/CRC Press.

Boot, W. R., Simons, D. J., Stothart, C., and Stutts, C. (2013). The pervasive

problem with placebos in psychology: why active control groups are not

sufficient to rule out placebo effects. Perspect. Psychol. Sci. 8, 445–454.

doi: 10.1177/1745691613491271

Borella, E., Carbone, E., Pastore, M., De Beni, R., and Carretti, B. (2017).

Working memory training for healthy older adults: the role of individual

characteristics in explaining short- and long-term gains. Front. Hum. Neurosci.

11:99. doi: 10.3389/fnhum.2017.00099

Borenstein, M., Hedges, L. V., Higgins, J. P., and Rothstein, H. R. (2010). A basic

introduction to fixed-effect and random-effects models for meta-analysis. Res.

Synth. Methods 1, 97–111. doi: 10.1002/jrsm.12

Brehmer, Y., Li, S.-C., Müller, V., von Oertzen, T., and Lindenberger, U. (2007).

Memory plasticity across the life span: uncovering children’s latent potential.

Dev. Psychol. 43:465. doi: 10.1037/0012-1649.43.2.465

Bürki, C. N., Ludwig, C., Chicherio, C., and de Ribaupierre, A. (2014). Individual

differences in cognitive plasticity: an investigation of training curves in

younger and older adults. Psychol. Res. 78, 821–835. doi: 10.1007/s00426-014-

0559-3

Cepeda, N. J., Kramer, A. F., and Gonzalez de Sather, J. (2001). Changes

in executive control across the life span: examination of task-switching

performance. Dev. Psychol. 37:715. doi: 10.1037/0012-1649.37.5.715

Chan, J. S., Wu, Q., Liang, D., and Yan, J. H. (2015). Visuospatial working memory

training facilitates visually-aided explicit sequence learning. Acta Psychol. 161,

145–153. doi: 10.1016/j.actpsy.2015.09.008

Cheung, M. W.-L. (2014). Modeling dependent effect sizes with three-level meta-

analyses: a structural equation modeling approach. Psychol. Methods 19:211.

doi: 10.1037/a0032968

Chevalier, N., Chatham, C. H., and Munakata, Y. (2014). The practice of going

helps children to stop: the importance of context monitoring in inhibitory

control. J. Exp. Psychol. Gen. 143:959. doi: 10.1037/a0035868

Chooi, W. T. (2011). Improving intelligence by increasing working memory

capacity (Electronic Thesis or Dissertation). Case Western Reserve University,

Cleveland, OH. Retrieved from: https://etd.ohiolink.edu/

Cox, B. D. (1994). Children’s use of mnemonic strategies: variability in

response to metamemory training. J. Genet. Psychol. 155, 423–442.

doi: 10.1080/00221325.1994.9914792

Dahlin, K. I. E. (2011). Effects of working memory training on reading in

children with special needs.Read.Writ. 24, 479–491. doi: 10.1007/s11145-010-9

238-y

De Simoni, C., and von Bastian, C. C. (2018). Working memory

updating and binding training: Bayesian evidence supporting the

absence of transfer. J. Exp. Psychol. Gen. 147:829. doi: 10.1037/xge00

00453

de Vries, M., Verdam, M. G., Prins, P. J., Schmand, B. A., and Geurts, H. M.

(2018). Exploring possible predictors and moderators of an executive function

training for children with an autism spectrum disorder. Autism 22, 440–449.

doi: 10.1177/1362361316682622

Diamond, A. (2012). Activities and programs that improve children’s executive

functions. Curr. Dir. Psychol. Sci. 21, 335–341. doi: 10.1177/0963721412453722

Diamond, A., and Lee, K. (2011). Interventions shown to aid executive

function development in children 4 to 12 years old. Science 333, 959–964.

doi: 10.1126/science.1204529

Egger, M., Smith, G. D., Schneider, M., and Minder, C. (1997). Bias in

meta-analysis detected by a simple, graphical test. Bmj 315, 629–634.

doi: 10.1136/bmj.315.7109.629

Fellman, D., Salmi, J., Ritakallio, L., Ellfolk, U., Rinne, J. O., and Laine,

M. (2018). Training working memory updating in Parkinson’s disease:

a randomised controlled trial. Neuropsychol. Rehabil. 30, 673–708.

doi: 10.1080/09602011.2018.1489860

Fernández-Castilla, B., Declercq, L., Jamshidi, L., Beretvas, N., Onghena, P., and

Van den Noortgate, W. (2020). Visual representations of meta-analyses of

multiple outcomes: extensions to forest plots, funnel plots, and caterpillar plots.

Methodology 16, 299–315. doi: 10.5964/meth.4013

Foster, J. L., Harrison, T. L., Hicks, K. L., Draheim, C., Redick, T. S., and

Engle, R. W. (2017). Do the effects of working memory training depend

on baseline ability level? J. Exp. Psychol. Learn. Mem. Cogn. 43, 1677–1689.

doi: 10.1037/xlm0000426

Fu, L., Maes, J. H., Kessels, R. P., and Daselaar, S. M. (2017). To boost or

to CRUNCH? Effect of effortful encoding on episodic memory in older

adults is dependent on executive functioning. PLoS ONE 12:e0174217.

doi: 10.1371/journal.pone.0174217

Gade, M., Zoelch, C., and Seitz-Stein, K. (2017). Training of visual-spatial

working memory in preschool children. Adv. Cogn. Psychol. 13:177.

doi: 10.5709/acp-0217-7

Gaultney, J. F., Bjorklund, D. F., and Goldstein, D. (1996). To be young, gifted, and

strategic: advantages for memory performance. J. Exp. Child Psychol. 61, 43–66.

Gunn, R. L., Gerst, K. R., Wiemers, E. A., Redick, T. S., and Finn, P. R. (2018).

Predictors of effective working memory training in individuals with alcohol use

disorders. Alcohol. Clin. Exp. Res. 42, 2432–2441. doi: 10.1111/acer.13892

Guye, S., De Simoni, C., and von Bastian, C. C. (2017). Do individual

differences predict change in cognitive training performance? A

latent growth curve modeling approach. J. Cogn. Enhanc. 1, 374–393.

doi: 10.1007/s41465-017-0049-9

Hering, A., Meuleman, B., Bürki, C., Borella, E., and Kliegel, M. (2017).

Improving older adults’ working memory: the influence of age and

crystallized intelligence on training outcomes. J. Cogn. Enhanc. 1, 358–373.

doi: 10.1007/s41465-017-0041-4

Hickey, A. (2018). Improving academic outcomes for children in foster care

through tutoring or working memory training: three randomized trials

(Electronic Thesis or Dissertation). University of Ottawa, Ottawa, ON, Canada.

doi: 10.20381/ruor-21886

Higgins, J. P. T., and Thompson, S. G. (2002). Quantifying heterogeneity in a

meta-analysis. Stat. Med. 21, 1539–1558. doi: 10.1002/sim.1186

Iacobucci, D., Posavac, S. S., Kardes, F. R., Schneider, M. J., and Popovich, D. L.

(2015). Toward a more nuanced understanding of the statistical properties of a

median split. J. Consum. Psychol. 25, 652–665. doi: 10.1016/j.jcps.2014.12.002

Jaeggi, S. M., Buschkuehl, M., Jonides, J., and Perrig, W. J. (2008). Improving fluid

intelligence with training on workingmemory. Proc. Natl. Acad. Sci. U.S.A. 105,

6829–6833. doi: 10.1073/pnas.0801268105

Jaeggi, S. M., Buschkuehl, M., Shah, P., and Jonides, J. (2014). The role of

individual differences in cognitive training and transfer. Mem. Cogn. 42, 464–

480. doi: 10.3758/s13421-013-0364-z

Jones, M. R., Katz, B., Buschkuehl, M., Jaeggi, S. M., and Shah, P. (2020). Exploring

N-Back cognitive training for children with ADHD. J. Atten. Disord. 24,

704–719. doi: 10.1177/1087054718779230

Karbach, J., Könen, T., and Spengler, M. (2017). Who benefits the most? Individual

differences in the transfer of executive control training across the lifespan. J.

Cogn. Enhanc. 1, 394–405. doi: 10.1007/s41465-017-0054-z

Karbach, J., Strobach, T., and Schubert, T. (2015). Adaptive working-

memory training benefits reading, but not mathematics in middle

childhood. Child Neuropsychol. 21, 285–301. doi: 10.1080/09297049.2014.8

99336

Karbach, J., and Unger, K. (2014). Executive control training from middle

childhood to adolescence. Front. Psychol. 5:390. doi: 10.3389/fpsyg.2014.00390

Katz, B., Jaeggi, S., Buschkuehl, M., Stegman, A., and Shah, P. (2014).

Differential effect of motivational features on training improvements

in school-based cognitive training. Front. Hum. Neurosci. 8:242.

doi: 10.3389/fnhum.2014.00242

Kliegl, R., Smith, J., and Baltes, P. B. (1990). On the locus and process of

magnification of age differences during mnemonic training. Dev. Psychol.

26:894–904. doi: 10.1037/0012-1649.26.6.894

Konstantopoulos, S. (2011). Fixed effects and variance components estimation in

three-level meta-analysis. Res. Synth. Methods 2, 61–76. doi: 10.1002/jrsm.35

Liberati, A., Altman, D. G., Tetzlaff, J., Mulrow, C., Gøtzsche, P. C.,

Ioannidis, J. P., et al. (2009). The PRISMA statement for reporting

Frontiers in Psychology | www.frontiersin.org 18 May 2021 | Volume 12 | Article 662139

https://doi.org/10.20982/tqmp.12.3.p154
https://doi.org/10.3758/s13423-014-0699-x
https://doi.org/10.1177/1745691613491271
https://doi.org/10.3389/fnhum.2017.00099
https://doi.org/10.1002/jrsm.12
https://doi.org/10.1037/0012-1649.43.2.465
https://doi.org/10.1007/s00426-014-0559-3
https://doi.org/10.1037/0012-1649.37.5.715
https://doi.org/10.1016/j.actpsy.2015.09.008
https://doi.org/10.1037/a0032968
https://doi.org/10.1037/a0035868
https://etd.ohiolink.edu/
https://doi.org/10.1080/00221325.1994.9914792
https://doi.org/10.1007/s11145-010-9238-y
https://doi.org/10.1037/xge0000453
https://doi.org/10.1177/1362361316682622
https://doi.org/10.1177/0963721412453722
https://doi.org/10.1126/science.1204529
https://doi.org/10.1136/bmj.315.7109.629
https://doi.org/10.1080/09602011.2018.1489860
https://doi.org/10.5964/meth.4013
https://doi.org/10.1037/xlm0000426
https://doi.org/10.1371/journal.pone.0174217
https://doi.org/10.5709/acp-0217-7
https://doi.org/10.1111/acer.13892
https://doi.org/10.1007/s41465-017-0049-9
https://doi.org/10.1007/s41465-017-0041-4
https://doi.org/10.20381/ruor-21886
https://doi.org/10.1002/sim.1186
https://doi.org/10.1016/j.jcps.2014.12.002
https://doi.org/10.1073/pnas.0801268105
https://doi.org/10.3758/s13421-013-0364-z
https://doi.org/10.1177/1087054718779230
https://doi.org/10.1007/s41465-017-0054-z
https://doi.org/10.1080/09297049.2014.899336
https://doi.org/10.3389/fpsyg.2014.00390
https://doi.org/10.3389/fnhum.2014.00242
https://doi.org/10.1037/0012-1649.26.6.894
https://doi.org/10.1002/jrsm.35
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Traut et al. Cognitive Training and Baseline Meta-Analysis

systematic reviews and meta-analyses of studies that evaluate health care

interventions: explanation and elaboration. J. Clin. Epidemiol. 62, e1–e34.

doi: 10.1016/j.jclinepi.2009.06.006

Lipsey, M.W., andWilson, D. B. (2001).Applied social research methods series, Vol.

49. Practical Meta-Analysis. Thousand Oaks, CA: Sage Publications, Inc.

Loosli, S. V., Buschkuehl, M., Perrig, W. J., and Jaeggi, S. M. (2012). Working

memory training improves reading processes in typically developing children.

Child Neuropsychol. 18, 62–78. doi: 10.1080/09297049.2011.575772

Lövdén, M., Brehmer, Y., Li, S.-C., and Lindenberger, U. (2012). Training-induced

compensation versus magnification of individual differences in memory

performance. Front. Hum. Neurosci. 6:141. doi: 10.3389/fnhum.2012.00141

Lustig, C., Shah, P., Seidler, R., and Reuter-Lorenz, P. A. (2009). Aging, training,

and the brain: a review and future directions. Neuropsychol. Rev. 19, 504–522.

doi: 10.1007/s11065-009-9119-9

McKitrick, L. A., Friedman, L. F., Brooks, J. O., Pearman, A., Kraemer,

H. C., and Yesavage, J. A. (1999). Predicting response of older adults

to mnemonic training: who will benefit? Int. Psychogeriatr. 11, 289–300.

doi: 10.1017/S1041610299005852

Melby-Lervåg, M., and Hulme, C. (2013). Is working memory training effective? A

meta-analytic review. Dev. Psychol. 49:270. doi: 10.1037/a0028228

Melby-Lervåg, M., Redick, T. S., and Hulme, C. (2016). Working memory training

does not improve performance on measures of intelligence or other measures

of “far transfer”: evidence from a meta-analytic review. Perspect. Psychol. Sci.

11, 512–534. doi: 10.1177/1745691616635612

Miyake, A., and Friedman, N. P. (2012). The nature and organization of individual

differences in executive functions: four general conclusions. Curr. Dir. Psychol.

Sci. 21, 8–14. doi: 10.1177/0963721411429458

Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., and

Wager, T. D. (2000). The unity and diversity of executive functions and their

contributions to complex “frontal lobe” tasks: a latent variable analysis. Cogn.

Psychol. 41, 49–100. doi: 10.1006/cogp.1999.0734

Nakagawa, S., and Santos, E. S. (2012). Methodological issues and

advances in biological meta-analysis. Evol. Ecol. 26, 1253–1274.

doi: 10.1007/s10682-012-9555-5

Noack, H., Lövdén, M., and Schmiedek, F. (2014). On the validity and generality

of transfer effects in cognitive training research. Psychol. Res. 78, 773–789.

doi: 10.1007/s00426-014-0564-6

Nunes, E. V., Pavlicova, M., Hu, M.-C., Campbell, A. N., Miele, G., Hien, D.,

et al. (2011). Baseline matters: the importance of covariation for baseline

severity in the analysis of clinical trials. Am. J. Drug Alcohol Abuse 37, 446–452.

doi: 10.3109/00952990.2011.596980

O’Brien, J. L., Edwards, J. D., Maxfield, N. D., Peronto, C. L., Williams, V. A.,

and Lister, J. J. (2013). Cognitive training and selective attention in the

aging brain: an electrophysiological study. Clin. Neurophysiol. 124, 2198–2208.

doi: 10.1016/j.clinph.2013.05.012

R Core Team (2020). R: A Language and Environment for Statistical Computing.

Vienna: R Foundation for Statistical Computing. Available online at: https://

www.R-project.org/

Rossignoli-Palomeque, T., Perez-Hernandez, E., and González-

Marqués, J. (2018). Brain training in children and adolescents: is

it scientifically valid? Front. Psychol. 9:565. doi: 10.3389/fpsyg.2018.

00565

Rueda, M. R., Rothbart, M. K., McCandliss, B. D., Saccomanno, L., and Posner,

M. I. (2005). Training, maturation, and genetic influences on the development

of executive attention. Proc. Natl. Acad. Sci. U.S.A. 102, 14931–14936.

doi: 10.1073/pnas.0506897102

Sala, G., and Gobet, F. (2017). Working memory training in typically developing

children: A meta-analysis of the available evidence. Dev. Psychol. 53, 671–685.

doi: 10.1037/dev0000265

Segretin, M. S., Lipina, S. J., Hermida, M. J., Sheffield, T. D., Nelson, J. M., Espy,

K. A., et al. (2014). Predictors of cognitive enhancement after training in

preschoolers from diverse socioeconomic backgrounds. Front. Psychol. 5:205.

doi: 10.3389/fpsyg.2014.00205

Shipstead, Z., Redick, T. S., and Engle, R. W. (2012). Is working memory training

effective? Psychol. Bull. 138, 628–654. doi: 10.1037/a0027473

Simons, D. J., Boot,W. R., Charness, N., Gathercole, S. E., Chabris, C. F., Hambrick,

D. Z., et al. (2016). Do “brain-training” programs work? Psychol. Sci. Public

Interest 17, 103–186. doi: 10.1177/1529100616661983

Singer, T., Lindenberger, U., and Baltes, P. B. (2003). Plasticity of memory for

new learning in very old age: a story of major loss? Psychol. Aging 18:306.

doi: 10.1037/0882-7974.18.2.306
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