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The few studies that have analyzed the factorial structure of early number skills

have mainly used confirmatory factor analysis (CFA) and have yielded inconsistent

results, since early numeracy is considered to be unidimensional, multidimensional

or even underpinned by a general factor. Recently, the bifactor exploratory structural

equation modeling (bifactor-ESEM)—which has been proposed as a way to overcome

the shortcomings of both the CFA and the exploratory structural equation modeling

(ESEM)—proved to be valuable to account for the multidimensionality and the

hierarchical nature of several psychological constructs. The present study is the first

to investigate the dimensionality of early number skills measurement through the

application of the bifactor-ESEM framework. Using data from 644 prekindergarten and

kindergarten children (4 to 6 years old), several competing models were contrasted:

the one-factor CFA model; the independent cluster model (ICM-CFA); the exploratory

structural equation modeling (ESEM); and their bifactor counterpart (bifactor-CFA and

bifactor-ESEM, respectively). Results indicated acceptable fit indexes for the one-factor

CFA and the ICM-CFA models and excellent fit for the others. Among these, the

bifactor-ESEM with one general factor and three specific factors (Counting, Relations,

Arithmetic) not only showed the best model fit, but also the best coherent factor

loadings structure and full measurement invariance across gender. The bifactor-ESEM

appears relevant to help disentangle and account for general and specific factors of

early numerical ability. While early numerical ability appears to be mainly underpinned by

a general factor whose exact nature still has to be determined, this study highlights that

specific latent dimensions with substantive value also exist. Identifying these specific

facets is important in order to increase quality of early numerical ability measurement,

predictive validity, and for practical implications.
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INTRODUCTION

Early Numeracy and the Importance of Its
Dimensionality
Early number skills refer to a set of elementary competencies
comprising counting, number relations and basic arithmetic
operations. These skills have repeatedly been shown to predict
more complex mathematical skills as well as general school
achievement (Clements and Sarama, 2007, 2011; Duncan et al.,
2007; Jordan et al., 2009, 2010). For example, Watts et al.
(2014) found that preschool mathematics ability was a significant
predictor of math skills up to the age of 15 after accounting
for cognitive skills and family background characteristics. It has
even been highlighted that early number skills are more strongly
related to later math achievement than are early literacy skills
to later reading scores, and that early number skills are the
strongest predictor of later general school success (Duncan et al.,
2007).

Given their importance, early number skills have become
the focus of growing interest during these past two decades.
Many experts and national commissions have emphasized the
necessity of focusing upon early mathematics education (Starkey
et al., 2004; National Council of Teachers of Mathematics, 2006;
Clements and Sarama, 2007; Ginsburg et al., 2008; National
Mathematics Advisory Panel, 2008; National Research Council,
2009; Frye et al., 2013). Indeed, enhancing the early number
skills of pupils at (pre)kindergarten can assist children entering
with very varied number knowledge, and can help with the
process of placing at-risk children onto an appropriate learning
trajectory (Ginsburg et al., 2008; Jordan et al., 2010; Scalise et al.,
2017). However, despite the growing attention they have received
recently, early number skills continue to be studied far less than
early reading skills (Mazzocco and Claessens, 2020).

In this context, one major question is to precisely understand
the dimensionality of early number skills. Knowing how early
numeracy is structured not only allows researchers to assess
them more properly, but also to develop more appropriate early
intervention strategies. In addition, an accurate identification
of the early number skills structure is important to study their
relationships with other variables. For example, Brunner (2008)
showed that the understanding of the relationships between
cognitive abilities and students’ characteristics depends strongly
on the structural conception of applied cognitive abilities. More
precisely, he compared two models of mathematical ability and
showed that the correlation between mathematical ability and
students’ socioeconomic status (SES) was considerably different
depending on the model considered. He concluded that in terms
of implications for policy makers, results might lead to a decision
to invest in specific math interventions with low SES children or
might motivate interventions targeting a general factor as well
as more domain-specific dimensions (i.e., programs seeking to
foster reasoning across education domains, specificmathematical
abilities). Thus, without a comprehensive understanding of the
early numeracy dimensionality, researchers continue to base
their work on unvalidated conceptual frameworks, and risk
using a misspecified measurement model which might lead
researchers tomisleading results and conclusions (Brunner, 2008;

Dierendonck et al., 2019; Cimino et al., 2020; Zhang et al.,
2020).

In the domain of early literacy, the identification of the set
of competencies that support reading acquisition has yielded
more effective literacy instruction (Juel and Minden-Cupp,
2000; National Early Literacy Panel, 2008). Regarding numeracy,
it is still not clear to date whether specific early numeracy
sub-skills exist or are only different means of assessing a
general early numeracy construct (Purpura and Lonigan, 2013;
Milburn et al., 2019). Consequently, a central question is
whether early numeracy skills should be fostered and assessed
in a broad perspective, as an overall competence assuming
unidimensionality, or whether specific aspects of early numeracy
should be considered, assuming multidimensionality.

Current Knowledge About Early Number
Skills Structure
To date, the structure of early number skills has not been the
focus of much attention. Interestingly, two of the most important
official documents—reports by the National Research Council
(2009) and the National Council of Teachers of Mathematics
(2006)—do not assume the same number of numeracy sub-
dimensions (“Number,” “Relations,” and “Operations” for the
NRC and “Numbers” and “Operations” for the NCTM),
suggesting a tripartite and a bipartite model of early numeracy,
respectively. The few empirical studies that have analyzed the
dimensionality of early number skills (see Appendix 1 for a
detailed overview) have mainly investigated whether an a priori
model was confirmed through confirmatory factor analysis
(CFA), in particular, through the one-factor model (OF) for
unidimensionality or the independent cluster model (ICM) for
multidimensionality. As depicted in Figure 1, the one-factor
model (OF) considers only one general ability or dimension.
Individual differences are supposed to be due to individual
differences on a single common latent factor. The first-order
factor model (ICM-CFA) assumes that the measured ability is
composed of several first-order specific facets F1, F2 and F3
whichmay be correlated, but are depicted by independent factors.
Although CFA is the most commonly used approach to model
construct-relevant multidimensionality, it is often criticized for
its very restrictive independent cluster model assumption, which
requires that each item to be defined by only one content domain.
Under this overly restrictive assumption, factor correlations tend
to be inflated (Asparouhov and Muthén, 2009; Morin et al.,
2020).

The dimensionality studies of early number skills yielded
inconsistent results. In studies that did not consider the
hypothesis of a general factor underlying early numeracy, the
number of first-order factors varies from 2 to 5. This variation
is partly explained by the fact that the researchers used different
measurement tools. In the only two studies we are aware of, that
consider the hypothesis of a general factor through a bifactor-
CFA model (see below), the number of specific factors ranges
from 2 (Mou et al., 2021) to 7 (Ryoo et al., 2015).
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FIGURE 1 | Simplified graphical representations of five alternative models of early numeracy: (A) the one-factor model (OF), (B) the independent cluster model

(ICM-CFA), (C) the exploratory structural equation model (ESEM), (D) the bifactor-CFA model (Bifactor-CFA), and (E) the bifactor exploratory structural equation model

(Bifactor-ESEM).

How to Capture the Potential
Multidimensionality and Hierarchically
Nature of Early Numeracy?
Bifactor-CFA

In order to take into account the shared communality of each
item, the bifactor-CFA (see Figure 1) has been proposed (Reise,
2012). The construct under consideration is assumed to be
independently and directly influenced by a general factor and by
several specific facets. All factors are supposed to be orthogonal,
and the model divides the total observed covariance of the
items into a general component (G) which underlies all items,
and specific facets (S1, S2, S3. . . ), thus explaining the residual
covariance that is not explained by the general factor (Figure 1).
The bifactor-CFA better represents the multidimensionality of a
construct by taking into account its hierarchical nature, and it is
increasingly popular in the literature. As far as we know, only
two studies of early number skills have tested a bifactor-CFA
representation of their data (see Appendix 1 for details). Mou
et al. (2021) focused on set-to-number and number-to-set tasks
(Wynn, 1992; Le Corre et al., 2006). They have compared a single-
factormodel, a 2-factor ICM-CFA and a bifactor-CFAmodel with
a general factor and two specific dimensions. They concluded
that set-to-number and number-to-set tasks have substantial
overlap but do not appear to be conceptually interchangeable, as
the bifactor model showed the best fit to the data. Ryoo et al.
(2015) conducted several CFAs (one-factor model, ICM-CFA

model, second-order model1 and bifactor-CFA model) across
four time points and observed inconsistent results. Best fitting
models were, respectively, a 7-factor bifactor-CFA for first and
second time points, a 7-factor ICM-CFA model for the third
time point and an 8-factor ICM-CFA model for the fourth time
point. They did not test models with <7 factors. They concluded
that when the shared variance between all items is kept under
control, several specific factors appear to explain the residual
covariance, which suggests that early number skills seem to have
a hierarchical structure.

Bifactor-CFA however raises some measurement and
theoretical concerns (Morin et al., 2016a; Bonifay et al., 2017;
Sellbom and Tellegen, 2019). In particular, the bifactor-CFA
neglects the possibility that items may have cross-loadings on
the non-target specific factors. Such unmodeled cross-loadings
tend to result in inflated G-factor loadings (Murray and Johnson,
2013; Morin et al., 2016a). In order to take the item cross-
loadings into consideration, Asparouhov and Muthén (2009)
proposed the exploratory structural equation modeling (ESEM)
framework as an alternative to CFA models.

1In a second-order (or higher-order) model, paths are specified from a second-

order factor to the first-order factors, which in turns have paths leading to observed

indicators. Second-order model relies on stringent proportionality constraints

which are nevertheless unlikely to hold in practice (for details, see Canivez, 2016;

Morin et al., 2016a).
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ESEM and Bifactor-ESEM

ESEM allows for the integration of exploratory factor analysis
(EFA) within structural equation modeling (SEM). ESEM with
target rotation relies on similarly defined factors as in ICM-
CFA, but allows for cross-loadings to be freely estimated between
items and non-target factors. Relative to ICM-CFA, ESEM
estimates loadings for indicators on all factors, and providesmore
precision in the estimation of factors andmore accurate estimates
of factor correlations, which results in better discriminant
validity (Asparouhov and Muthén, 2009; Morin et al., 2016a,b).
Moreover, when estimated with target rotation, ESEM can
be used for purely confirmatory purposes (Asparouhov and
Muthén, 2009).

To take into account the advantages of the ESEM framework,
as well as the hierarchical nature of some constructs, the bifactor
exploratory structural equation modeling (bifactor-ESEM) has
recently been proposed by some authors (Jennrich and Bentler,
2011; Morin et al., 2016a,b) (Figure 1). Unlike CFA, this new
modeling takes the relations of non-target constructs and items
into account, and unlike ESEM, it allows the coexistence of both a
latent general construct and specific subdomains. By overcoming
the CFA and ESEM shortcomings, the bifactor-ESEM might be
the most comprehensive and flexible model, able to describe the
complex psychological characteristics with most accuracy (Gu
et al., 2020).

Since this pioneering work, the bifactor-ESEM proved to be
very interesting in the way it accounts for the dimensionality
of several psychological constructs (Fadda et al., 2017; Sánchez-
Oliva et al., 2017; Gu et al., 2020). However, neither ESEM nor
bifactor-ESEM has already been used to study the dimensionality
of early number skills. Now, on the one hand, the structure of this
domain should be studied by allowing cross-loadings on non-
target specific factors, in order to prevent the G-factor loadings
inflation to inflate G-factor loadings (Asparouhov and Muthén,
2009). On the other hand, the high intercorrelations between the
first-order factors found in early numeracy (i.e., Purpura and
Lonigan, 2013)—which is higher than in literacy for example
(Storch and Whitehurst, 2002; Thomas et al., 2018)—might
mask a more general factor describing variation in responses
across all the observed indicators (Betts et al., 2011; Ryoo et al.,
2015). Importantly, while bifactor models tend to show superior
goodness of fit inmodel comparison studies (Bonifay et al., 2017),
model comparisons need to be anchored both in theory and in
a detailed examination of parameter estimates, as suggested by
Morin et al. (2020).

The Current Study
To our knowledge, no study applied the bifactor-ESEM
framework in the field of early numeracy. Given the strong
correlations between subdimensions within that domain and the
relevance of the bifactor-ESEM framework applied in other areas,
the current study aims to investigate the multidimensionality and
hierarchical nature of early skills by assuming that a bifactor-
ESEM representation is theoretically supported and would better
account for numeracy data than rival measurement models. We
suggest that our study could serve as a foundation for future

studies aiming to examine the dimensionality of early numeracy
by using the bifactor-ESEM framework.

MATERIALS AND METHODS

Ethics
The study was reviewed and approved by the Ethics Review Panel
of the University of Luxembourg in charge of study coordination.
The legal guardian of the pupils provided written informed
consent to participate in this study.

Participants and Procedure
The present article is based on pretest data collected during a
quasi-experimental study conducted in four education systems
in continental Europe (Belgium, France, Luxembourg and
Switzerland), and aimed at measuring the efficacy of a 12 week
numerical games intervention with pupils aged from 4 to 6 years
(for details and results, see de Chambrier et al., 2021). There
were 23 participating schools (46 classrooms) with pupils from
mixed socio-economic backgrounds. While 724 children took
part in the study, 80 children were not considered, either because
they faced major developmental challenges (trisomy/autism),
because they were newly arrived in the country and did not
speak the school language, or because they were not present
on the day of the pretest. The remaining sample of 644
children can be described as follows: mean age of 61.5 months
(sd = 7.1) at pretest time, 47.5% girls, 41.6% attending pre-
kindergarten, 27.6% from Belgium, 23.8% from France, 28.9%
from Luxembourg, and 19.7% from Switzerland.

Measure
Early numerical ability of children was measured through a test
inspired by the TEMA-3 (Ginsburg and Baroody, 2003) and the
TEDI-MATH (Van Nieuwenhoven et al., 2001). The TEMA-3
provides a comprehensive assessment of mathematical ability for
children aged 3 to 9 years, while the TEDI-MATH enables the
diagnosis of mathematical learning disabilities of children aged
5 to 8. These two validated instruments were selected for their
psychometrical quality shown in the French-speaking (for the
TEDI-MATH) and in the English-speaking (for the TEMA-3)
contexts. Relatively to the original tests, the subtests included in
the instrument used in the current study were mainly a function
of the age of our participants (4 to 6 year old). Overall, the
subtests of the French test that were intended to children of our
participants’ age group (from 5 to 6 years old) were retained
and were completed by subtests intended to younger children
(from 4 to 5 years old) selected and translated from the English
test. Content and descriptive statistics of the 41 items2 across
the three theoretical sub-categories (counting, number relations,

2An Item Response Theory (IRT) model including difficulty and discrimination

parameters (Birnbaum, 1968) was used to estimate pupil competence and item

parameters of the test (for details, see Masked Reference). As an alternative to

the classical theory (or true score theory) where a total test score is calculated

simply by adding correct answers (but with measurement error), IRT modeling

estimates the probability that a student will give a correct answer to a specific item,

depending both on the student ability and the specific items characteristics, leading

to a weighted score (for more details about IRT, see van der Linden, 2017). The

analyses were conducted using Conquest 2.0 software, which generated a Warm’s
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arithmetic) are reported in Table 1. It has to be noted that
some items (marked with an asterisk) were only administered if
students were successful in previous items.

Data Analysis
To test our hypothesis, we followed the procedure recommended
by Morin et al. (2016a,b). These authors suggest making an
initial assessment of the first source of construct-relevant
multidimensionality due to the fallible nature of items that
include at least some degree of association with non-target
dimensions (i.e., cross-loadings). This corresponded to
comparing ICM-CFA and ESEM models with one (Aunio
et al., 2004), two (National Research Council, 2009; Aunio and
Niemivirta, 2010) or three (National Council of Teachers of
Mathematics, 2006; Purpura and Lonigan, 2013; Aunio et al.,
2019; Milburn et al., 2019) sub-dimensions. ESEM analyses
were conducted using a confirmatory approach to rotation (i.e.,
target rotation), which allows for the a priori specification of
indicators of each factor, and for the free estimation of cross-
loadings targeted to be as close to zero as possible (Asparouhov
and Muthén, 2009). Subsequently, Morin et al. (2016a,b)
recommend assessing the second source of construct-relevant
multidimensionality due to the potential hierarchical nature
of the construct being investigated. This meant comparing the
bifactor-counterpart (bifactor-CFA or bifactor-ESEM) of the
best fitting first-order solution (for more details, see below).
According to this procedure, the bifactor-ESEM solution would
have to be retained if the ESEM solution better accounts for the
data than the CFA model, and if the bifactor-ESEM solution
better fits the data than the first-order ESEM solution.

All analyses were conducted with Mplus 8.4 (Muthen and
Muthen, 2012–2019) on the 40 items. Full information robust
maximum likelihood (FIML) estimation (Enders, 2010) was
used to handle the missing data at item level. As the test
included binary coded items except the first one (1_1), the
weighted least squares mean and variance adjusted (WLSMV)
estimator was used for the factorial analyses. In order to
take into account the hierarchical nature of the data (students
are nested in classroom), we applied the Mplus design-based
adjustment implemented by the TYPE=COMPLEX function
(Asparouhov, 2005). For estimatingmodel fit, we followed typical
interpretation guidelines (Hu and Bentler, 1999; Marsh et al.,
2004) by using several common fit indices: the chi-square statistic
(although this statistic is highly sensitive to sample size), the
root mean square error of approximation (RMSEA) with its
90% confidence interval, the comparative fit index (CFI), the
Tucker-Lewis index (TLI) and the standardized root mean square
residual (SRMR). RMSEA must be below 0.06 for an excellent
model fit and below 0.08 for an acceptable fit. CFI and TLI must
be above 0.95 for an excellent fit and above 0.90 for an acceptable
fit. The acceptable range of SRMR is between 0 and 0.08.

Complementary to model fit considerations and as mentioned
earlier, Morin et al. (2016a,b) suggested to analyze parameter

mean likelihood estimation (WLE) for each pupil. On 41 items, one (7_2) was a
posteriori discarded from the analyses because of bad item fit statistics.

estimates by starting with a comparison between the ICM-
CFA and ESEM solutions. If factors are well-defined by strong
target factor loadings in the ESEM solution, the focus has then
to be put on the factor correlations matrix. If a discrepant
pattern of factor correlations is observed between ICM-CFA
and ESEM, the latter model should be retained. Otherwise,
parsimony principle argues for retaining the ICM-CFA model.
Once the optimal first-order solution has been retained, then
Morin et al. (2016a,b) suggested comparing this solution with
its bifactor counterpart (respectively, the bifactor-CFA or the
bifactor-ESEM). The bifactor representation has to be retained
if general and specific dimensions are well-defined and, in the
case of an ESEM framework, if cross-loadings decrease in the
bifactor-ESEM solution compared to the ESEM solution. For all
models, model based composite reliability coefficient calculated
from the model standardized parameter estimated as McDonald’
(1970) omega (ω) coefficient was reported. According to Perreira
et al. (2018), minimal level of acceptability of omega reliability
coefficients are 0.60 for measures corresponding to first-order
models and 0.50 for measures related to bifactor models.

Measurement invariance across gender (girls/boys) was tested
following the procedure described by Toth-Kiraly and Neff
(2021) based on Millsap (2011). Nevertheless, as our data
includes only binary items, except one, test of the weak invariance
level was impossible. More precisely, we successively tested
invariance on the configural, strong, strict, latent covariance-
variance, and latent means levels. As noted by Brown (2015)
and Little (2013), in the context of invariance testing, the chi-
square difference test is too sensitive to sample size and to trivial
fluctuations and differences. Therefore, alternative fit measures
(1RMSEA, 1CFI, and 1TLI) were used to compare the models.
The guidelines suggested by Chen (2007) were followed in
comparing nested invariance models (1RMSEA ≤ 0.015, 1CFI
≤ 0.010). TLI change analysis with guidelines similar to CFI was
also conducted for purposes of parsimony, as recommended by
Marsh et al. (2009).

As the literature does not agree on the number of dimensions,
factorial solutions with one, two and three dimensions were
compared. With reference to models depicted in Figure 1 and
following suggestions made by Morin et al. (2016a,b), eight
alternative models were compared: the one-factor model (Model
1), four ICM-CFA models with 2 to 3 factors (Models 2
to 5), the ESEM model (Model 6) related to the best-fitting
ICM-CFA model, and the bifactor counterpart of the best-
fitting ICM-CFA and ESEM model, respectively, the bifactor-
CFA (Model 7) and the bifactor-ESEM (Model 8). Model 2
tested the theoretical two-factor structure with counting/number
relations as the first sub-dimension and arithmetic as the
second sub-dimension. Model 3 tested the theoretical two-factor
structure with counting as the first sub-dimension and number
relations/arithmetic as the second sub-dimension. Model 4 tested
the theoretical two-factor structure with number relations as
the first sub-dimension and counting/arithmetic as the second
sub-dimension. Model 5 tested the theoretical three-factor
structure with counting as the first sub-dimension, number
relations as the second sub-dimension, and arithmetic as the
third sub-dimension.
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TABLE 1 | Description of the items used to measure early numerical ability.

Dimensions Items Description % of correct answer N

Counting 1_1 Verbal counting Children are asked to count as far as

possible (they are stopped at 42)

20.5—Unable to count from 1 to 10

44.2—Able to count from 1 to 10

18.0—Counting error between 11 and 20

9.6—Counting error between 21 and 30

7.6—Counting error after 30

132

284

116

62

49

1_2 Verbal counting Count up to 6 70.8 643

1_3 Verbal counting Count up to 9 62.3 644

1_4 Verbal counting Count from 3 37.6 644

1_5 Verbal counting Count from 7 39.0 644

1_6 Verbal counting Count from 4 to 8 35.9 644

1_7 Verbal counting Count from 7 to 10 34.6 644

2_1 Counting objects Children have to enumerate linear collection

of 8 aligned rabbits

80.6 644

2_2 Counting objects After rabbits have been hidden with a piece

of paper, children have to say how many

rabbits are hidden (answer is considered as

correct if the cardinal is the same as the one

given in the previous item, even if this one

was wrong)

58.9 644

2_3 Counting objects Children have to enumerate dispersed

collection of 6 sheep

82.3 644

2_4* Counting objects Children have to enumerate dispersed

collection of 12 pigs

42.5 577

3_1 Counting objects Children have to give 5 tokens to the

experimenter

71.1 644

3_2 Counting objects Children have to give 8 tokens to the

experimenter

55.0 644

3_3* Counting objects Children have to give 15 tokens to the

experimenter

42.6 472

4_1 Counting objects 5 farmers are presented each with a hat.

After asking the children to close their eyes,

the experimenter takes off the hats. Children

have to say how many hats are in the hand

68.2 644

4_2 Counting objects 7 farmers are presented on a piece of paper.

Children have to fetch a rake for each

farmer. More than seven rakes are located

on a separate table

46.1 644

Relations 5_1 Conservation of

number

Children are shown one row of 6 tokens that

were previously enumerated and are asked

how many there are after they are moved

into a circle

55.0 644

5_2 Conservation of

number

Children are shown two rows of 7 tokens

facing each other and after the experimenter

moved items of one row closer together,

children have to say whether there is still the

same number of tokens or not

27.5 644

6_1 Seriation Children are asked to put 3 cards with 6, 1,

and 3 frogs from the smallest to the largest

quantity

58.9 643

6_2* Seriation Children are asked to put 6 cards with 7, 3,

1, 6, and 9 frogs from the smallest to the

largest quantity

51.2 379

6_3* Seriation Children are asked to put the card with 5

frogs in the right place when cards with 1, 3,

6, and 9 frogs are ordered from the smallest

to the largest quantity

50.7 379

7_1 Numerical inclusion A closed box with 6 rabbits inside is

presented to the children who are asked if

there are enough to take 8 of them

53.9 644

7_2 Numerical inclusion A closed box with 6 rabbits inside is

presented to the children who are asked if

there are enough to take 4 of them

68.3 644

(Continued)
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TABLE 1 | Continued

Dimensions Items Description % of correct answer N

7_3 Numerical inclusion A closed box with 6 rabbits inside is

presented to the children who are asked if

there are enough to take 7 of them

51.9 644

8_1 Magnitude

comparisons

Children are shown two collections of

elements varying in size and differently

dispersed and have to say on which side

there are more (8 vs. 7 dots similarly

dispersed and of same size)

69.4 644

8_2 Magnitude

comparisons

Children are shown two collections of

elements varying in size and differently

dispersed and have to say on which side

there are more (6 closely spaced vs. 6

distant dots of same size)

34.8 644

8_3 Magnitude

comparisons

Children are shown two collections of

elements varying in size and differently

dispersed and have to say on which side

there are more (7 closely spaced and smaller

dots vs. 6 distant and larger dots)

39.6 644

8_4 Magnitude

comparisons

Children are shown two collections of

elements varying in size and differently

dispersed and have to say on which side

there are more (8 distant and smaller dots

vs. 8 closely spaced and larger dots)

30.4 644

Arithmetic 9_1 Additions of concrete

elements

Experimenter takes a small number of

tokens in each hand, shows them to the

children, hides both quantities in one hand

and asks the children to say how many there

are in all (2 and 1)

75.5 644

9_2 Additions of concrete

elements

Experimenter takes a small number of

tokens in each hand, shows them to the

children, hides both quantities in one hand

and asks the children to say how many there

are in all (3 and 2)

46.0 644

9_3 Additions of concrete

elements

Experimenter takes a small number of

tokens in each hand, shows them to the

children, hides both quantities in one hand

and asks the children to say how many there

are in all (5 and 3)

27.2 644

9_4* Additions of concrete

elements

Experimenter takes a small number of

tokens in each hand, shows them to the

children, hides both quantities in one hand

and asks the children to say how many there

are in all (7 and 5)

24.6 175

10_1 Story problems There were 4 hens in a courtyard; 3 more

arrived; how many are there in total?

36.8 644

10_2 Story problems There are six birds on a tree. Two are flying

away. How many are left?

26.2 644

10_3 Story problems There are 8 sheep in the meadow. Five

sheep are white; the others are black. How

many black sheep are there?

12.7 644

11_1 Number decomposition Experimenter shows a certain number of

rabbits to the children, hides some of them

while children close their eyes, after which

children have to say how many are hidden

by looking at the remaining elements (5 are

2 and…)

30.6 644

11_2 Number decomposition Experimenter shows a certain number of

rabbits to the children, hides some of them

while children close their eyes, after which

children have to say how many are hidden

by looking at the remaining elements (5 are

4 and…)

39.9 644

11_3 Number decomposition Experimenter shows a certain number of

rabbits to the children, hides some of them

while children close their eyes, after which

children have to say how many are hidden

by looking at the remaining elements (9 are

5 and…)

17.2 644

(Continued)
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TABLE 1 | Continued

Dimensions Items Description % of correct answer N

11_4 Number decomposition Experimenter shows a certain number of

rabbits to the children, hides some of them

while children close their eyes, after which

children have to say how many are hidden

by looking at the remaining elements (9 are

3 and…)

11.3 644

11_5* Number decomposition Experimenter shows a certain number of

rabbits to the children, hides some of them

while children close their eyes, after which

children have to say how many are hidden

by looking at the remaining elements (13 are

9 and…)

12.5 369

11_6* Number decomposition Experimenter shows a certain number of

rabbits to the children, hides some of them

while children close their eyes, after which

children have to say how many are hidden

by looking at the remaining elements (13 are

6 and…)

8.2 368

*Items that were only administered if students were successful in previous items.

TABLE 2 | Goodness-of-fit indices for alternative models of early numeracy.

Models Description Chi-square df CFI TLI RMSEA RMSEA

90% CI

SRMR

1. One-factor model General 1607.084** 740 0.902 0.897 0.043 [0.040,0.046] 0.111

2. ICM-CFA with 2

first-order factors

(C and R); A 1553.403** 739 0.908 0.903 0.041 [0.039,0.044] 0.109

3. ICM-CFA with 2

first-order factors

C; (R and A) 1541.217** 739 0.910 0.905 0.041 [0.038,0.044] 0.109

4. ICM-CFA with 2

first-order factors

(C and A); R 1602.091** 739 0.903 0.897 0.043 [0.040,0.046] 0.111

5. ICM-CFA with 3

first-order factors

C; R; A 1521.940** 737 0.912 0.906 0.041 [0.038,0.044] 0.108

6. ESEM with 3 first-order

factors

C; R; A 982.139** 663 0.964 0.958 0.027 [0.024,0.031] 0.081

7. Bifactor-CFA with 1

general factor and 3 specific

factors

General;

Specific C;

Specific R;

Specific A

996.089** 700 0.967 0.963 0.026 [0.022,0.029] 0.083

8. Bifactor-ESEM with 1

general factor and 3 specific

factors

General;

Specific C;

Specific R;

Specific A

826.022** 626 0.977 0.972 0.022 [0.018,0.026] 0.070

**p ≤ 0.001. *p ≤ 0.01. C, Counting; R, Relations; A, Arithmetic; CFA, Confirmatory Factor Analysis; ESEM, Exploratory Structural Equation Model; df, degrees of freedom; CFI,

Comparative Fit Index; TLI, Tucker-Lewis Index; RMSEA, Root Mean Square Error of Approximation; CI, Confidence Interval; SRMR, Standardized Root Mean square Residual.

RESULTS

Alternative Representations of Early
Numeracy
Estimation procedures for all CFA and ESEM solutions
converged properly. Fit indices of the rival models of early
numeracy are reported in Table 2. Models 1 to 5 showed
acceptable but not excellent fit indexes, as CFI and TLI were
below 0.95. SRMR for these models was above 0.08. Among

ICM-CFA solutions, Model 5 (with 3 correlated factors) was
retained due to its superior fit and contrasted with alternative
models. Models 6 and 7 showed excellent empirical fit for all
indices, except for SRMR (0.081 and 0.083, respectively). The
best fit indices were observed for the bifactor-ESEM solution
(Model 8: CFI = 0.977; TLI = 0.972; RMSEA = 0.022; SRMR
= 0.070), demonstrating a higher level of fit to the data
than the ESEM Model 6 (1CFI = +0.013; 1TLI = +0.014;
1RMSEA = −0.005) and the bifactor-CFA Model 7 (1CFI
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TABLE 3 | Standardized factor correlations for the ICM-CFA solutions with 3

first-order factors (above the diagonal) and the corresponding ESEM solutions

(below the diagonal).

Model 5

C R A

Model 6 C 0.899** 0.778**

R 0.539** 0.892**

A 0.333** 0.161**

*p ≤ 0.05; **p ≤ 0.01. CFA, Confirmatory Factor Analysis; ESEM, Exploratory Structural

Equation Model; C, Counting; R, Relations; A, Arithmetic.

= +0.010; 1TLI = +0.009; 1RMSEA = −0.004). As model
parameter estimates have to be analyzed before any decision,
factor correlations for the ICM-CFA Model 5 (|r| = 0.778 to
0.899, M|r| = 0.856) and the ESEM Model 6 (|r| = 0.161 to
0.539, M|r| = 0.344) are reported in Table 3. A higher adequacy
of the ESEM representation is suggested since factor correlations
were considerably reduced between CFA and ESEM solutions.
Standardized parameter estimates for Model 5 to 8 are reported
in Table 4, but we only compare below the ESEM representation
with its bifactor counterpart, as they showed their superior
adequacy over CFA models.

In the bifactor-ESEM solution, the loadings on the general
dimension revealed a well-defined G-factor (|λ| =0.207 to 0.803;
M|λ| = 0.603; ω = 0.958). Loadings on the G-factor were high
for items associated with counting/enumeration (|λ| = 0.461
to 0.803; M|λ| = 0.674) and lower for items assessing number
relations (|λ| = 0.419 to 0.729,M|λ| = 0.611) and arithmetic (|λ|
= 0.207 to 0.752,M|λ| = 0.509). The specific counting dimension
was well-defined (|λ| = 0.137 to 0.538;M|λ| = 0.370; ω = 0.799)
with 15 items on 16 showing a statistically significant loading,
but four counting items (1_4 to 1_7) showed negative loading
over 0.250 on the specific relations dimension. The specific
relations dimension was relatively poorly defined (|λ| = 0.021
to 0.594; M|λ| = 0.237; ω = 0.505) with only 3 items on 11
showing a statistically significant loading. Here again, several
items targeting the specific relations dimension (6_1, 7_1, 7_3,
8_1, 8_2, 8_4) showed significant cross-loadings over 0.250 on
the specific arithmetic dimension. These unexpected significant
cross-loadings regarding the specific counting and the specific
relations dimensions suggested that some items of the test were
maybe measuring other very specific counting and relations
facets of early number skills (see the discussion section). The
specific arithmetic dimension was not better defined (|λ|= 0.004
to 0.567; M|λ| = 0.223; ω = 0.456) with 7 of the 13 target
items showing a statistically significant saturation and reasonable
omega just below the 0.50 satisfactory minimal level suggested by
Perreira et al. (2018). In this case, only one item (9_4) showed a
statistically significant loading over 0.250 on a non-target specific
dimension. Here, the fact that the factor loading of several target
items are not significant on the specific arithmetic dimension and
the absence of significant cross-loadings reflects that the variance
included in these items weremainly used in defining the G-factor.
Comparison between the factor loadings of the ESEM solution

and the bifactor-ESEM solution showed that cross loadings tend
to be significantly less numerous and smaller in the bifactor-
ESEM solution, suggesting the presence of an unmodeled general
dimension reflected by the numerous and higher cross loadings
in the ESEM solution. More precisely, there were 57 statistically
significant cross loadings in the ESEM solution while only 29
statistically significant cross loadings remained in the bifactor-
ESEM solution. For all these reasons, we considered that the
bifactor-ESEM solution (Model 8) was the best representation of
our early numeracy data. The explained common variance (ECV)
for this model was 0.75, meaning that the general factor explained
75% of the common variance extracted with 25% of the common
variance spread across specific factors.

Measurement Invariance
To verify the extent to which the bifactor-ESEM representation
of early numeracy was the same for boys and girls, we conducted
five tests of measurement invariance across gender groups
(Models G1 to G5). Goodness-of-fit results associated with
all the models are reported in Table 5. Model G1 (configural
invariance) with no invariance constraints provided excellent
fit to the data (CFI = 0.985, TLI = 0.981, RMSEA = 0.020).
This result suggests that the structure was the same across
gender groups. Then, Model G2 put equality constraints on
factor loadings and thresholds. Differences between fit indices
of Models G1 and G2 were negligeable (1CFI = −0.001, 1TLI
= +0.001, 1RMSEA = 0.000), supporting strong invariance
across gender groups. In Model G3, equality constraints were
put on item uniquenesses. Differences between fit indices of
Models G2 and G3 were negligeable (1CFI = +0.002, 1TLI
= +0.003, 1RMSEA = −0.002), supporting strict invariance
across gender groups. When equality constraints were placed on
the latent variance-covariance matrix (Model G4), model fit did
not decrease substantially between Models G3 and G4 (1CFI =
+0.002,1TLI=+0.003,1RMSEA=−0.001), supporting latent
variance-covariance invariance across gender groups. Finally,
when latent means were constrained to be equal across gender
groups (Model G5), differences between fit indices of Models G4
andG5were again negligeable (1CFI=+0.001,1TLI=+0.001,
1RMSEA=−0.001), supporting latent means invariance.

DISCUSSION

This study applied the integrative psychometric framework
developed by Morin et al. (2016a) in order to investigate sources
of construct-relevant multidimensionality of early numeracy
and to test the superiority of the bifactor-ESEM of early
numeracy. As stated by Gu et al. (2020), by overcoming the
shortcomings of both the CFA and the ESEM models, the
bifactor-ESEM is theoretically the most comprehensive and
flexible model, able to describe more accurately the complex
psychological characteristics.

In a first step, ICM-CFA and ESEM models with one, two
or three sub-dimensions were compared. The ESEM solution
provided a better fit to the data and lower factor correlations
when compared to the ICM-CFA solution. In a second step, the
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TABLE 4 | Standardized factor loadings (λ), uniquenesses (δ) and omega (ω) for Model 5 to Model 8.

Dimensions/

Items

ICM-CFA

Model 5

ESEM

Model 6

Bifactor-CFA

Model 7

Bifactor-ESEM

Model 8

λ δ C (λ) R (λ) A (λ) δ G (λ) S (λ) δ G (λ) S-C (λ) S-R (λ) S-A (λ) δ

Counting

1_1 0.814 0.337 0.746** 0.144** −0.056 0.334 0.712** 0.391** 0.340 0.712** 0.392** 0.069 0.105** 0.569

1_2 0.925 0.144 0.915** 0.058 −0.060 0.136 0.818** 0.423** 0.152 0.771** 0.500** 0.176 −0.043 0.350

1_3 0.903 0.185 0.911** 0.059 −0.096** 0.158 0.794** 0.431** 0.184 0.753** 0.506** 0.149 0.023 0.393

1_4 0.860 0.260 0.862** −0.066 0.100* 0.248 0.662** 0.596** 0.207 0.703** 0.457** −0.270** 0.118 0.459

1_5 0.832 0.307 0.855** −0.077 0.076 0.287 0.609** 0.655** 0.200 0.654** 0.480** −0.327** 0.195* 0.444

1_6 0.929 0.136 0.845** −0.022 0.223** 0.132 0.781** 0.509** 0.131 0.803** 0.406** −0.287** 0.017 0.329

1_7 0.904 0.183 0.823** −0.017 0.212** 0.178 0.744** 0.526** 0.170 0.778** 0.383* −0.341** 0.073 0.355

2_1 0.783 0.387 0.888** −0.010 −0.214** 0.301 0.622** 0.541** 0.320 0.609** 0.538** 0.231** 0.072 0.529

2_2 0.729 0.468 0.619** 0.110* 0.091 0.483 0.684** 0.221** 0.484 0.658** 0.301** 0.084 −0.080 0.681

2_3 0.799 0.362 0.876** 0.019 −0.195** 0.291 0.652** 0.506** 0.319 0.639** 0.511** 0.254** 0.054 0.513

2_4 0.487 0.763 0.356** 0.228** −0.050 0.747 0.454** 0.150** 0.771 0.461** 0.142** 0.014 0.177** 0.858

3_1 0.878 0.229 0.828** 0.081 0.019 0.225 0.816** 0.311** 0.238 0.770** 0.415** 0.175 −0.103 0.441

3_2 0.841 0.292 0.789** 0.098 −0.016 0.293 0.758** 0.347** 0.304 0.730** 0.421** 0.084 0.004 0.532

3_3 0.550 0.697 0.388** 0.279** −0.057 0.672 0.510** 0.179** 0.708 0.522** 0.137 −0.056 0.250** 0.802

4_1 0.616 0.620 0.439** 0.131* 0.196** 0.624 0.618** 0.052 0.616 0.585** 0.155* 0.003 −0.133* 0.784

4_2 0.668 0.554 0.470** 0.130* 0.238** 0.556 0.663** 0.072 0.555 0.635** 0.170** −0.066 −0.127* 0.740

ω 0.964 0.960 0.860 0.799

Relations

5_1 0.787 0.380 0.549** 0.205** 0.179** 0.427 0.790** 0.054 0.373 0.729** 0.213** 0.021 −0.084 0.645

5_2 0.469 0.780 0.080 0.345** 0.264** 0.731 0.463** 0.145** 0.764 0.504** −0.117 −0.112 0.009 0.848

6_1 0.504 0.746 0.637** −0.332** 0.575** 0.198 0.713** −0.627** 0.099 0.595** 0.317* −0.473** −0.389* 0.412

6_2 0.413 0.829 0.222** 0.697** −0.272** 0.325 0.566** 0.615** 0.302 0.613** 0.006 0.594** 0.204 0.480

6_3 0.474 0.775 0.143* 0.747** −0.206** 0.333 0.560** 0.611** 0.314 0.628** −0.069 0.502** 0.261 0.530

7_1 0.692 0.521 0.306** 0.087 0.595** 0.378 0.691** −0.293** 0.437 0.644** 0.040 0.125 −0.522** 0.544

7_3 0.654 0.572 0.224** 0.169 0.571** 0.439 0.656** −0.221** 0.520 0.627** −0.028 0.169 −0.476** 0.593

8_1 0.511 0.739 0.525** −0.127 0.155** 0.708 0.516** −0.214** 0.688 0.419** 0.294** 0.086 −0.263** 0.813

8_2 0.553 0.694 −0.189** 0.778** 0.244** 0.427 0.490** 0.585** 0.418 0.614** −0.324** −0.232 0.290** 0.617

8_3 0.689 0.525 0.364** 0.325** 0.177** 0.542 0.692** 0.108* 0.509 0.676** 0.068 −0.047 0.037 0.731

8_4 0.583 0.660 −0.238** 0.868** 0.327** 0.267 0.537** 0.628** 0.317 0.677** −0.396** −0.251 0.293** 0.486

ω 0.847 0.821 0.780 0.505

Arithmetic

9_1 0.748 0.441 0.522** 0.114 0.160* 0.563 0.693** −0.158* 0.495 0.633** 0.187* 0.161* −0.210** 0.703

9_2 0.752 0.435 0.357** 0.272** 0.279** 0.525 0.699** −0.124 0.495 0.687** 0.041 −0.005 −0.127 0.715

9_3 0.792 0.372 0.283** 0.303** 0.452** 0.403 0.736** −0.343** 0.341 0.736** −0.006 −0.016 −0.257** 0.626

9_4 0.019 1.00 0.593** 0.043 −0.627** 0.482 0.316** 0.674** 0.446 0.207** 0.368** 0.074 0.567** 0.703

10_1 0.818 0.331 0.373** 0.379** 0.212** 0.441 0.760** 0.025 0.422 0.752** 0.039 −0.020 0.004 0.658

10_2 0.512 0.738 0.210** 0.235** 0.180** 0.777 0.473** 0.101 0.766 0.479** −0.013 −0.038 −0.031 0.876

10_3 0.448 0.800 0.162 0.212* 0.190** 0.822 0.416** 0.105 0.816 0.426** −0.033 −0.043 −0.046 0.902

11_1 0.496 0.754 0.030 0.375** 0.295** 0.718 0.460** 0.049 0.786 0.514** −0.190** −0.047 −0.056 0.833

11_2 0.622 0.613 0.111* 0.467** 0.246** 0.598 0.580** 0.121* 0.649 0.631** −0.167** −0.001 0.015 0.757

11_3 0.415 0.828 0.143* 0.361** −0.071 0.804 0.360** 0.460** 0.659 0.387** −0.050 −0.018 0.293** 0.873

11_4 0.515 0.735 0.187* 0.497** −0.154 0.638 0.460** 0.609** 0.417 0.495** −0.061 0.077 0.396** 0.767

11_5 0.349 0.878 0.253* 0.207* −0.181* 0.846 0.287** 0.519** 0.648 0.300** 0.044 −0.109 0.382** 0.866

11_6 0.440 0.807 0.383** 0.365** −0.461** 0.529 0.371** 0.606** 0.495 0.371** 0.152* 0.234* 0.511** 0.724

ω 0.730 0.602 0.973 0.671 0.958 0.456

C, Counting; R, Relations; A, Arithmetic; G, General dimension; S, Specific facet. *p ≤ 0.05; **p ≤ 0.01. CFA, Confirmatory Factor Analysis; ESEM, Exploratory Structural Equation

Model. Target factor loadings are in bold.
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TABLE 5 | Measurement invariance across gender for the bifactor-ESEM representation of early numeracy with one global factor and three specific facets (Model 8).

Models Chi-square df CFI TLI RMSEA

[90% CI]

Gender invariance

G1. Configural 1413.160** 394 0.985 0.981 0.020

[0.014;0.025]

G2. Strong 1564.305** 251 0.984 0.982 0.020

[0.013;0.025]

G3. Strict 1585.352** 211 0.986 0.985 0.018

[0.011;0.023]

G4. Latent variance covariance 1572.469* 201 0.988 0.987 0.017

[0.009;0.022]

G5. Latent means 1568.819* 197 0.989 0.988 0.016

[0.008;0.022]

**p ≤ 0.01, *p ≤ 0.05; df, degrees of freedom; CFI, Comparative Fit Index; TLI, Tucker-Lewis Index; RMSEA, Root Mean Square Error of Approximation; CI, Confidence Interval.

ESEM model was compared to its bifactor counterpart (bifactor-
ESEM). Among all models tested, the bifactor-ESEM solution
with one general dimension and three specific facets (specific
counting, specific relations, specific arithmetic) showed the best
empirical fit with factors moderately well-defined, with less and
lower significant cross loadings. A closer look to the loadings and
cross-loadings on the specific counting and the specific relations
factors lead to consider that four counting items (asking to count
not starting from one) and four relations items (with perceptive
bias) could be very specific and maybe represent independent
specific counting and relations factors.

Data and analyses supported our hypothesis that early number
skills could be underpinned by a latent common general factor;
when the shared variance between the items is taken into account,
specific numerical facets remain. The bifactor nature of early
number skills had already been suggested by Ryoo et al. (2015)
but using a bifactor-CFA model. However, the bifactor-CFA
neglects the possibility that items may have cross-loadings on
the non-target specific factors, which might result in inflated G-
factor loadings (Murray and Johnson, 2013; Morin et al., 2016a).
In contrast, the current study showed empirical support for
the bifactor-ESEM solution as a comprehensive model of early
numeracy. The explained common variance showed that the
general factor explained 75% of the common variance extracted
while 25% of the common variance was spread across the three
specific factors. This suggests the existence of a general factor
underlying all items of the test while taking into consideration the
items’ cross-loadings, which provides more accurate estimates
of factor correlations and thereby better discriminant validity
(Asparouhov andMuthén, 2009; Morin et al., 2016a). In practical
terms, it means that factor scores (computed from the parameter
estimates of the bifactor-ESEM solution) should be preferred
to classical scale scores (computed by sum or average of items
scores) which are unable to take cross-loadings into account and
to adequately disaggregate the variance attributed to the general
and the specific factors. Thus, the current study highlighted that
early number skills—at least the ones that were measured here—
might be considered as amultidimensional hierarchical construct
that is underpinned by a single common factor and has valuable
specific facets.

Specific Facets
In the current study, when keeping under control the shared
variance among items, several specific numerical facets emerged.
In other words, the specific factors explain the shared variance
among items that remains after controlling the effect of the
general factor. This is of particular importance because the
interpretation of specific factors in bifactor-ESEM differs from
the typical interpretation of correlated factors in ICM-CFA, as
they account for very different parts of the observed variance
among items. With regards to this important difference, it is
nevertheless interesting to note that our ICM-CFA, ESEM and
bifactor-ESEMmodels are rather in line with the tripartite model
of early numeracy supported by the NRC (Numbering, Relations
and Arithmetic) than with the bipartite model supported by
the NCTM (Numbers and Operations), since our data suggest
three correlated factors (in ICM-CFA and ESEM) or one general
dimension and three specific facets (in bifactor-ESEM) of early
number skills. The counting factor (or specific counting facet)
includes most of the verbal counting and object counting items,
and is therefore quite similar to the Numbering dimension
of the NRC, defined as the children’s knowledge of the rules
and processes of the counting sequence and the ability to
obtain quantity in a flexible manner (Purpura and Lonigan,
2013). However, while the NRC Numbering dimension explicitly
includes counting forward and backward from numbers other
than one, our four items that required the children to count
from numbers other than one seem to have a particular behavior.
In other studies, in which items requiring counting forward
from numbers other than one were included (Aunio and
Niemivirta, 2010; Purpura and Lonigan, 2013), factor solutions
with more than three dimensions were not explored. Thus,
our results suggest than it could be interesting to distinguish
more than three factors, considering that the ability to count
from numbers other than one might constitute an ability
per se. This factor might correspond to the breakable level
of verbal counting mastery, as described by Fuson (1988).
This level of verbal counting mastery is necessary to count
from numbers other than one, while counting up to and
enumerating collections can be done within an unbreakable
list level of verbal string mastery. Therefore, such counting
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tasks might constitute a second specific counting dimension
which could correspond to a higher level of counting skills
than the first one. More studies are needed to investigate
this hypothesis.

Our data support a specific Relations dimension, but again,
several items appeared having a particular behavior. These items
were involving a perceptual bias: the conservation of number
task, and the three items in which children had to compare
two collections with a perceptual trap. Perceptual bias occurs
when the visuospatial appearance makes children think there
are more elements in a first collection than in a second one,
when in fact there are the same number in both collections
or there are more elements in the second. This perceptual bias
typically occurs when items of one of the collections are more
dispersed. In order to succeed in this kind of tasks, children
must inhibit the inappropriate “length-equals-number heuristic”
(Bjorklund and Harnishfeger, 1990; Houdé et al., 2011), or more
generally the visuospatial heuristic according to which “bigger
is more.” It has been found that children are hardly capable
of resisting these before the age of 7 years-old, leading to a
failure in grasping the number principle per se. This can be
explained by the fact that inmany daily life situations, numerosity
and occupied space are strongly linked, as more objects usually
occupy more space. Houdé et al. (2011), by comparing the brain
activation in children who were conservers (9–10 years old) and
non-conservers (5–6 years old) in the Piagetian sense, found
that while both groups of children processed the Piagetian task
as a quantitative number task, activation in cerebral regions
underpinning executive control, spatial working memory and
episodic memory retrieval were necessary to resist the perceptual
bias in order to succeed the task. Thus, it seems that the ability to
refer to the cardinal property of numbers beyond the misleading
perceptual characteristics of the items (Gelman and Gallistel,
1978) corresponds to a specific dimension of early number skills.
The perceptual appearance being very influential at the age of
our participants, these tasks could also assess an ability that relies
on “a large-scale executive brain network” (Houdé et al., 2011;
p. 344) rather than on typically numerical skill. Again, further
studies are needed in this direction.

Finally, the last specific factor that emerged in the bifactor-
ESEM solution is relatively well-defined by the different items
planned to assess children’s arithmetical skills. This one is quite
similar to the NRC Arithmetic and to the NCTM Operation
dimensions, defined as the understanding of the ways in which
groups are composed and decomposed by differentiating sets
and subsets (Purpura and Lonigan, 2013). Interestingly, in the
studies analyzing the factorial structure of number skills that
included arithmetic items, such a dimension was always extracted
(Aunio et al., 2006; Aunio and Niemivirta, 2010; Purpura and
Lonigan, 2013; Ryoo et al., 2015). Our study extends this
finding through the bifactor-ESEM framework by showing that
when keeping under control the common general factor that
underlines early number skills, arithmetic problem responses are
psychometrically distinct from other responses. However, the
items loading on this specific dimension were more or less high.
It should be specified that the items belonging to this specific
facet were considerably different from each other. Indeed, the

arithmetical tasks included in the test required the children to
solve number combinations with concrete elements, to solve
story problems and to decompose numbers. Thus, it could be
that withmore arithmetical subtests and items than in the current
study, more specific arithmetical facets would appear beyond the
control of the general factor.

General Factor
The current results also indicate that a considerable part of
variance was shared across all items of the test used, suggesting
the existence of a general factor underlying early number
skills. But what this latent common factor is still needs to be
identified. This remains difficult since latent common factors
can be domain-general abilities, domain-specific abilities, or even
a mix of them. Since we did not measure general cognitive
abilities in the current study, we can only formulate some
hypotheses comparing our numerical data to the literature. In
the case of early number skills, the domain-general factors that
could be candidates for the latent general factor identified are
the covariates that have been found to be associated to early
number skills, such as general intelligence (Dickerson Mayes
et al., 2009; Krajewski and Schneider, 2009; Green et al., 2018),
working memory (Bull et al., 2008; Alloway and Alloway, 2009),
linguistic skills (Kleemans et al., 2011; Raghubar and Barnes,
2017), executive functions (Espy et al., 2004; Kroesbergen et al.,
2009), and visuo-spatial ability (Kyttälä et al., 2003). By looking at
the items that loaded the more and the less on the general factor
and by knowing from literature by which factors these numerical
abilities are strongly underpinned, some suppositions can be
made about what this general factormightmost likely correspond
to. The items that loaded the most on the general factor were
verbal counting, counting small quantities, comparing/ordering
few and small quantities, adding few concrete elements and
solving simple problems (type change involving a small addition).
On the opposite, the items that loaded the less on the general
factor were adding higher quantities of concrete elements (for
instance 7 and 5), complex arithmetic tasks such as number
decomposition, difficult verbal problems (type change involving a
subtraction or type combine), counting higher collections (12 or
more) and conservation of numbers. Because complex arithmetic
tasks and word problems in particular are known to be strongly
underpinned by working memory (Geary et al., 2004; Träff, 2007;
Zheng et al., 2011), language skills (Van Rinsveld et al., 2015)
and general intelligence (Hornung et al., 2014), these factors
do not appear to be the best candidates for the general factor
highlighted here. The exclusion of language skills as a potential
general factor is also supported by the fact that such skills were
found not to predict non-linguistic arithmetic (LeFevre et al.,
2010), items that highly loaded on the general factor in the
current study. The observation that conservation of numbers did
not strongly load on the general factor gives reason to think
that executive functions are not either a good candidate for the
general factor. Indeed, the ability to solve this task has been found
to strongly rely on the executive function of inhibitory control
(Houdé et al., 2011, see above). A general cognitive factor that
might correspond to the current general factor would be visuo-
spatial ability, since both non-linguistic arithmetic (LeFevre et al.,
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2010) and counting knowledge (Kyttälä et al., 2003)—which
strongly loaded on it here—were previously found to be related
to visuospatial skills.

The latent common factor found in the current study could
also be a more domain-specific ability. Interestingly, Mou
et al. (2021), who showed the superiority of a bifactor-CFA by
measuring simultaneously numerical and more general abilities,
highlighted that only one third of their general latent factor
variance was explained by the combination of general non-
numerical dimensions, such as cognitive and linguistic abilities
and age. This suggested that the general factor they found was
mainly numerical. From the literature, a domain-specific factor
that could be a candidate for the latent general factor found
here is number sense. It refers to elementary intuitions about
quantity, such as the rapid and accurate perception of small
numerosities, the ability to compare roughly larger numerical
magnitudes, to count, and to comprehend simple arithmetic
operations, and is considered as an essential tool to develop
higher order mathematical skills (Case et al., 1992; Geary, 1995;
Dehaene, 1997, 2001; Berch, 2005; Gersten et al., 2005; Jordan
et al., 2010; Chu et al., 2015; Sowinski et al., 2015). In the current
study, the fact that the items loading the more on the general
factor were very fundamental skills gives credit to the possibility
that number sense corresponds to this general factor.

The last hypothesis is that the general factor would only
be a psychometric artifact due to the positive manifold of
correlations observed between cognitive test tasks (van der
Maas et al., 2006, 2011; Borsboom, 2017; Fried et al., 2017).
According to van Bork et al. (2017), “the existence of a general
factor is not tested against the data because any dataset that
features a positive manifold will necessarily support a general
factor model, whether or not a general factor underlies the
data” (p. 764). This is the main argument of the precited
authors who developed the relatively recent Network Analysis
approach, somehow rejecting the latent variable approach (for a
critique of this position, see Guyon et al., 2017). The proponents
of Network Analysis offer an alternative explanation for the
positive intercorrelations between tasks scores, based on the
biological concept of mutualism (van der Maas et al., 2006).
This concept postulates that the positivemanifold emerges purely
by mutually beneficial relationships between cognitive processes
and its developmental dynamic. In concrete words, cognitive
abilities (the nodes) are conceptualized as being more or less
directly related to each other (the edges) without postulating any
latent factor. Recently, Kan et al. (2019) and Kan et al. (2020)
have shown the superior fit of a network model of intelligence
compared to a higher-order g model and a bifactor-CFA model.
As Network Analysis is not implemented in MPlus and currently
not available with binary variables within the reference R
package Psychonetrics (Epskamp, 2020a,b), we did not have the
opportunity to compare the ICM-CFA and ESEM models with
a Network Analysis model of early numeracy. Anyway, this
would not have provided a definitive answer to the question of
which statistical model best represents reality, as the aim in the
social sciences is to obtain the best theoretically and practically
useful representation of what is under investigation. Importantly,
authors of the Network Analysis approach have never compared

network models with ESEM and bifactor-ESEM models. Our
results provide evidence that both sources of construct-relevant
psychometric multidimensionality were present in the early
numeracy test used, supporting the use of ESEM and suggesting
the appropriateness of the bifactor-ESEM, with regards to
traditional ICM-CFA models. ICM-CFA and ESEM solutions
differed indeed in their factor correlations with much lower
factor correlations for ESEM than for ICM-CFA. Including cross-
loadings in ESEM decreases the amount of shared variance
among items (i.e., the positive manifold), suggesting that ESEM
resulted in a better differentiation between early numeracy
factors than ICM-CFA. Moreover, the existence of significant
and substantial non-target cross-loadings in ESEM supported the
need for a bifactor-ESEM analysis. Examination of the bifactor-
ESEM solution revealed that many fewer items were presenting
meaningful and substantial non-target cross-loadings compared
to ESEM solutions. On this basis, and because factor loadings
on the general factor are large, and correlations between the
specific factors scores are non-significant within the bifactor-
ESEM solution (see Morin et al., 2020), we would support that
the general factor underlined in this study is not a psychometric
artifact, and not better or worse than alternative equivalents
models (MacCallum et al., 1993; Williams, 2012).

LIMITATIONS, CONCLUSION, AND
FURTHER PROSPECTS

There are several limitations to this study. First, the sample of
children was a convenience sample. Even if we tried to enroll
schools with socio-economically diverse background, the sample
is not representative, and results cannot be generalized. Secondly,
within-participants variations were not examined across time. It
would be interesting to know if the bifactor-ESEM structure of
early number skills changes over time or not. Third, pupils in
our study were assessed through a French-speaking test. Further
studies should confirm if the bifactor-ESEM representation of
early numeracy is still adequate when English-speaking tests
are used.

The present study highlighted the relevance of the bifactor-
ESEM framework when it comes to better identifying the
dimensionality of early number skills. Indeed, it was found
from the current data that when keeping under control
the high intercorrelations within that domain, three specific
numerical dimensions remained. These specific facets of early
numeracy, which are different in nature compared to correlated
factors in ICM-CFA or ESEM, have a substantive value.
However, the specific facets highlighted here should not obscure
the fact that early numeracy appears to be principally a
unidimensional construct.

Determining the structure of early numeracy skills is crucial
to assessing them properly, as well as teaching them efficiently,
developing appropriate early intervention strategies for at-risk
children, and studying their relations with other variables. For
instance, if the structure of early numeracy that stood out in
the current experiment is confirmed by further studies, this
suggests that when seeking to assess the number skills of young
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children, subtests measuring both the general latent factor and
the three highlighted specific dimensions should minimally be
taken into consideration. The refined investigation of early
numeracy structure conducted here could also lead to more
targeted teaching activities for all pupils and to reinforcement
activities for pupils identified as at risk of school failure, as
it has been done in the domain of early literacy (Juel and
Minden-Cupp, 2000). Concretely, teaching materials could be
developed to enhance pupils’ skills on the general factor and
the specific dimensions. Also, as pointed by Brunner (2008),
the relationships between math abilities and other variables
strongly depends on the structural conception of math skills. For
instance, the relationships between transversal variables such as
socioeconomic status or general intelligence could be different
with the general or the specific math dimensions highlighted in
the current study. This could lead to identify some math abilities
that are more dependent on children’s cognitive characteristics
or socioeconomic heritage, and others that could be more
dependent, for example, on the instruction received.

In order to further investigate the dimensionality of early
numeracy and in particular to better identify what the current
general factor could be, a bifactor-ESEM analysis could be
conducted on additional early number skills tasks as well as
on tasks measuring the more general candidates. For example,
number sense is typically assessed by the speed with which
individuals make magnitude comparisons, or by their ability
to place numbers on a number line (Berch, 2005; Siegler and
Ramani, 2009), skills that were not assessed here. Including such
tasks in a further study as well as general abilities such as non-
verbal intelligence, working memory, etc., and observing how
the numerical items would behave on the general factor, would
allow to identify more reliably what this general factor could
correspond to. Further studies could also address the predictive
validity of the bifactor-ESEM solution of early numeracy.
Demonstrating it would strengthen the relevance and the added
value of such a model.

In the future, it also seems to us that to diminish sources
of confusion in the understanding of the early number skills
structure, harmonization efforts should be made regarding the
selected tasks and their headings. For example, while several
authors included arithmetic tasks in their studies (Aunio and
Niemivirta, 2010; Purpura and Lonigan, 2013; Ryoo et al., 2015),
other researchers did not (Cirino, 2011; Hirsch et al., 2018).
This can, of course, have an incidence on the number of factors
that stand out. The number of tasks among each type of skills
is also very different from study to study, which is known
to affect the factor structure (Purpura and Lonigan, 2013).
For example, Lee et al. (2012) administered a 1min number
facts task as a measure of arithmetic ability, while Purpura
and Lonigan’s (2013) included eight different arithmetic tasks
comprising 38 items in total. An additional source of confusion
in the factors identified might come from the use—or not—
of Arabic numerals. Indeed, some authors used several tasks
involving digits (i.e., Cirino, 2011; Purpura and Lonigan, 2013;
Ryoo et al., 2015) while others did not (Aunio and Niemivirta,
2010) or only a few (Hirsch et al., 2018). Actually, the difference
between symbolic and non-symbolic skills has been found to

be a major distinction (Cirino, 2011). Since tasks involving
Arabic numerals are generally considered as falling within the
relations dimension (National Research Council, 2009; Cirino,
2011; Purpura and Lonigan, 2013), the interlacing between
this dimension and Arabic numerals might, maybe improperly,
strengthen the incidence of this dimension. Finally, the headings
of the subtests are also sometimes confusing. For example, while
the counting tasks used by the majority of the authors consist
of counting forward or backward, or in enumerating collections
and are considered as belonging to the Number dimension, the
Hirsch et al. (2018) “counting task” requires the children to draw
a line below the nth bell among a line of bells, and this appeared
as an eponymous factor per se. This task is therefore very similar
to the subtest called “ordinality” in Purpura and Lonigan’s (2013)
study (identify the nth picture in a line) that was part of their
relations dimension.

In sum, a promising avenue to further study the early number
skills dimensionality is to apply the bifactor-ESEM framework
on data including candidates for the general factor, as well as
by taking into account as comprehensively as possible specific
facets that might stand out. Precisely understanding what the
important general factor underlying early number skills is, and
the exact specific dimensions that remain after having kept under
control the high intercorrelations within that domain, would
constitute significant progress in the study of early numeracy.
This analysis could be interestingly contrasted with a network
analysis in order to discard the psychometric artifact hypothesis
that several authors are supporting concerning general latent
factor models.
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