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A sample of 33 experiments was extracted from the Web-of-Science database over a 5-
year period (2016–2020) that used physiological measures to measure intrinsic cognitive
load. Only studies that required participants to solve tasks of varying complexities using
a within-subjects design were included. The sample identified a number of different
physiological measures obtained by recording signals from four main body categories
(heart and lungs, eyes, skin, and brain), as well as subjective measures. The overall
validity of the measures was assessed by examining construct validity and sensitivity. It
was found that the vast majority of physiological measures had some level of validity,
but varied considerably in sensitivity to detect subtle changes in intrinsic cognitive load.
Validity was also influenced by the type of task. Eye-measures were found to be the most
sensitive followed by the heart and lungs, skin, and brain. However, subjective measures
had the highest levels of validity. It is concluded that a combination of physiological and
subjective measures is most effective in detecting changes in intrinsic cognitive load.

Keywords: intrinsic cognitive load, physiological measures, validity, working-memory load, workload, cognitive
load theory

INTRODUCTION

The main aim of this study was to examine the validity of using physiological techniques to measure
cognitive load by examining construct validity (see Gravetter and Forzano, 2018) and sensitivity
(see Longo and Orru, 2018). More specifically to investigate the ability of physiological measures
to detect differences in intrinsic cognitive load caused by tasks of varying complexity. To meet this
aim we examined the findings from a number of studies drawn from a 5-year sample that measured
cognitive load using physiological techniques. In particular, we were interested in examining a
sample of contemporary studies that had access to the most up-to-date technology.

Researchers across many fields have been interested in the amount of mental resources invested
in attempting a task. One such field is human factors, where studies have focused on everyday
tasks such as driving a motor vehicle. In particular, of much interest has been the mental resources
required to not only drive the car but deal with other requirements or distractors. Measurement
of these mental resources has received much attention, for example, Wickens (2002) developed a
model based on multiple resource theory that predicted dual-task interference.
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A number of descriptors have been used to represent
these types of mental investments such as working memory
load, mental workload, and cognitive load, according to the
context used and/or the theoretical influences of the researchers.
Although such labels are often used interchangeably and have
similar meanings, we will use the term cognitive load because
of its close association with cognitive load theory (CLT) and the
identification of different types of cognitive load (see Sweller et al.,
2011), which is an important consideration in the current paper.

Cognitive load theory emerged in the 1980s as a theory that
made predictions about learning and problem solving based
on the amount of mental resources and effort (cognitive load)
invested in the tasks. An integral part of CLT (see Sweller
et al., 2011; Sweller et al., 2019) has therefore been to find
instruments that measure cognitive load in order to provide
direct evidence for the assumptions made and to advance the
theory further. Up until now a number of self-rating subjective
measures (see Paas, 1992; van Gog and Paas, 2008; Ayres,
2018) have been developed as the preferred methods. However,
despite their widescale use, many researchers have argued for
more objective alternatives such as working memory dual-
tasks (see Park and Brünken, 2015) or physiological measures
(see Antonenko and Niederhauser, 2010).

In more recent times, helped by advances and the availability
of new technologies, physiological measures have become more
popular in CLT research (see Ayres, 2020). Many physiological
measures have already been used based on theoretical arguments
and experimental data to confirm individual validity (see Kane,
2013). However, our study was a broader investigation to gain a
more global overview of physiological measures in order to gain
an up-to-date picture of their validity.

Cognitive load theory has identified three types of cognitive
load: intrinsic, extraneous, and germane (see Sweller et al.,
2019). According to CLT intrinsic cognitive load is generated
by the element interactivity (elements that need to be processed
simultaneously) of the task (Sweller et al., 2011); whereas in
instructional settings, cognitive load can also be generated
by learners dealing with the instructional designs (extraneous
cognitive load) and the actual learning processes generated
(germane cognitive load). Complex tasks typically have many
interacting elements creating high levels of intrinsic cognitive
load. The intrinsic cognitive load generated by any task is not
fixed per se as it is dependent upon the expertise of the problem-
solver or learner. Learners with high levels of expertise possess
knowledge structures (schemas) that enable them to chunk
together many elements (see Chi et al., 1982; Sweller et al.,
2011) thus reducing intrinsic cognitive load. It should be noted
that CLT emphasizes the importance of interacting elements
for creating complexity in learning settings; however, increased
cognitive load does not always depend on interactivity for other
non-learning types of tasks. For example, trying to recall 12
random numbers after a brief observation requires more mental
effort than recalling five numbers. Nevertheless, interactivity
between elements can be a major cause of intrinsic cognitive load.

Subjective measures have been reasonably successful by
requiring learners to rate different aspects of the learning process
using multi-item scales (see Leppink et al., 2013), although it is

debatable whether learners are able to identify different forms
of cognitive load when many cognitive processes are interacting.
In contrast, as far as we know no physiological measures have
been developed to distinguish the types of cognitive load due to a
number of confounding factors such as interactions between task
complexity and learning or stress. To make a consistent analysis
by controlling for possible confounding factors, the present
study focused on studies that generated changes in intrinsic
cognitive load caused by variations in problem complexity rather
than by additional learning factors. By focusing on studies that
require participants to solve tasks without instruction, and no
requirement for learning, cognitive load can be narrowed down
to one source (task complexity). Under these conditions we
assume total cognitive load to be equivalent to intrinsic cognitive
load as no instruction or learning, or other interacting factors
are directly involved (see Ayres, 2006). Hence for our sample of
studies, we expected the various physiological techniques used
to measure only intrinsic load as no other types of cognitive
load were present.

Mental arithmetic tasks provide a good example of tasks
that vary in complexity and generate different levels of intrinsic
cognitive load. They require the simultaneous storage and
processing of information, which generates working memory
load (cognitive load). Because completing a task serves as
a different function to learning about the task, the source
of cognitive load is intrinsic and dependent upon element
interactivity only, as no instructional steps are included. Consider
the following two problems: (a) calculate 3∗4 + 7; and (b)
12∗8 + 14 + 11∗2. The first problem is fairly straightforward
with only two simple calculations involved; whereas the latter has
four more difficult calculations with greater element interactivity.
The second problem requires more working memory resources to
overcome the intrinsic cognitive load generated.

From a validity perspective, Borsboom et al. (2004) argue that
“A test is valid for measuring an attribute if: (a) the attribute
exists; and (b) variations in the attribute causally produce
variation in the measurement outcomes” (p. 1061). Clearly,
cognitive load exists for mental arithmetic tasks (and all tasks
that require working memory load), so any instrument that
purports to measure cognitive load should find differences in
cognitive load between the two problems described above. Based
on cognitive load theory we hypothesize that within-participants
comparisons of tasks with different levels of complexity reveal
differences in intrinsic load that should become visible in
physiological measures. The more studies support this hypothesis
for a specific physiological measure, the higher the construct
validity of this measure (Gravetter and Forzano, 2018).

Borsboom et al. (2004) also suggest that detecting changes
in the attribute is integral to validity. Using Messick’s argument
that validity (see Messick, 1989) does not simply have black
or white outcomes, Borsboom et al. (2004) suggest that there
can be different levels of validity dependent upon how sensitive
the measure is to detecting changes. Longo and Orru (2018)
refer to an ability to detect changes as sensitivity. Hence, we
consider sensitivity as a second important feature in establishing
the validity of a physiological measure. Note that the concept of
validity can encompass the concept of sensitivity, since validity
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in general is a broader concept. Thus, we treat both construct
validity and sensitivity as aspects of validity.

As previously mentioned many studies have used
physiological techniques to measure cognitive load. Four
main categories have been identified that correspond with
major body organs: the heart (i.e., cardiovascular) and lungs
(i.e., respiratory), eyes, skin (i.e., electrodermal), and brain.
The following sections summarize some of the key ways
that data has been extracted from these four categories to
measure cognitive load.

CARDIOVASCULAR AND RESPIRATORY
MEASURES OF COGNITIVE LOAD

Heart Rate
Cardiovascular measures or heart rate (HR) parameters have
a long history as psychophysiological indices of cognitive load
(Paas et al., 2003). However, HR data can be problematic because
it is affected by many psychological and physiological factors,
such as emotions and physical activities (Jorna, 1992). The
challenge has been to disentangle these factors to isolate the
factors that can be indicative of cognitive load or use well-
controlled experimental designs. An example of a well-controlled
design can be found in the study by Mehler et al. (2012), who
showed that HR is a highly sensitive physiological measure for
detecting systematic variations in cognitive load.

Heart Rate Variability
Blitz et al. (1970) showed that heart rate variability (HRV)
can be used to differentiate between different levels of
cognitive load. HRV can be assessed through measurement of
the electrical activity of the heart, which can be visualized
in an electrocardiogram (Mulder, 1992), or measurement
of blood volume changes in the microvascular bed tissue
using a light-based technology called photoplethysmography
(Challoner, 1979).

According to the Task Force of the European Society
of Cardiology and the North American Society of Pacing
Electrophysiology (1996), HRV can be described as the oscillation
in the interval between consecutive heartbeats as well as
the oscillations between consecutive instantaneous HRs (i.e.,
variability in time between the successive R-tops of the
cardiogram). In a study on the usefulness of HRV as an index
of operator effort, Aasman et al. (1987; see also Mulder, 1992)
further specified the HRV measure based on the knowledge
that the time between successive heartbeats is determined by
three different feedback mechanisms, connected with respiration,
blood pressure (BP), and body temperature regulation. Using
a special mathematical technique (i.e., spectral analysis) to
investigate periodical components of the HRV, Aasman et al.
(1987) were able to show that cognitive load is specifically related
to the short-term regulation of arterial BP. The relationship
between cognitive load and HRV is indirect (Solhjoo et al., 2019),
because an increase in cognitive load will lead to an increase
in BP, which will lead to a decrease in HRV. A similar indirect
relationship has also been identified for respiratory activity with

increasing cognitive load increasing the respiratory frequency
(e.g., Grassmann et al., 2016b), which will lead to a decrease
in HRV (e.g., Song and Lehrer, 2003). The spectral analysis
technique can be used to separate the effects of respiratory rate
(high frequency band, 0.15–0.40 Hz) and thermoregulation (low-
frequency band, 0.02–0.06 Hz) from the mid-frequency band
(0.07–0.14 Hz), which is determined by the arterial BP regulation
and related to cognitive load.

The HRV measure is generally accepted as a measure of
cognitive load (e.g., Finsen et al., 2001; De Rivecourt et al., 2008;
Thayer et al., 2012). However, Paas et al. (1994) have argued that it
has mainly been used successfully with short-duration basic task
(e.g., binary decision tasks) under well-controlled conditions.
Paas et al. (1994) showed that with longer-lasting learning tasks
typically used in educational research, the validity and sensitivity
of the spectral analysis technique of the HRV was low. The
technique was only sensitive to relatively large differences in
cognitive load, i.e., differences between mentally inactive and
mentally active periods. According to Aasman et al. (1987) the
high intrinsic variability in the HR signal is one of the sources of
its low reliability and relative insensitivity to small differences in
processing load between tasks. The studies that Paas et al. (1994)
analyzed to determine the sensitivity of the HRV technique
used relatively long duration learning tasks. In contrast to basic
tasks, which mainly consist of mentally active periods, such tasks
naturally contain both mentally active and inactive periods, and
consequently create a rather noisy signal. In addition, although
spectral analysis of HRV allows cognitive load to be measured at
a higher rate than subjective measures, it cannot be considered a
real-time measure, because it needs time to process. From this
real-time measurement perspective, HR can also be argued to
have an advantage over HRV, because HR changes can be detected
in a much shorter period than changes in HRV.

Respiratory Measures
In contrast to cardiovascular measures, the use of respiratory
measures has received much less research attention (for a review,
see Grassmann et al., 2016a). Similar to the cardiovascular
measures, respiratory measures are also influenced by and
reflective for metabolic, psychological, and behavioral processes
(Wientjes et al., 1998). Grassmann et al. (2016a) reviewed studies
that used respiratory indices of cognitive load as a function of task
difficulty, task duration, and concurrent performance feedback.

Research into the relationship between respiratory measures
and cognitive load has used measures based on time (e.g.,
number of breaths per minute, i.e., respiration rate), volume
(amount of air inhaled during one respiratory cycle, i.e., tidal
volume), gas exchange (e.g., proportion of released CO2 to
inhaled O2, i.e., respiratory exchange ratio), and variability
parameters of these measures. In their review, Grassmann
et al. (2016a) found that those respiratory parameters can
be measured with breathing monitors, respiratory inductive
plethysmography, strain gauges, impedance-based methods,
capnography, and metabolic analyzers. Results of this study
revealed that cognitive load was positively related to respiration
rate (e.g., Backs and Seljos, 1994), and frequency of sighing (e.g.,
Vlemincx et al., 2011). In addition, negative relationships with
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cognitive load were found for both inspiratory and expiratory
time (e.g., Pattyn et al., 2010) and partial pressure of end-
tidal carbon dioxide (petCO2; Grassmann et al., 2016a). For the
respiratory measures it is important to note that they can be
disrupted by verbal activities, such as effects of talking on the
breathing pattern, which can be a confound when using breathing
pattern as an index of cognitive load (e.g., Tininenko et al., 2012).

EYE ACTIVITY MEASURES OF
COGNITIVE LOAD

For decades, eye-tracking indices have been used to measure
cognitive load in various fields (Rosch and Vogel-Walcutt, 2013;
Glaholt, 2014; Wilbanks and McMullan, 2018). Thanks to its
portability and unobtrusiveness, eye tracking supports more
natural task environments (Eckstein et al., 2017). Moreover,
its indices correspond to not only autonomic responses (e.g.,
pupil dilation, blinks) but also consciously modulated processes
(e.g., eye fixation), facilitating the investigation of diverse
indicators of cognitive load. The following sections describe
some key measures of cognitive load drawn from eye data and
important conditions.

Pupil Dilation
Pupil dilation reflects noradrenergic activity of the autonomous
nervous system that regulates arousal and mental activity
(Eckstein et al., 2017). A large number of studies have shown
that pupil dilation is positively correlated with cognitive demands
imposed by the tasks (Hess and Polt, 1964; Kahneman and
Beatty, 1966; Hyönä et al., 1995; Van Orden et al., 2001).
Most modern image-based eye-trackers can readily collect pupil
data. However, multiple factors (e.g., light reflex, gaze position,
pupil dilation latency) can affect this data, which challenges
proper measurement of the cognitive effects on pupil size.
Thus, researchers must take extra precautions to establish well-
controlled experimental setups, for instance, maintaining a
constant luminance of stimuli, using baseline data, or employing
computational correction methods (Hayes and Petrov, 2016;
Chen et al., 2017).

Blink Rate
The frequency of spontaneous blinks, or blink rate, is modulated
by dopaminergic activity in the central nervous system that
involves goal-oriented behavior and reward processing (Eckstein
et al., 2017). Studies have shown that blink rate significantly
increases as a function of time on task, fatigue, and workload
(Stern et al., 1994; Tsai et al., 2007). However, this measure for
assessing cognitive load is task-specific. When the task requires
intensive visual processing (e.g., reading, air traffic control),
blink rate is rather inhibited, resulting in a decreased rate (Van
Orden et al., 2001; Recarte et al., 2008). Blinks can be easily
detected by eye trackers, while several artifacts (e.g., reflections
in glasses, participant motion) must be regulated (Holmqvist
and Andersson, 2017, Chapter 15). Moreover, blink data is not
continuous and its distribution is often non-Gaussian, requiring
auxiliary calculation methods (Siegle et al., 2008).

Fixation
Eye fixation is a more consciously modulated behavior compared
to pupil dilation and blinks. Three types of fixation measures
have been frequently used for assessing cognitive load, reflecting
different aspects of visual information processing: fixation rate
(the number of fixations divided by a given time), fixation
duration (time span when the eye is relatively still), and transition
rate (the number of gaze shifts per second from one area of
interest to another). Note that the first two, fixation rate and
duration, are inversely correlated given the same trial duration,
which makes the interpretation of the results highly task-specific.
For instance, if the task requires frequent searching of different
locations (e.g., scene perception, surveillance), increased fixation
rate is associated with high cognitive load, accompanying short
fixation duration (Van Orden et al., 2001; Chen et al., 2018). If
the task includes deep and effortful processing of particular visual
targets, long fixation duration would indicate high cognitive load
(Callan, 1998; Henderson, 2011; Reingold and Glaholt, 2014).

When the task involves integration of information between
different areas of interest (AOIs), transition rate can be a
suitable measure (Schmidt-Weigand et al., 2010). Studies have
shown that high cognitive load increases transition rate in static
task environments, while it decreases the rate in dynamic task
environments (van Meeuwen et al., 2014; Lee et al., 2019).
For fixation data analysis, data quality and AOI definition
are critical. Valid fixations should be detected after assuring
data quality in terms of accuracy, precision, and tracking loss
(Orquin and Holmqvist, 2018). Researchers should then carefully
define AOIs relevant to sources of cognitive load, and select
the measures pertinent to given task characteristics through task
analysis and piloting.

Other Eye Measures
More eye-tracking and ocular indices have been explored in
various research contexts. Variability in horizontal gaze position
reduced as cognitive load increased in driving simulation tasks
(He et al., 2019). In a simulated surgical task, intraocular pressure
(i.e., fluid pressure inside the eye) was positively correlated with
cognitive load (Vera et al., 2019). Ocular astigmatism aberration
(i.e., deviation of optic elements of the eye), mediated by the
intraocular pressure, was also shown to increase as a function
of cognitive load (Jiménez et al., 2018). Since different measures
can demonstrate different aspects of cognitive load, combining
multiple eye measures may provide a higher construct validity
and sensitivity as a cognitive load measure (Van Orden et al.,
2000; Ryu and Myung, 2005; Mehler et al., 2009).

ELECTRODERMAL MEASURES OF
COGNITIVE LOAD

Electrodermal measures have a long history as
psychophysiological measures of emotional or cognitive
stress and arousal (for a review see Posada-Quintero and Chon,
2020). The basis of the measurement of electrodermal activity
(EDA) is the change in electrical activity in the eccrine sweat
glands on the plantar and palmar sides of the hand, which are
particularly responsive to psychological stimuli imposing stress.
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Increased stress leads to increased sweating, which lowers the
resistance and augments the electrical conductance of the skin
(Dawson et al., 2000).

Within the EDA signal, two components can be distinguished.
Firstly, a tonic skin conductance component (i.e., skin
conductance level) that changes slowly over time. This
component is considered a measure of psychophysiological
activation. Secondly, a phasic skin conductance component (i.e.,
skin conductance response) that changes abruptly. These fast
changes are reflected in the peaks in the electrodermal signal
and are also called the galvanic skin response (Braithwaite et al.,
2013). This component is impacted by stress and arousal (e.g.,
Hoogerheide et al., 2019).

Based on the knowledge that cognitive load is one of the
cognitive states that causes people to experience stress it is
assumed that changes in cognitive load affect the galvanic skin
response through changes in skin conductance, with increases in
cognitive load leading to increases in the galvanic skin response.
Several studies have confirmed the positive relation between
cognitive load and the galvanic skin response (e.g., Setz et al.,
2009; Nourbakhsh et al., 2012; Larmuseau et al., 2019). Mehler
et al. (2012), who investigated the sensitivity of skin conductance
level to cognitive load, studied three age groups (20–29, 40–49,
60–69) working on a working memory task at three levels of
cognitive load. They found a significant pattern of incremental
increase of skin conductance level as a function of increasing
cognitive load, thereby confirming the sensitivity of the measure
of skin conductance level.

Vanneste et al. (2020) recently argued that the usability of
EDA measures (i.e., skin conductance response rate and skin
conductance response duration) as measurement instrument
for cognitive load is limited, because it could only explain a
limited proportion of the variance in cognitive load (approx.
22%). Charles and Nixon (2019) have suggested that EDA may
be sensitive to sudden, but not gradual changes in cognitive
load. However, this is only seems to apply to skin conductance
response measures, because skin conductance level measures
have been shown to increase with a gradual changes in cognitive
load (e.g., Mehler et al., 2012).

Skin conductance response activity is commonly measured
by the frequency of the peaks (i.e., skin conductance response
rate), the duration of the peaks (skin conductance response
duration), and the magnitude of the peaks (i.e., skin conductance
magnitude) in the signal. Recently, Posada-Quintero et al. (2016)
have introduced the spectral analysis technique to process skin
conductance response activity data. This analysis method is
commonly used to investigate periodical components of the HRV
signal (e.g., Aasman et al., 1987). The newly developed index,
incorporating the components between 0.08 and 0.24 Hz, was
found to be highly sensitive to cognitive stress.

BRAIN ACTIVITY MEASURES OF
COGNITIVE LOAD

In the past, measures of activity of the brain have mainly been
used to assess cognitive load in controlled laboratory settings
because they required advanced, unportable equipment for

electroencephalography (EEG) or functional magnetic resonance
imaging (fMRI). But nowadays, the use of brain measures is
becoming more popular because new apparatus, such as wireless
EEG caps and portable fNIRS devices (functional near infrared
spectroscopy) are mobile, easy to use, and less obtrusive.

Electroencephalography
Electroencephalography records electrical activity of the brain.
Multiple electrodes are placed on the scalp (typically using the
10/20 system; Jasper, 1958) and measure voltage fluctuations
resulting from ionic current within the neurons of the brain.
Assessments typically focus on the type of neural oscillations
(‘brain waves’) that can be observed in EEG signals in
the frequency domain. Spectral analysis gives insight into
information contained in the frequency domain, distinguishing
waveforms such as gamma (>35 Hz), beta (12–35 Hz), alpha
(8–12 Hz), theta (4–8 Hz), and delta (0.5–4 Hz). Electrodes
are placed on different locations of the scalp so that they read
from different lobes or regions of the brain: Pre-frontal, frontal,
temporal, parietal, occipital, and central. Cognitive load has
mainly been found to be correlated with an increase in the
parietal alpha band power and frontal-midline theta band power
(Antonenko et al., 2010).

Functional Magnetic Resonance Imaging
Functional magnetic resonance imaging measures brain activity
by detecting changes associated with cerebral blood flow, which
is directly coupled to neuronal activation. Typically, it uses the
blood oxygen level dependent (BOLD) contrast, which images
the changes in blood flow related to energy use of brain cells.
Statistical procedures are necessary to extract the underlying
signal because it is frequently corrupted by noise from various
sources. The level of brain activation in the whole brain or its
specific regions can be graphically represented by color-coding
its strength (e.g., showing fMRI BOLD signal increases in red
and decreases in blue). Cognitive load has been found to be
correlated with increased activation of neural regions associated
with working memory, such as the fronto-parietal attention
network (e.g., Tan et al., 2016; Mäki-Marttunen et al., 2019).

Functional Near Infrared Spectroscopy
Functional near infrared spectroscopy is an optical brain
monitoring technique which uses near-infrared spectroscopy
to measure brain activity by estimating cortical hemodynamic
activity which occurs in response to neural activity. The
signal can be compared with the BOLD signal measured by
fMRI and is capable of measuring changes both in oxy- and
deoxyhemoglobin concentration from regions near the cortical
surface; local increases of oxyhemoglobin as well as decreases
in deoxyhemoglobin are indicators of cortical activity. A typical
system contains pairs of optical source and detector probes that
are placed on the scalp with a lightweight headband typically
using the same locations as EEG electrodes (i.e., the 10/20
system). As for fMRI, cognitive load is correlated with increased
activation of the fronto-parietal network (Hosseini et al., 2017).
In addition, using a combination of EEG and fNIRS signals
has been shown to improve the sensitivity of cognitive load
measurements (Aghajani et al., 2017).
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RESEARCH QUESTIONS

Our aim was to gain an overview of the validity of physiological
measures of intrinsic cognitive load from a collection of
contemporary studies by examining construct validity and
sensitivity. In particular, we were interested in identifying the
different types of measures in use in such studies within
the four main categories identified above: namely the heart
and lungs, eyes, skin, and brain. The more studies that
find the expected effects for a specific physiological measure,
the stronger the support for its construct validity. Also by
comparing the various measures with each other we aimed
to identify any variations in levels of sensitivity. Furthermore,
as we assumed that such variations could be influenced by
specific tasks, we also investigated how validity was influenced
by the types of tasks used. Our main research questions
were:

RQ1: Do the physiological measures have construct validity in
detecting changes in intrinsic cognitive load across tasks?

RQ2: How sensitive are the physiological measures to
detecting changes in intrinsic cognitive load?

RQ3: Does the type of task impact on overall validity?

MATERIALS AND METHODS

In the present study we included only experiments that had
within-subject designs (Criterion 1) comparing tasks with
different levels of complexity (Criterion 2). Criterion 1 ensures
that potential moderating factors such as prior knowledge that
can impact on intrinsic cognitive load were limited. Criterion
2 ensured that intrinsic cognitive load would vary across
tasks and thus could be detected by a valid physiological
measure. Consistent with the main focus of this study we
only included experiments that actually measured cognitive load
using physiological measures (Criterion 3). In order to have
a sufficiently large sample based on contemporary studies we
examined data from the last 5 years. Although there are many
databases, we chose the Web-of-Science as it is one of the
most prestigious and authentic, and provided a sufficient enough
sample to fulfill our aims.

Selecting the Sample of Studies
Step 1
To find an up-to-date sample of studies that featured
physiological measures of cognitive load, a search was conducted
in the Web of Science using the keywords “Physiological measures
cognitive load” for the previous 5 years up until 30 November
2020. This search included articles, book chapters, and books.
Some slight variations of the keywords were used such as working
memory load, which produced little if any differences. In total
208 studies were initially identified.

Step 2
The abstract of each source was read to filter out any study
that clearly did not meet our essential criteria of physiological

measures of cognitive load (Criterion 3), within-subject designs
(Criterion 1) with problems of varying complexity (Criterion 2).
This analysis narrowed down the sample to 98 studies.

Step 3
From Step 2 it was possible to eliminate many studies that
clearly did not meet Criterion 1–3, but many abstracts did
not have sufficient information to make a definitive decision.
Hence, a more thorough reading and analysis of each study was
conducted to ensure each condition was satisfied. In particular
to satisfy Criterion 2 it was necessary to include only studies
that found significant differences on performance scores across
the tasks. Using the example given above, recalling 12 random
numbers after a brief observation is more mentally demanding
than recalling five numbers. It is expected that more errors
would be made recalling the 12-number task than the 5-number
task, and this difference in errors would be caused by variations
in cognitive load generated by complexity rather than prior
knowledge about the domain. Hence, studies that did not report
such significant differences between tasks were excluded.

A small number of studies were included that did not
report score differences because this information was provided
in previous studies or based on expert opinion (N = 3), or
time to completion (N = 1). Studies that manipulated factors
such as anxiety, stress, and other confounding factors were
also eliminated (N = 4) as these factors are known to impact
on working memory. For example, pupil dilation can indicate
emotional arousal and therefore indicate extraneous cognitive
load caused through distraction if the emotion is not part of the
task (Lee et al., 2020).

These processes led to a final sample of 28 studies with 33
experiments (note: these studies are starred in the reference
section). The mean participant size per experiment was 29.2
(SD = 14.8) with 53% males; 26 of the experiments consisted of
adults with a mean age between 20 and 30, five included adults
with no recorded mean statistics, and two studies focused on
older adults (mean ages of 58 and 70).

Data Analysis
For each study a record was made of: (a) what cognitive load
measures were used; (b) the type of tasks used; (c) the number
of within-subject tasks; and (d) how many significant differences
were found on performance tasks and cognitive load measures,
and if these differences matched each other. It was notable
that nearly all studies included a number of different measures
of cognitive load.

Physiological Measures of Cognitive Load
The physiological measures as expected could be grouped into
four categories consistent with the major organs of the body: the
heart and lungs, eyes, skin, and brain. It was notable that 62.5%
of all studies used measures from one category, 28.1% from two
categories, 6.3% from three categories, and 3.1% from all four
categories, indicating a battery of tests were utilized. In each of
the four categories different types of measures were used, often in
the same study. For example, a study might record both HR and
HRV. Results for each category are described next.
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Heart and Respiration Measures
Information (see Table 1) was collected from ECGs (N = 5),
HR monitors (N = 3), a fNIRS (N = 1), a BP monitor
(N = 1), a plethysmograph (N = 1), breathing monitors (N = 2),
and a multi-purpose Shimmer GSR + device (N = 1). The
main heart measures used were HR and HRV. There was
also vascular response index measure used by calculating the
ratio of specific amplitudes of the signals. Respiration rates
and BP were also used. Eleven studies included heart and
respiration measures, eight of which recorded different types of
measurement within this category.

Eye Measures
Information (see Table 2) was collected from eye-tracking devices
(N = 11), EEG (N = 1), EOG (N = 1), a web-camera (N = 1),
and from tonometry (N = 1). The two most frequent measures in
this category were pupil diameter and blink rates. The former is
based on increased size of pupil averaged over time and the latter
the number of blinks per time period. There were also measures
of gaze fixations, saccades (gaze transitions), astigmatism, and
ocular pressure. Fifteen studies included eye measures, five
of which recorded different types of measurement connected
to this category.

Skin Measures
Eight studies (see Table 3) collected GSR data measuring EDA
from sensors attached to the foot (N = 1), hand (N = 4), fingers
(N = 2), or wrist (N = 1). This data was difficult to divide into
sub-categories because studies often did not provide sufficient
information or used a variety of different signal features. For
example, the majority of studies did not indicate which of the
EDA signal components (phasic and tonic; see Vanneste et al.,
2020) were measured. Although, it could be assumed that the
phasic data was most likely used because of the shorter time
intervals involved. Furthermore, several studies reported mean
and accumulation GSR statistics based on different features such
as amplitudes, total power, gradients, peak numbers, spectral
density, and wave rises. Even though they had some common
labels such as GSR-mean, it was not necessarily means of the
same data. Some studies also transformed their data using Fourier
analysis techniques. Hence, it was not possible to form consistent
subgroups and therefore all GSR data was grouped together
under the heading Skin-GSR.

In two studies skin temperature was recorded. Although we
note that changes in temperature due to stress or arousal can
be caused by vasoconstrictions (see Vanneste et al., 2020) and
therefore could be considered under the Heart and Respiration
category, we reported this measure here in the Skin category
because of the direct reference to, and measurement of, this part
of the body. We did not include this measure in the skin category
summary because it did fit easily with the other measures, which
all were based on GSR signals. Its exclusion provides a more
meaningful grouping for further analysis.

Brain Measures
Thirteen studies (see Table 4) reported measures based on the
five sub-bands (alpha, beta, gamma, delta, and theta) of brain
electrical activity obtained from EEGs (N = 10), fMRIs (N = 2),
and an fNIRS (N = 1) data and was recorded according to the

five sub-bands (see Table 4). Typically, band power or amplitude
was recorded following power spectrum density analysis. Eleven
studies recorded more than one sub-band of data. In some studies
information was collected on various lobes of the brain such as
the frontal, occipital, and parietal lobes. In these cases, data was
classified according to the sub-bands (e.g., alpha). In some limited
studies, signal data were combined or transformed (e.g., alpha
and theta data were combined) and this was recorded under the
category ‘Other.’

Subjective Measures of Cognitive Load
Even though our main aim was to investigate physiological
measures of cognitive load, many studies in the sample also
included subjective measures. In particular, the NASA-TLX scale
(see Hart and Staveland, 1988) was often used as a comparative
tool as it was considered the gold standard in measuring
workload in human–computer interaction studies. This scale
requires task participants to subjectively rate: mental demand,
physical demand, temporal demand, performance, effort, and
frustration. All studies (N = 12) that used this instrument
aggregated the six items to get an overall mental workload rating,
which we documented. Many studies also recorded and analyzed
the six sub-scales separately. In these cases, we also recorded
the data for mental demand and effort, as they more closely
resembled the single-item rating scales used in cognitive load
theory. Further, some studies (N = 8) also used single-item
measures of effort, difficulty, and demand, that were not part
of the NASA-TLX survey, and more consistent with the scale
devised by Paas (1992). This data was also recorded and included
in Table 5 under the heading Single item. Although one exception
to this was an aggregated measure of intrinsic cognitive load
using 3 items based on the survey developed by Leppink et al.
(2013).

Types of Tasks
For each type of cognitive load measure, a record was made of
the type of tasks used in the study. These could be categorized
into arithmetic, working memory, simulations, object-shape
manipulations and word tasks. Individual analysis of task
types was recorded in Tables 1–5. Arithmetic tasks were
constructed from mental arithmetic problems; simulations used
specialized equipment to mimic (simulate) real-life tasks that
involved motorcar driving, engineering skills, military exercises
and surgery; memory tasks included n-back and digit-span
tasks; object/shapes included visual object tracking and shape
construction tasks; and word tasks were based on both reading
and writing tasks.

Assessing Validity
The following steps were conducted to assess the validity of the
identified measures. The first step was to confirm whether the
various physiological measures were capable of detecting any
significant differences in cognitive load across the different tasks
in each study. Based on cognitive load theory, it is predicted
that higher complexity tasks yield higher intrinsic load that
should thus be reflected in the physiological measure; the more
studies provide evidence for that prediction, the higher the
construct validity of the measure. Therefore, for each use of a
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physiological measure, a record was made of whether a significant
difference was found across the tasks. This information was
recorded in Column-4 (labeled At least 1 significant difference) for
Tables 1–5. For example, Column-4 in Table 1 for HR measures
collected during simulation tasks, indicates that significant
differences between tasks in HR were found in four of the four
experiments (100%).

The next step was to document to what extent the cognitive
load measures matched the performance test scores, providing
information on levels of construct validity and sensitivity.
In studies that feature tasks of different complexities, it is
assumed that performance scores will vary in accordance
with cognitive load. As more demand is made on working
memory, less correct answers would be expected (see Ayres
and Sweller, 1990). For example, if a study used 3 tasks (T1,
T2, and T3) there are three possible pair-wise comparisons
(T1–T2, T1–T3, T2–T3). If the three tasks had significantly
different levels of complexity then it would be expected that
test scores would give three significant differences in pair-wise
comparisons. It would then be expected that the measures of
cognitive load would also detect three significant differences,
consistent with the nature of the physiological measure (e.g., as
task complexity increases and scores decrease, HR increases).

TABLE 1 | Heart and respiration measures.

Tasks Type of
measure

No. of
experiments

At least 1
significant
difference

Matches
with task

performance

Pair-wise
deviations

Arithmetic

HR 1 1 (100%) 1 (100%) 0

HRV 1 1 (100%) 1 (100%) 0

Vasc.
Response

2 2 (100%) 2 (100%) 0

BP 1 0 (0%) 0 (0%) 1.00

Total 5 4 (80%) 4 (80%) 0.20

Simulations

HR 4 4 (100%) 3 (75%) –0.25

HRV 3 0 (0%) 0 (0%) –1.67

Respiration 3 2 (67%) 2 (67%) –0.33

Total 10 6 (60%) 5 (40%) –0.70

Memory

HR 1 1 (100%) 1 (100%) 0

HRV 3 3 (100%) 3 (100%) 0

Respiration 1 1 (100%) 1 (100%) 0

Total 5 5 (100%) 5 (100%) 0

Word tasks

HR 1 0 (0%) 0 (0%) –3.00

HRV 1 0 (0%) 0 (0%) –3.00

Total 2 0 (0%) 0 (0%) –3.00

All

HR 7 6 (86%) 5 (71%) –0.57

HRV 8 4 (50%) 4 (50%) –1.00

Vasc.
response

2 2 (100%) 2 (100%) 0

Respiration 4 3 (75%) 3 (75%) –0.25

BP 1 0 (0%) 0 (0%) –1.00

Totals 22 15 (68%) 14 (64%) –0.64

In the case of three significant test differences and three
corresponding cognitive load differences in an experiment,
a match was recorded. If the cognitive load measure only
found two significant differences this was considered a non-
match. This information was recorded in Column-5 (labeled
Matches with task performance) for Tables 1–5. For the
simulation-HR example in Table 1 (Column-5), cognitive
load measures matched test scores in three of the four
studies (75% matches), indicating that for the other study
cognitive load measures failed to find as many differences as
the test scores.

It should be noted that in two studies in the sample no
pair-wise comparisons were made, only an overall ANOVA was

TABLE 2 | Eyes.

Tasks Type of
measure

No. of
experiments

At least 1
significant
difference

Matches
with task

performance

Pair-wise
deviations

Arithmetic
Simulations

– – – – –

Pupil diam. 6 3 (50%) 3 (50%) –0.80

Blink rate 4 4 (100%) 4 (100%) 0

Fixations 3 3 (100%) 3 (100%) +0.33

Ocular
press.

1 1 (100%) 1 (100%) 0

Total 14 11 (79%) 11 (79%) –0.29

Memory – – – – –

Pupil diam. 1 1 (100%) 1 (100%) 0

Astigmatism 1 1 (100%) 1 (100%) 0

Saccades 1 1 (100%) 1 (100%) 0

Total 3 3 (100%) 3 (100%) 0

Objects/
shapes

Pupil diam. 3 3 (100%) 2 (67%) –0.67

Blink rate 1 1 (100%) 1 (100%) 0

Total 4 4 (100%) 3 (75%) –0.50

Word tasks – – – – –

Pupil diam. 1 1 (100%) 1 (100%) 0

Blink rate 1 1 (100%) 0 (0%) 1

Total 2 2 (100%) 1 (50%) –0.50

All – – – – –

Pupil diam. 11 8 (73%) 7 (64%) –0.60

Blink rate 6 6 (100%) 5 (83%) –0.17

Other 6 6 (100%) 6 (100%) 0

Totals 23 20 (87%) 18 (78%) –0.30

TABLE 3 | Skin measures.

Tasks Type of
measure

No. of
experiments

At least 1
significant
difference

Matches
with task

performance

Pair-wise
deviations

Arithmetic GSR 6 6 (100%) 3 (50%) –1

Simulation GSR 1 1 (100%) 1 (100%) +1

Memory GSR 2 1 (50%) 1 (50%) –0.50

Objects/
shapes

GSR 2 1 (50%) 1 (50%) –0.50

Written GSR 2 2 (100%) 2 (100%) 0

Totals 13 11 (85%) 8 (62%) –0.54
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conducted. In these cases, only one overall comparison could
be made. On some rare occasions, the cognitive load measure
found more significant differences than the test performance
scores suggesting a more sensitive measure, so these were
also considered a match because they found at least the same
number of differences.

To measure the variations between the test scores and
the cognitive load scores, the differences between them were
recorded. For example, if the test scores indicated three
significant pairwise comparisons, but the cognitive load measure
only found one, the variation was recorded as –2. For
each sub-category of measure, this information was averaged
and recorded in Column-6 (labeled Pair-wise deviations)
for each table. For example, –1.67 is recorded for HRV
for simulations in Table 1. Over the three studies (each
individual experiment counted separately if studies contained
multiple experiments) total variations short of what was
expected summed to five giving an average of –1.67. On
the rare occasions that the cognitive load measure found
more significant differences than the test scores, it was
possible to have a positive (+) average (see Table 2: fixations
for simulations).

The data reported in columns 4–6 enabled differences between
the sensitivity of the various measures to be compared. For
example, if for three different cognitive tasks measure-A records

TABLE 4 | Brain measures.

Tasks Type of
measure

No. of
experiments

At least 1
significant
difference

Matches
with task

performance

Pair-wise
deviations

Arithmetic Alpha 1 1 (100%) 1 (100%) 0

Beta 1 1 (100%) 0 (0%) –2.00

Theta 1 1 (100%) 0 (0%) –1.0

Total 3 3 (100%) 1 (33%) 1.00

Simulations Alpha 5 4 (80%) 2 (40%) –0.80

Beta 5 3 (60%) 0 (0%) –1.20

Gamma 3 2 (67%) 1 (33%) –1.33

Delta 3 2 (67%) 1 (33%) –1.33

Theta 4 2 (50%) 1 (25%) –1.25

Other 2 0 (0%) 0 (0%) –2.00

Total 22 13 (59%) 5 (23%) –1.36

Memory Alpha 2 2 (100%) 2 (100%) 0

Gamma 1 1 (100%) 1 (100%) 0

Theta 1 0 (0%) 0 (0%) –3.00

Other 1 1 (100%) 1(100%) 0

Total 5 4 (80%) 4 (80%) –0.60

Objects/
shapes

Alpha 1 0 (0%) 0 (0%) –3.00

Beta 1 1 (100%) 0 (0%) –2.00

Other 2 2 (100%) 1 (50%) –1.00

Total 4 3 (75%) 1 (25%) –1.50

All Alpha 9 7 (78%) 5 (56%) –0.78

Beta 7 5 (71%) 0 (0%) –1.43

Gamma 4 3 (75%) 2 (50%) –1.00

Delta 3 2 (67%) 1 (33%) –1.33

Theta 6 3 (50%) 1 (17%) –1.50

Other 5 3 (60%) 2 (40%) –1.00

Totals 34 23 (68%) 11 (32%) –1.15

no cognitive load differences, then scores in columns 4–6 would
be recorded as (0, 0, –3). Whereas if a more sensitive measure-B
records two cognitive load differences then it would be recorded
as (1, 0, –1). B is clearly more sensitive than A which is reflected
in this scoring rubric. Note a perfect match of three significant
differences in cognitive load would be recorded as (1, 1, 0).

Finally, to make some comparisons between the different
measures, overall summaries are reported in Table 6.

RESULTS

Analysis of Individual Measures
Heart and Respiration Measures
Heart and respiration measures were recorded in 11 experiments
(see Rendon-Velez et al., 2016; Wong and Epps, 2016;
Reinerman-Jones et al., 2017; Wu et al., 2017; Lyu et al., 2018;
Alrefaie et al., 2019; He et al., 2019; Jaiswal et al., 2019; Ahmad
et al., 2020; Digiesi et al., 2020; Gupta et al., 2020; Zakeri et al.,
2020). For this category (see Table 1), the most common
forms of measures were HR and HRV. Respiration rates and
blood pressure (BP) were also measured along with some novel
indices, such as the Vascular response index, calculated from the
ratio of different amplitudes taken from a photoplethysmogram
waveform (see Lyu et al., 2018). For 8 of the 11 studies, more than
one sub-category of measures were collected. With such a small

TABLE 5 | Subjective measures.

Tasks Type of
measure

No. of
experiments

At least 1
significant
difference

Matches
with task

performance

Pair-wise
deviations

Arithmetic Single item 3 3 (100%) 3 (100%) 0

Simulations NASA-
overall

8 7 (88%) 5 (63%) –0.38

NASA-
effort

6 5 (83%) 3 (50%) –0.50

NASA-
demand

5 5 (100%) 4 (100%) 0

Total 19 17 (89%) 12 (63%) –0.32

Memory NASA-
overall

2 2 (100%) 2 (100%) 0

NASA-
effort

1 1 (100%) 1 (100%) 0

NASA-
demand

2 2 (100%) 2 (100%) 0

Single item 1 1 (100%) 1 (100%) 0

Total 6 6 (100%) 6 (100%) 0

Objects/
shapes

Single item 4 4 (100%) 4 (100%) 0

All NASA-
overall

10 9 (90%) 7 (70%) –0.30

NASA-
effort

7 6 (86%) 4 (57%) –0.43

NASA-
demand

7 7 (100%) 6 (86%) 0

Single item 8 8 (100%) 8 (100%) 0

Totals 32 30 (94%) 25 (78%) –0.19
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sample size it was not possible to conduct meaningful statistical
tests between individual measures; however, some observations
could be made. Firstly, HR, the vascular response index and
respiration rates produced high levels of consistency with test
results (indicating more sensitivity), even though the two latter
cases involved a small number of cases. Secondly HR measures
were more sensitive than HRV measures, the latter being totally
ineffective on simulation tasks. From the perspective of task
type, memory and arithmetic tasks produced high levels of
consistency, whereas the more complex simulations did not. The
two studies with word tasks produced no significant cognitive
load measures for HR or HRV. Combined across the different
tasks, the heart measures were capable of finding at least one
significant difference in cognitive load in 68% of studies, with
exact matches of 64%.

TABLE 6 | Summaries.

Tasks Type of
measure

No. of
collections

At least 1
significant
difference

Matches
with task

performance

Pair-wise
deviations

Arithmetic Subjective 3 3 (100%) 3 (100%) 0

Skin-GSR 6 6 (100%) 3 (50%) –1.00

Brain 3 3 (100%) 1 (33%) –1.00

Heart 5 4 (80%) 4 (80%) 0.20

Eyes – – – –

All 17 16 (94%) 11 (65%) –0.59

Simulations Skin-GSR 1 1 (100%) 1 (100%) +1.00

Subjective 19 17 (89%) 12 (63%) –0.32

Eyes 14 11 (79%) 11 (79%) –0.29

Heart 10 6 (60%) 5 (40%) –0.70

Brain 22 13 (59%) 5 (23%) –1.36

All 66 48 (73%) 34 (52%) –0.70

Memory Subjective 6 6 (100%) 6 (100%) 0

Heart 5 5 (100%) 5 (100%) 0

Eyes 3 3 (100%) 3 (100%) 0

Brain 5 4 (80%) 4 (80%) –0.60

Skin-GSR 2 1 (50%) 1 (50%) –0.50

All 20 18 (90%) 18 (90%) –0.20

Objects/
shapes

Subjective 4 4 (100%) 4 (100%) 0

Eyes 4 3 (75%) 3 (75%) –0.50

Brain 4 3 (75%) 1 (25%) –1.50

Skin-GSR 4 1 (25%) 1 (25%) –1.25

Heart – – – –

All 16 11 (69%) 9 (56%) –0.81

Word Skin-GSR 2 2 (100%) 2 (100%) 0

Eyes 2 2 (100%) 1 (50%) –0.50

Heart 2 0 (0%) 0 (0%) –3.00

Subjective – – – –

Brain – – – –

All 6 4 (67%) 3 (50%) –1.17

All Subjective 32 30 (94%) 25 (78%) –0.19

Eyes 23 20 (87%) 18 (78%) –0.30

Skin-GSR 13 11 (85%) 8 (62%) –0.54

Heart 22 15 (68%) 14 (64%) –0.64

Brain 34 23 (68%) 11 (32%) –1.05

Eye Measures
Eye measures were recorded in 15 experiments (see Mazur et al.,
2016; Rendon-Velez et al., 2016; Wong and Epps, 2016; Hosseini
et al., 2017; Yan et al., 2017; Jiménez et al., 2018; Alrefaie et al.,
2019; He et al., 2019; Hossain et al., 2019; Vera et al., 2019;
Ahmad et al., 2020; Maki-Marttunen et al., 2020; van Acker et al.,
2020; Vanneste et al., 2020; Zakeri et al., 2020). The two most
popular measures were pupil diameter and blink rates. Measuring
the number of saccades, astigmatism, gaze positions, and ocular
pressure were also used in a small number of experiments. For
five of the 15 studies, more than one sub-category of eye measures
were collected. Overall, blink rates had a very high level of
being able to detect changes in cognitive load indicating greater
sensitivity; whereas pupil diameter was less successful, especially
on simulation tasks compared with other measures. Combined
across the different tasks, the eye measures were capable of
finding at least one significant difference in cognitive load in 87%
of studies, with exact matches of 78%.

Skin Measures
Skin measures were reported in 10 experiments (see Nourbakhsh
et al., 2017; Ghaderyan et al., 2018; Lyu et al., 2018; He et al., 2019;
Hossain et al., 2019; Larmuseau et al., 2019; Gupta et al., 2020;
Vanneste et al., 2020). Six of the 10 studies used multiple skin
measures. The two most frequent forms of GSR-accumulation
measure and GSR-other were able to detect differences in
cognitive load at the 100% level. In contrast, GSR-average
found cognitive load differences in only 50% of the time. In
terms of exact matches, GSR-other had a success rate of 83%
suggesting a high level of sensitivity, compared with 50% (GSR-
average) and 33% (GSR-accumulation). The two cases where skin
temperature was recorded found no cognitive load differences.
Overall, the more infrequent measures of signal data (e.g., wave
rises) produced the best results.

Brain Measures
Brain measures were reported in 13 experiments (see Mazur et al.,
2016; Tan et al., 2016; Wang et al., 2016; Hosseini et al., 2017;
Reinerman-Jones et al., 2017; Wu et al., 2017; Katahira et al., 2018;
He et al., 2019; Abd Rahman et al., 2020; Gupta et al., 2020; Maki-
Marttunen et al., 2020; Vanneste et al., 2020). Eleven of the 13
studies recorded multiple types of signals (e.g., alpha, beta, and
gamma) that were often taken from different parts of the brain. As
can be seen from Table 4, the overall brain signal measures were
only able to detect differences in cognitive load at the 68% level
and could only match performance differences at 32%. Measures
of alpha and gamma waves were the most promising. Beta waves
were able to detect differences at the 71% level but had zero
matches with test scores. Delta and theta waves generally had low
levels of sensitivity.

Subjective Measures
Subjective measures were recorded in 18 studies (see Rendon-
Velez et al., 2016; Nourbakhsh et al., 2017; Reinerman-Jones
et al., 2017; Yan et al., 2017; Wu et al., 2017; Ghaderyan et al.,
2018; Jiménez et al., 2018; He et al., 2019; Jaiswal et al., 2019;
Larmuseau et al., 2019; Vera et al., 2019; Abd Rahman et al., 2020;
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Digiesi et al., 2020; Gupta et al., 2020; van Acker et al., 2020;
Zakeri et al., 2020). As can be seen from Table 5, subjective
measures were very successful in identifying differences in
cognitive load. In terms of identifying any changes in cognitive
load, accuracy scores ranged from 86–100%. In terms of exact
matches with test scores, single-item measures scored at 100%
accuracy. The NASA-demand score was high at 86%, followed by
the overall NASA at 70% and the NASA-effort at 57%.

Comparison of the Different Categories
By combining the data for each category of measure (see Table 6)
sample sizes became sufficiently large to make meaningful
statistical comparisons. Because the data did not fit normal
distributions non-parametric tests were completed. For the three
data sets summarized in columns 4–6, Kruskal–Wallis tests were
completed for the five categories.

At Least 1-Significant Difference in Cognitive Load
Detected
Comparing the five measures for this data there was an overall
significant difference between the five categories (Kruskal–Wallis
χ2 = 9.67, df = 4, p = 0.046). Post hoc tests using the Benjamini
and Hochberg (1995) correction method indicated no significant
pairwise differences. However, it is worth noting that subjective
measures had an accuracy rate of 94% compared with Heart and
Brain measures that were below 70%.

Matches With Task Performance
For this data there was a significant between-group difference
(Kruskal–Wallis χ2 = 18.52, df = 4, p < 0.001). Post hoc tests
indicated that both the subjective measures (M = 0.78, SD = 0.42,
p = 0.002) and the eye measures (M = 0.78, SD = 0.42, p = 0.004)
had significantly more matches with task performance than the
brain measures (M = 0.32, SD = 0.47).

Matching Deviations
For this data there was a significant between-group difference
(Kruskal–Wallis χ2 = 19.44, df = 4, p < 0.001). Post hoc tests
indicated that both the subjective measures (M = 0.19, SD = 0.82,
p < 0.001) and eye measures (M = 0.30, SD = 0.76, p = 0.006) had
significantly less deviations from the task performances than the
brain measures (M = 1.15, SD = 1.05).

In summary, the analyses provided in this section suggest that
overall the subjective and eye measures were the most sensitive
indicators of cognitive load differences across tasks. Clearly the
least effective were brain measures. Measures associated with
the skin and heart were located between the other indicators.
Nevertheless, all subcategories of measures were able to detect
some differences in cognitive loads, and also some matches with
test scores. Only the heart measures on word problems failed to
detect any significant differences or matches.

Task Comparisons
The data in Table 6 were examined in terms of task differences.
The memory and arithmetic tasks recorded the best results.
For both tasks, the combined measures were able to detect
at least one cognitive load difference at the 90% level. For

matches with performance, memory tasks achieved a 90% match,
whereas arithmetic tasks had lower match rates at the 65% level.
Simulations, object/shape manipulations and word tasks were
overall at a lower level of accuracy, although overall matches
were at least 50%.

Individual Measure Comparisons
The previous analysis in this section was on aggregated data.
A closer look at individual measures was achieved by examining
those specific measures (no other/combined categories were
included) that had been used at least six times over the sample.
By averaging the % scores for the data in columns 4 (at least
one significant cognitive load difference) and 5 (matches with
test performance) of Tables 1–5 the following ranking was found:
single-item subjective measures (100%), NASA-demand (93%),
Blink-rates (91.5%), NASA-overall (80%), HR (78.5%), GSR
(73.5%), NASA-effort (71.5%), Pupil-diameter (68.5%), Alpha
waves (67%), and HRV (50%). Each of these measures, across all
five general categories scored at least at the 50% accuracy level.
There were four scores above 90% indicating very high levels of
accuracy at detecting cognitive load differences, but three of those
four scores were subjective rather than physiological measures.

Battery of Tests
As reported above nearly all studies (N = 30) included a battery
of tests from within and/or between the categories (including
subjective measures) to measure cognitive load. Examination of
this data revealed that in all but three cases, at least one of the
tests had an exact match with the expected number of cognitive
load differences.

DISCUSSION

There is considerable evidence that supports the argument that
changes in cognitive load can be detected by physiological
measures that utilizes data signals collected from the heart and
lungs, eyes, skin, and brain. Between and within these four
categories, signals react differently according to the measure. For
example, as cognitive load increases, pupil dilation is expected to
increase, but HRV to decrease. From the perspective of a validity
study, results should be consistent with the predictions made for
each individual measure. The more studies find evidence for this
prediction, the higher the construct validity of the measure. The
data analyzed here indicate that physiological measures taken
from all four parts of the body are capable of detecting changes
in cognitive load generated by differences in task complexity.
Of all the measures cataloged in Tables 1–4 only BP and skin
temperature failed to find a significant difference. However, these
measures were only reported in three studies and therefore these
non-effects cannot be generalized. Overall measures associated
with the heart and lungs, eyes, skin, and brain measures were
all capable of finding significant cognitive load differences across
tasks, providing a level of construct validity (see Borsboom et al.,
2004). Therefore, in answer to RQ1 (Do the physiological measures
have construct validity in detecting changes in intrinsic cognitive
load across tasks?), we conclude that nearly all the measures
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identified in this sample have some level of construct validity
because of their capacity to detect changes frequently.

The information reported in Tables 1–4, 6 indicated that
some physiological measures were more sensitive than others to
finding cognitive load differences across tasks. The most sensitive
physiological measures were blink rates, HR, pupil dilations, and
alpha waves. Therefore, in answer to RQ2 (How sensitive are the
physiological measures in detecting changes in intrinsic cognitive
load?), we conclude that the different measures were sensitive
enough to identify differences in cognitive load but the levels of
sensitivity varied significantly between measures.

By examining the different types of tasks used in these studies
we found that memory and mental arithmetic tasks led to
higher degrees of sensitivity for the cognitive load measures
than simulations and object/shape manipulations. The former
are short tasks relying completely on working memory capacity;
whereas the latter are more authentic and specialized tasks that
may depend more on long-term memory (e.g., knowledge of
medical functions and procedures). Although no studies were
included that manipulated stress and anxiety, these affective
influences may have been generated by more authentic high-
stakes tasks (e.g., surgery simulations) leading to confounding
factors. Nevertheless, our evidence found that eye measures
were more sensitive than other physiological tests for the more
specialized tasks, perhaps due to the importance of information
received visually. Clearly the type of task does impact on the
different levels of sensitivity across the physiological measures
and therefore overall validity (RQ3 – Does the type of task impact
on overall validity?).

Although not the main aim of our study the sample provided
data on subjective measures of cognitive load, which also
showed validity. We found that compared with most of the
physiological measures included in our sample, the subjective
measures had a higher level of sensitivity. As reported above,
single-item measures of cognitive load such as asking to rate
the amount of effort, difficulty or demand experienced, were
found to have the highest sensitivity. Only blink-rate data was
at the same level. The favorable finding for subjective measures
is interesting as in more recent time, CLT researchers have
started to use more physiological tests for measuring cognitive
load (Ayres, 2020). Many commentators have expressed concern
over the high use of subjective measures suggesting more
objective methods are required (see Schnotz and Kürschner,
2007; Kirschner et al., 2011).

Our data suggests that it may be premature to abandon
subjective methods, but the question arises should we be more
circumspect in using physiological measures? They are objective,
but in our sample evidence emerged that many are not as sensitive
as subjective measures. In only one study in the sample did a
physiological measure (alpha signals) identify more variations
in cognitive load than the subjective measure (overall NASA-
TLX). It is also notable that nearly 30 years ago Paas and van
Merriënboer (1994; see also Paas et al., 1994) found a self-
rating measure of mental effort to be superior to HR data, which
led to wide-scale adoption of subjective measures of effort and
difficulty (see van Gog and Paas, 2008; Ayres, 2018). However,
there are cases in the literature where subjective measures have

also been found to lack sensitivity. For example, Lee et al.
(2020) found pupil dilation can be more sensitive than self-
rating measures. This was the case when the task included the
management of emotions, and the confounding factors were
well-controlled. Hence, the picture is not definitive and more
examination of the influences on physiological measures is
required, as reported next.

Clearly some of the physiological measures in this sample
lacked sensitivity especially with specific types of tasks. However,
this can be because these physiological measures did not
optimally match with the type of task. The choice of the measure
types is important for the question of sensitivity: some measures
are more sensitive than others for specific tasks, even within the
same category of physiological measures. For instance, in driving
tasks, horizontal gaze dispersion showed a larger effect size
than other eye-tracking measures (Wang et al., 2014). Another
explanation described in the introduction is that there are a
number of other conditions that can have a negative impact
on physiological measures. For example, HR and eye measures
can be influenced by participant motion (e.g., driving a car,
see Lohani et al., 2019) EDA may be more sensitive to sudden
rather than gradual changes, and some areas of the brain (e.g.,
the fronto-parietal attention network) are more conducive to
measuring cognitive load than other areas. It is possible that some
studies may have been influenced by such factors, and therefore
some caution should be shown in interpreting the results
unconditionally. In a review into using physiological measures
of more wide-ranging causes of mental workload, Charles and
Nixon (2019) concluded that there was no single preferred
measure that could be used across all tasks and domains, but
more evidence was emerging in how best to utilize each type. Our
study to some extent supports this finding; however, we suggest
further that until more research is completed, the best outcomes
may be found in a well-chosen combination of tests.

In conclusion, we believe there is a solid case for including
both physiological and subjective methods to measure cognitive
load. Like other studies (see Johannessen et al., 2020) using a
battery of different tests was found to be effective as in most cases
at least one of the tests identified all the changes in cognitive
load. Consequently, we suggest two points to take into account in
using physiological measure to measure cognitive load: (1) select
a measure based on the understanding of the given task; and
(2) triangulate by combining different physiological measures as
well as subjective measures. As our study showed, physiological
measures can be valid in some setups (shown by results for
RQ1), but also the sensitivity can vary across different measures
depending on the task types (RQ2 and RQ3). Thus, careful
selection of the right measures for the given task is essential.
A thorough task analysis (e.g., cognitive task analysis) could be
helpful in achieving this aim.

Triangulation is an effective research method to gain a
comprehensive perspective and validation of data (Patton, 1999).
Studies have shown that combining multiple physiological
measures may present a higher sensitivity in measuring cognitive
load than using a single measure (Van Orden et al., 2000;
Aghajani et al., 2017). Combining physiological measures with
subjective measures may show either positive convergence
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(Aldekhyl et al., 2018) or diverging sensitivity as aforementioned.
However, such inconsistency does not necessarily represent an
incredibility of data, but rather provides a deeper insight into the
results (Patton, 1999).

We also found in this study that the nomenclature used by
some authors was not always consistent with other authors. In
a small number of studies, insufficient detail was provided in
the method to make a definitive judgment on what exactly was
used for the basis of the data calculations. Most notably this
inconsistency was sometimes found in the GSR measures. For
example, an ‘average’ GSR value would be reported without a
clear indication of what part of the signal the average referred
to. Although this did not impact on our overall findings, future
studies should ensure that all necessary information is reported,
and conform to a standardization of labels such as previously
suggested by Fowles et al. (1981).

The sole focus of this study was on tasks that generated
intrinsic cognitive load only. No attempt was made to include
learning studies that would generate other types of cognitive load.
Detecting changes in intrinsic load is important to CLT but so
is extraneous cognitive load as CLT is predominantly interested
in the impact of all types of cognitive load on learning. Hence,
further research is required of this nature to explore validity
during learning experiments that also featured between-subject
experiments. As well as task complexity changes in cognitive
load caused by other factors such as distractors (e.g., noise), and
affective factors (e.g., emotion) should also be researched.

In addition, the studies in this sample were predominantly
completed by young adults whose mean ages ranged from 20 to
30. However, two studies (see Tan et al., 2016; Abd Rahman et al.,
2020) focused on elderly adults. Although these studies did not
report any data that was inconsistent with the other studies in
the sample, it is known that aging adults experience cognitive
decline and are more susceptible to cognitive load variations (see
van Gerven et al., 2000; Klencklen et al., 2017). Similarly, the
sample did not include any young children. Subsequently, we
cannot generalize our results to other age groups and therefore
more research is needed in both older and younger populations
to explore potential differences.

Our main focus was to examine the validity of using
physiological measures of cognitive load. We conducted the study
from a measurement and theoretical perspective especially that
of cognitive load theory. It is worth mentioning, however, that
there are real-world applications of measuring total cognitive
load; often referred to as mental workload. For example, how
to manage cognitive load during medical training and real-
life practice (see Fraser et al., 2015; Johannessen et al., 2020;

Szulewski et al., 2020) is critical. Similarly, in driving a car it
can be advantageous from a safety perspective to be able to
monitor the driver’s cognitive states and implement interventions
accordingly (see Lohani et al., 2019; Meteier et al., 2021). When
driving, real-time continuous data is required which can be
collected through physiological measures, but using subjective
measures is impossible. From this important perspective,
physiological measures have a clear edge.

By analyzing a snapshot of studies taken from a recent 5-
year period we have clearly not included some of the key studies
from the period before this time. Although we cite a number of
significant studies in our introduction, it was never our intention
to go beyond our specified period. We wanted to investigate
exactly what a contemporary collection of studies would reveal
about measuring cognitive load. Our sample, like previous studies
confirmed that different types of physiological measures are
capable of measuring cognitive load.

There were a number of novel aspects to the study. Firstly,
we included only studies that investigated the capacity of
physiological measures to identify changes in intrinsic cognitive
load by manipulating task complexity. Most studies in measuring
cognitive load using physiological methods have not made this
distinction. Secondly, by taking a broad sample we were able to
compare a wide variety of physiological measures from four main
categories, and to compare them with each other from both a
construct validity and sensitivity perspective. An added bonus
was that we were also able to benchmark them against a number
of subjective rating scales. Thirdly, by examining the influence of
task types, and the highlighting of technological precautions and
other influences outlined in the literature review, we were able to
identify some major factors that impact cognitive load measures.

In conclusion, we found that nearly all the physiological
measures identified in this sample had some level of validity.
However, there were wide variations in sensitivity to detect
changes in intrinsic cognitive load, which was impacted by
task specificity. In contrast, subjective measures generally had
high levels of validity. We recommend that a battery of tests
(physiological and/or subjective) are required to obtain the best
indicators of changes in intrinsic cognitive load.
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