
fpsyg-12-768962 November 24, 2021 Time: 19:57 # 1

ORIGINAL RESEARCH
published: 30 November 2021

doi: 10.3389/fpsyg.2021.768962

Edited by:
Jin Su Jeong,

University of Extremadura, Spain

Reviewed by:
Jalil Fathi,

University of Kurdistan, Iran
Wenting Zou,

Cornell University, United States
Tova Michalsky,

Bar-Ilan University, Israel

*Correspondence:
Yizhou Qian

yqian@jiangnan.edu.cn

Specialty section:
This article was submitted to

Educational Psychology,
a section of the journal
Frontiers in Psychology

Received: 01 September 2021
Accepted: 11 November 2021
Published: 30 November 2021

Citation:
Zhou Z, Wang S and Qian Y

(2021) Learning From Errors:
Exploring the Effectiveness

of Enhanced Error Messages
in Learning to Program.

Front. Psychol. 12:768962.
doi: 10.3389/fpsyg.2021.768962

Learning From Errors: Exploring the
Effectiveness of Enhanced Error
Messages in Learning to Program
Zihe Zhou1, Shijuan Wang1 and Yizhou Qian2*

1 Faculty of Artificial Intelligence in Education, Central China Normal University, Wuhan, China, 2 Department of Educational
Technology, Jiangnan University, Wuxi, China

Error messages provided by the programming environments are often cryptic and
confusing to learners. This study explored the effectiveness of enhanced programming
error messages (EPEMs) in a Python-based introductory programming course.
Participants were two groups of middle school students. The control group only received
raw programming error messages (RPEMs) and had 35 students. The treatment
group received EPEMs and had 33 students. During the class, students used an
automated assessment tool called Mulberry to practice their programming skill. Mulberry
automatically collected all the solutions students submitted when solving programming
problems. Data analysis was based on 6339 student solutions collected by Mulberry.
Our results showed that EPEMs did not help to reduce student errors or improve
students’ performance in debugging. The ineffectiveness of EPEMs may result from
reasons such as the inaccuracy of the interpreter’s error messages or students not
reading the EPEMs. However, the viewpoint of productive failure may provide a better
explanation of the ineffectiveness of EPEMs. The failures in coding and difficulties in
debugging can be resources for learning. We recommend that researchers reconsider
the role of errors in code and investigate whether and how failures and debugging
contribute to the learning of programming.

Keywords: introductory programming, learning from errors, enhanced programming error messages, automated
assessment tools, productive failures

INTRODUCTION

With the development of computing technologies, many countries have included computer science
(CS) courses into K-12 curriculum (Webb et al., 2017). Programming is an essential part of CS
education, but novices usually face a variety of difficulties when learning to program, one of which
is debugging code (Qian and Lehman, 2017). When students make mistakes in their code, they
receive error messages provided by the programming environments. Although these error messages
contain detailed information about the errors in code, they are notoriously cryptic and confusing to
novice programmers (Becker et al., 2019). Thus, students may not be able to utilize the information
in the error messages to rectify their erroneous programs. Moreover, error messages provided by
compilers and interpreters are not always accurate (McCall and Kölling, 2019). For instance, in Java
programming, the same mistake (e.g., missing a semicolon) may result in different error messages
when the syntactical contexts vary.

Frontiers in Psychology | www.frontiersin.org 1 November 2021 | Volume 12 | Article 768962

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://doi.org/10.3389/fpsyg.2021.768962
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fpsyg.2021.768962
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyg.2021.768962&domain=pdf&date_stamp=2021-11-30
https://www.frontiersin.org/articles/10.3389/fpsyg.2021.768962/full
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles

fpsyg-12-768962 November 24, 2021 Time: 19:57 # 2

Zhou et al. Effectiveness of Enhanced Error Messages

Many efforts have been made to help students better
understand programming error messages and develop their
debugging skills. One widely used approach is to develop
automated assessment tools providing elaborated feedback when
students make errors in their code (Pettit and Prather, 2017).
Automated assessment tools (AATs) are popular in programming
courses as they can automatically evaluate the correctness of
students’ programs (Douce et al., 2005; Ihantola et al., 2010;
Prather et al., 2018). Many researchers have designed and
developed feedback components for AATs to help students
understand errors in their code by providing enhanced error
messages or other elaborated feedback (Denny et al., 2014; Becker
et al., 2016; Keuning et al., 2018). While early research on
error message enhancement started in 1960s, its effectiveness is
still inconclusive (Pettit et al., 2017; Becker et al., 2019). This
study implemented a data-driven approach to develop enhanced
programming error messages for learners and examined the
effectiveness of the enhancement on students’ performance in
introductory programming.

Related Work
Previous studies have used different terms to describe students’
errors in code, such as mistakes (Brown and Altadmri, 2017),
syntax errors (Denny et al., 2012), compiler errors (Pettit et al.,
2017), novice programmer errors (McCall and Kölling, 2019),
and others (see Becker et al., 2019). However, these terms
might be appropriate in certain contexts, but not in all research
settings. For instance, compiler errors only exist in compiled
programming languages (e.g., Java). It is not proper to use
the term “compiler errors” to describe errors in an interpreted
programming language such as Python (Kohn, 2019). In addition
to syntax errors, which constitute one category of errors in
programming, students also make semantic and logic errors
(McCall and Kölling, 2014; Qian and Lehman, 2020).

After comprehensively reviewing relevant studies and
analyzing the architecture of compilers and interpreters, Becker
et al. (2019) suggested using the term “programming errors”
to describe students’ errors in code. According to Becker et al.
(2019), programming errors fall into two major categories:
language specification errors and program specification errors.
Language specification errors occur when the program violates
the requirements of the programming language. Therefore, they
can be detected by the compiler or the interpreter (e.g., compiler
errors in Java and syntax errors in Python). When a well-formed
program “does not behave according to its own specification of
correctness” (Becker et al., 2019, p. 182), it contains program
specification errors (e.g., logic errors). For example, consider a
program designed to judge whether a number is prime or not that
identifies (incorrectly) the number 4 as a prime number. This
program has program specification errors, although it may not
receive any error messages from the compiler or the interpreter.

Programming error messages are the messages provided
by the programming environment to the user presenting the
errors in the program. Most of the current research on this
topic focuses on error messages to language specification errors
(LSEs), because such errors messages are notoriously cryptic and
confusing to novices (Becker et al., 2019). Prior research has used

various negative words to describe error messages of compilers
and interpreters since 1960s, including inadequate (Moulton
and Muller, 1967; Brown, 1983), frustrating (Flowers et al.,
2004; Becker et al., 2018), and undecipherable (Traver, 2010).
As the standard error messages of programming environments
are designed for experts instead of novices, it is not surprising
that students find them confusing and difficult to understand
(Nienaltowski et al., 2008; Watson et al., 2012). Moreover,
programming error messages are sometimes imprecise: (1) the
same error in code may produce different error messages in
different context; and (2) the same error message may result from
different errors in code (McCall and Kölling, 2019). Thus, the
ambiguous and imprecise error messages become a significant
barrier to students’ success in introductory programming (Stefik
and Siebert, 2013; Becker, 2016).

To help students better understand the cryptic programming
error message, researchers started to explore error message
enhancement, and early work dates back to 1960s. In 1965,
researchers at Purdue University developed a translator for
FORTRAN called PUFFT (Purdue University Fast FORTRAN
Translator), which provided elaborate diagnostic messages
(Rosen et al., 1965). In 1995, Schorsch (1995) introduced
the Code Analyzer for Pascal (CAP) tool, which provided
user-friendly error messages. Instead of describing syntax
errors from the compiler perspective, the error messages of
CAP explained syntax errors in a way that was friendly to
student programmers and offered guidance on debugging
code (Schorsch, 1995). Gauntlet was another tool designed to
support teaching introductory programming, which explained
the top fifty Java programming errors using plain language
with some humor (Flowers et al., 2004). While studies on
CAP and Gauntlet reported positive effects of the error
message enhancement, their conclusions were based on
anecdotal evidence.

Most empirical studies on programming error message
enhancement were conducted after 2010, and conflicting results
have been reported (Becker et al., 2019). Denny et al. (2014)
examined the effects of enhanced feedback in the tool CodeWrite
and did not find any significant effects. Becker (2016) designed
the tool Decaf with 30 enhanced Java compiler error messages and
reported significant effects of reducing student errors. Pettit et al.
(2017) used historical data in the AAT Athene to design elaborate
feedback for the most frequent compilation errors and examined
its effects. In the study, they first analyzed Athene’s historical data
of four semesters and identified the top compilation errors in
the introductory C + + programming course. Next, they added
enhanced compiler error messages for Athene and analyzed the
student data of another four semesters. However, they did not
find significant effects of the enhancements. Qian and Lehman
(2019) investigated the effects of enhanced feedback messages
in an introductory Java programming course for high-ability
high school students. They also identified the common errors
and elaborated on the original error messages. Different from
previous studies focusing on reducing the number of errors,
they examined students’ rates of improving erroneous programs.
Given the enhanced error messages, if students can better
improve their code than those receiving original error messages,

Frontiers in Psychology | www.frontiersin.org 2 November 2021 | Volume 12 | Article 768962

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles

fpsyg-12-768962 November 24, 2021 Time: 19:57 # 3

Zhou et al. Effectiveness of Enhanced Error Messages

it indicates the enhanced error messages work. Significant effects
were found in their study (Qian and Lehman, 2019).

Purpose of the Study
Existing research mainly focuses on compiled programming
languages such as Java and C + +. Few studies have examined
error message enhancement in interpreted programming
languages such as Python. Moreover, most studies investigate
college students using AATs with enhanced programming error
messages; few have studied younger students such as middle
or high school students. Finally, although early work on error
message enhancement dates back to 1960s, its effectiveness is
still inconclusive (Pettit et al., 2017; Becker et al., 2019). The
goal of this study was to explore the effectiveness of enhanced
programming error messages (EPEMs) in a Python-based
introductory programming course. Different from previous
studies, our study investigated the effects of EPEMs on
middle school students learning introductory programming.
Furthermore, previous research only examined the effects of
EPEMs from the angle of error frequencies, but our study
analyzed more comprehensive data including students’ error
frequencies, debugging performance, and overall learning
performance. Participants of this study were two groups of
middle school students. Group A was the control group only
receiving raw programming error messages (RPEMs) given by
the Python interpreter, and group B as the treatment group
received EPEMs. We used student data in an AAT called
Mulberry to explore the effectiveness of EPEMs. The following
three research questions guided this study:

RQ1 Do students receiving EPEMs make fewer errors than those
receiving RPEMs?

RQ2 Can students receiving EPEMs better debug their code than
those receiving RPEMs?

RQ3 Do students receiving EPEMs show better performance in
introductory Python programming than those receiving
RPEMs?

MATERIALS AND METHODS

Participants and Context
The participants of this study were two groups of 7th graders
from a public middle school in China. This school had about
450 students, and most students were from middle class families.
In China, middle schools have three grades: 7, 8, and 9th
grade. This school had four classes in each grade. We randomly
chose two classes in 7th grade, designated group A and group
B, as our research groups. Group A was the control group
that received RPEMs while group B was the treatment group
that received EPEMs.

Originally, both groups had 36 students. However, one student
of group A and three students of group B were absent for several
class sessions and did not take the final programming exam.
Hence, we excluded them from our data analysis. Thus, we had
35 students in group A and 33 students in group B. According
to the data given by the assessment department of the school,

students of the two groups were similar in age and performance in
core academic subjects including Chinese, Math, and English (see
Table 1). In other words, students of the two groups had similar
cognitive abilities.

Students of the two groups took the same introductory
programming course called Introduction to Python programming
in Fall 2020. They attended a 90-minute course block every
week for 14 weeks. Python programming topics covered in the
course included Input and Output (I/O), Variables, Operators,
Conditionals, and Loops. The Python version was 3.7, and the
coding environment was Mu,1 which is a code editor designed
for Python learners.

The automated assessment tool (AAT) used in this course was
Mulberry. It had 64 programming problems related to different
topics covered in the course. Students had to write programs
from scratch to solve problems in Mulberry. When they made
errors in code, Mulberry would provide error messages for them.
According to the error messages, students could revise and
improve their erroneous code and resubmit their solutions until
their solutions were correct. For more details about Mulberry,
please see Qian and Lehman (2021).

Procedures
According to previous studies, the first step for designing EPEMs
is to identify common language specification errors (LSEs).
According to Qian and Lehman (2020), common LSEs as errors
made by at least a third of the students. We used their standard
to identify common errors. The data used for the identification
of common LSEs was from our pilot study in 2019. In the pilot
study, a group of 35 students in the 7th grade of this middle
school took the introductory Python programming course. Based
on their data and the identification standards mentioned above,
eight common LSEs were identified (Appendix A presents details
of the eight LSEs).

After analyzing students’ erroneous code related to the eight
common errors, EPEMs were designed. For instance, using
Chinese punctuation marks in Python code was one of the
common LSEs and led to the error message “invalid character
in identifier.” The raw programming error message (RPEM) was
not informative. For the EPEM, we added explanation about the
error in the code and included possible directions of debugging.
Figure 1 presents the screen shots of the RPEM and EPEM for
this error. Appendix A presents details about the common LSEs
and the translated EPEMs2.

When students of the two groups used Mulberry to solve
problems, they received different feedback when encountering

1codewith.mu/
2Students saw Chinese EPEMs when using Mulberry system.

TABLE 1 | Academic scores of core subjects and age.

N Chinese
Mean (SD)

Math
Mean (SD)

English
Mean (SD)

Age
Mean (SD)

Group A 35 78.40 (4.73) 87.80 (7.86) 89.99 (3.55) 12.49 (0.38)

Group B 33 80.64 (5.12) 87.30 (6.54) 91.62 (3.70) 12.58 (0.34)

Frontiers in Psychology | www.frontiersin.org 3 November 2021 | Volume 12 | Article 768962

https://codewith.mu/
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles

fpsyg-12-768962 November 24, 2021 Time: 19:57 # 4

Zhou et al. Effectiveness of Enhanced Error Messages

FIGURE 1 | Screen Shots of the RPEM and EPEM for “invalid character in identifier”.

a common LSE. For group A, they received RPEMs. For group
B, they received EPEMs. Mulberry automatically collected all
the student solutions. The erroneous ones were data source for
analyzing students’ error frequencies and common errors. The
improvements in students’ solutions to a certain problem were
data source for analyzing students’ performance of debugging
code. The experiment lasted 14 weeks in Fall 2020. At the
end of the semester, we exported the data from Mulberry
for data analysis.

Data Analysis
To answer RQ1, the number of students’ LSEs was analyzed and
compared to see whether group B (EPEM group) made fewer
LSEs than group A (RPEM group). As EPEMs were only provided
for the eight common LSEs, we also analyzed the number of
occurrences of the eight common LSEs.

To answer RQ2, we analyzed and compared students’
performance of debugging code. Previous studies have developed
measures describing students’ debugging performance, including
Error Quotient (Jadud, 2006) and Improvement Rate (Qian and
Lehman, 2020). Error Quotient (EQ) is a number between 0 and
1 describing students’ ability to fix LSEs. Students with lower EQs
are better able to fix LSEs. See Jadud (2006) for details about
the calculation of EQ. Improvement Rate (IR) can be used to
describe both students and LSEs. For a specific LSE, if it occurs
in solution N and gets fixed in solution N + 1, it means that
the erroneous solution gets improved, and the proportion of
the improved solutions is the IR of the LSE. For a student, the
proportion of the improved solutions is his or her IR. See Qian

and Lehman (2020) for details about the calculation of IR. By
using the two indicators, we first compared the two groups’ IRs
of the eight LSEs with EPEMs. Next, we compared students’ EQs
and IRs to see whether group B showed a better performance.

To answer RQ3, we compared students’ learning performance
in the introductory programming course. At the end of the
semester, a final programming exam was given to the students. In
the final exam, students had to write short programs from scratch
to solve problems. The exam scores were used to compare their
learning performance in the course.

RESULTS

Enhanced Programming Error Messages
Was Not Effective in Reducing Students’
Errors
Students of group A submitted 3391 solutions in total, of which
788 had LSEs. Students of group B submitted 2948 solutions in
total, of which 799 had LSEs. Table 2 presents details about the
number of solutions and errors of the two groups. The proportion

TABLE 2 | Comparison of two groups’ LSEs.

N Total
solutions

Number of
LSEs

Percentage
of LSEs

LSEs per
student

Group A 35 3391 788 23.2% 22.51

Group B 33 2948 799 27.1% 24.21

Frontiers in Psychology | www.frontiersin.org 4 November 2021 | Volume 12 | Article 768962

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles

fpsyg-12-768962 November 24, 2021 Time: 19:57 # 5

Zhou et al. Effectiveness of Enhanced Error Messages

of LSEs of group B (27.1%) was higher than it of group A (23.2%),
z = 3.54, p < 0.01. On average, students of group B made about
1.7 more LSEs than students of group A did. It is surprising
that students receiving EPEMs made LSEs more frequently than
those receiving RPEMs. In other words, EPEMs did not help to
reduce students’ LSEs.

According to the analysis of the occurrences of the common
LSEs, we found that most of the common LSEs were similar
between the two groups (see Table 3). For group A, LSE 7 and
8 were not identified as common according to our standards,
but for group B, LSE 7 was a common error. For both groups,
common LSEs accounted for about 90% of all LSEs.

Enhanced Programming Error Messages
Was Not Effective in Helping Students
Better Debug Code
Although our results did not indicate positive effects of enhanced
error messages on reducing students’ LSEs, it may help students
better debug erroneous programs, as enhanced error messages
were designed for this purpose. Unfortunately, we did not find
such positive effects in our data either.

Firstly, we analyzed and compared improvement rates (IRs)
of the eight LSEs with EPEMs. Figure 2 presents the IRs of each
LSE and the overall IR of all the LSEs. The overall IRs of the two
groups were very close, 45.5% for group A and 47.3% for group
B. In other words, EPEMs did not help students fix the relevant
errors and improve their code. For LSE2 and LSE7, group A even
showed higher IRs than group B, although the differences were
not statistically significant. For LSE8, group B seemed to perform
much better than group A on fixing the error, but LSE8 occurred
rarely for both groups and was not identified as a common error
for both groups. Further, the difference was not significant. Only
for LSE3, group B (58.8%) showed a significant higher IR than
group A (36.8%), z = 2.20, p < 0.05. This error mainly resulted
from incorrectly using int() function to convert input data which
were not integers (e.g., “3.14”). In general, EPEMs did not show
significant effects on helping students rectify relevant errors.

TABLE 3 | Comparison of two groups’ common LSEs.

Error Group A Group B

Students Frequency Students Frequency

LSE1 Invalid syntax 33/35 258 (32.7%) 31/33 267 (33.4%)

LSE2 NameError 29/35 103 (13.1%) 29/33 163 (20.4%)

LSE3 ValueError 28/35 101 (12.8%) 25/33 64 (8.0%)

LSE4 TypeError 23/35 114 (14.5%) 24/33 107 (13.4%)

LSE5 IndentationError 20/35 75 (9.5%) 16/33 46 (5.8%)

LSE6 EOFError 12/35 58 (7.4%) 17/33 35 (4.4%)

LSE7 invalid
character in
identifier

9/35 27 (3.4%) 16/33 41 (5.1%)

LSE8 EOL while
scanning string
literal

6/35 18 (2.3%) 7/33 11 (1.4%)

Second, we analyzed and compared students’ performance on
debugging code using the indicators IR and EQ. As EPEMs were
only provided for the eight common LSEs, we also calculated
and compared students’ IRs and EQs specifically for those eight
LSEs (see IR of EPEMs and EQ of EPEMs in Table 4). For all
the indicators, no significant differences were found. In other
words, students receiving EPEMS showed similar performance in
debugging with those receiving RPEMS.

Students Receiving Enhanced
Programming Error Messages Did Not
Show Better Learning Performance Than
Those Receiving Raw Programming
Error Messages
Enhanced programming error messages also did not show any
positive effects on students’ learning performance in introductory
programming. The final exam scores of the two groups were
very close (see Table 5). As group B did not show superiority in
any indicators in previous two sections, it is not surprising that
they showed similar learning performance as group A. In this
study, EPEMs appear to be ineffectual in helping students debug
erroneous code and improve their performance in introductory
Python programming.

DISCUSSION

Effectiveness of Enhanced Programming
Error Messages
According to our results in this study, programming error
message enhancement did not help to reduce student errors or
improve students’ performance in debugging. Students of group
B who received EPEMs even made more LSEs than students of
group A who received RPEMs. For other measures such as IR,
EQ, and overall learning performance, students of the two groups
were similar to each other. Our results are consistent with prior
studies on college students learning Java (Denny et al., 2014) and
C + + (Pettit et al., 2017). As programming error messages do
not always report the actual error in code (Kohn, 2019; McCall
and Kölling, 2019), it is possible that the EPEMs designed based
on the error messages provided by the Python interpreter did not
offer useful explanations for the actual error in student code. For
example, LSE1: invalid syntax in Python may result from many
different mistakes in code, such as failing to put strings within
quotation marks, incorrectly using operators, and so forth. As the
RPEM does not provide much information about the actual error
in code, the EPEM is not very informative either. Thus, it may be
ineffective to help students debug code.

In addition, because our participants were two groups of
Chinese middle school students, difficulties in typing code and
their stage of cognitive development may also influence the
effectiveness of EPEMs. Previous research has found that typing
code is a challenge for Chinese middle school students (Qian and
Lehman, 2021). On the one hand, middle school students are
young and may not have fluent keyboarding skills. On the other
hand, Chinese students may mistakenly use Chinese punctuation

Frontiers in Psychology | www.frontiersin.org 5 November 2021 | Volume 12 | Article 768962

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles

fpsyg-12-768962 November 24, 2021 Time: 19:57 # 6

Zhou et al. Effectiveness of Enhanced Error Messages

FIGURE 2 | Improvement Rates of LSEs with EPEMs.

TABLE 4 | Comparisons between two groups in IR and EQ.

Group A (N = 35) Group B (N = 33)

Mean SD Mean SD t p

IR 0.77 0.14 0.73 0.13 1.27 0.21

IR of EPEMs 0.59 0.22 0.54 0.19 0.97 0.33

EQ 0.16 0.14 0.19 0.11 −0.97 0.33

EQ of EPEMs 0.39 0.21 0.42 0.18 −0.66 0.5

TABLE 5 | Comparisons between two groups in learning performance.

N Mean SD Median Min Max

Group A 35 69.46 10.95 71 49 90

Group B 33 69.52 9.16 71 50 88

marks in code, which are invalid in Python programming. When
students struggle with typing code and also try to fix an erroneous
program, they may not pay enough attention to the EPEMs, as
several challenges occur simultaneously. Meanwhile, according to
Piaget’s stages of cognitive development, middle school students
are not cognitively mature as college students and usually are
still developing from concrete to formal operational thought
(Huitt and Hummel, 2003). They may have more difficulties
in understanding certain programming concepts than older
students do. Thus, some explanation provided by the EPEMs may
not be meaningful to middle school students.

While some previous studies reported positive effects of
EPEMs (Becker, 2016; Qian and Lehman, 2019), their analysis
only focused on specific dimensions of data and did not examine
the effects of EPEMs on students’ learning performance in
introductory programming. For instance, Becker (2016) found

that enhanced compiler error messages reduced the occurrences
of common Java errors and repetition of the errors. However,
his study did not indicate a positive relationship between EPEMs
and enhanced learning performance. Making fewer errors does
not necessarily result in better performance in learning. In
our study, group A made fewer errors than group B, but
their learning performance did not show any difference. Qian
and Lehman (2019) reported that EPEMs led to higher IRs
in introductory Java programming, but again they did not
investigate whether there existed a positive relationship between
EPEMs and learning performance. As the purpose of designing
EPEMs is to help students better learn programming, some
positive effects may not be important if EPEMs do not improve
students’ learning performance.

The Viewpoint of Productive Failure
In our study, EPEMs appeared to be ineffectual to help students
in introductory programming. Our findings also seem to be
consistent with previous research on EPEMs. However, rather
than demonstrating the ineffectiveness of EPEMs, we believe
that there could be another explanation: students learn from
their failures. In other words, the cryptic and confusing raw
errors messages (Becker et al., 2019) may promote learning in
certain way. Some difficulties during learning seem to hinder
short-term performance but may lead to better learning in
the longer term (Schmidt and Bjork, 1992). Thus, debugging
code provides opportunities for productive failure (Kapur,
2016) or the “failure precedes later success in learning” (Kafai
et al., 2019, p. 169). In our study, receiving RPEMs might
be perceived as a disadvantage to group A, but making
mistakes and fixing code with only RPEMs may help students
learn in a deeper way, especially in conceptual knowledge

Frontiers in Psychology | www.frontiersin.org 6 November 2021 | Volume 12 | Article 768962

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles

fpsyg-12-768962 November 24, 2021 Time: 19:57 # 7

Zhou et al. Effectiveness of Enhanced Error Messages

and transfer, according to the viewpoint of productive failure
(Kapur, 2008, 2016). For instance, when students made LSE5:
IndentationError in code receiving only the RPEM, they had
to understand the special meaning of indentation in Python
so that they could fix the error. For the students receiving the
EPEM (see Appendix A), they just needed to find the extra
spaces or missing colons to fix the error. In such situation,
understanding the true meaning of indentation in Python was
not necessary, and they might repeat the error next time.
Hence, although RPEMs are cryptic to novices and do not
contain much information for debugging code (Becker et al.,
2019), the process of understanding RPEMs and successfully
fixing the errors provides extra opportunities for students to
learn programming.

Therefore, it is not so surprising that prior studies and
our results both found ineffectiveness of EPEMs. For a single
error in code, EPEMs may have some positive effects in
a short term. However, for the whole semester, we should
not ignore the positive effects of handling errors without
EPEMs. Debugging itself is an integral part of learning to
program. Kafai et al. (2019) suggest “rethinking debugging
as productive failure for CS education” (p. 169). From this
perspective, we recommend that researchers of EPEMs should
reconsider the role of error messages and redesign research
and instruction.

Limitations and Future Research
Directions
Our study has several limitations. First, compared to previous
studies, our dataset was relatively small. We analyzed about 6,300
student solutions. For instance, Pettit et al. (2017) examined
36,050 student solutions over eight semesters. In addition,
our group size was also relatively small. In the study of
Becker (2016), he had about 100 students in each group. We
believe that larger dataset and sample size could improve the
generalizability of findings. Third, we did not administer a pre-
test for measuring students’ existing programming knowledge,
which could have certain effects on the results. Finally, as
programming error messages do not always report the actual
error in code, our design of the enhanced error messages may
not accurately explain the actual error. Hence, future research
is needed to find an approach to identify the actual error in
students’ erroneous code.

Our results also provide potential directions for future studies
on EPEMs. First, according to the viewpoint of productive failure,
future research should pay attention to students’ debugging
process and investigate whether and how failures can be
productive. In addition, as AATs collect comprehensive data of
students’ learning progress, it is vital to use such data to examine
students’ learning and identify important predictors of students’
success in introductory programming.

CONCLUSION

This study explored the effectiveness of EPEMs in a Python-
based introductory programming course using an AAT called

Mulberry. After analyzing the data of two groups of middle
school students, we found that EPEMs did not help to
reduce student errors or improve students’ performance in
debugging. The EPEM group even made more errors than
the RPEM group. For other measures such as IR, EQ, and
overall learning performance, students of the two groups
were similar to each other. Our results are consistent with
prior studies on EPEMs. The ineffectiveness of EPEMs may
result from reasons such as the inaccuracy of the interpreter’s
error messages or students not reading the EPEMs. However,
the viewpoint of productive failure may provide a better
explanation of the ineffectiveness of EPEMs. While the raw
error messages are cryptic and confusing to students, the
difficulties and failures can be resources for learning. Students
who struggle to understand typical error messages may
learn more in the long run. Hence, we recommend that
researchers reconsider the role of errors in code and investigate
whether and how failures and debugging contribute to the
learning of programming.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

ETHICS STATEMENT

Ethical review and approval was not required for the
study on human participants in accordance with the
local legislation and institutional requirements. Written
informed consent from the participants’ legal guardian/next
of kin was not required to participate in this study
in accordance with the national legislation and the
institutional requirements.

AUTHOR CONTRIBUTIONS

ZZ collected and analyzed the data and drafted the manuscript.
SW reviewed the literature and proposed the research design.
YQ designed the EPEMs and helped to draft the manuscript.
All authors contributed to the article and approved the
submitted version.

FUNDING

This work was supported by the Social Science Foundation of
Jiangsu Province under grant 19JYC008.

ACKNOWLEDGMENTS

The authors would like to thank the teachers who helped the
study and James Lehman from Purdue University for his helpful
feedback on this journal article.

Frontiers in Psychology | www.frontiersin.org 7 November 2021 | Volume 12 | Article 768962

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles

fpsyg-12-768962 November 24, 2021 Time: 19:57 # 8

Zhou et al. Effectiveness of Enhanced Error Messages

REFERENCES
Becker, B. A. (2016). “An effective approach to enhancing compiler error messages,”

in Proceedings of the 47th ACM Technical Symposium on Computing Science
Education, (New York, NY: ACM), 126–131. doi: 10.1145/2839509.2844584

Becker, B. A., Denny, P., Pettit, R., Bouchard, D., Bouvier, D. J., Harrington, B.,
et al. (2019). “Compiler error messages considered unhelpful: the landscape of
text-based programming error message research,” in Proceedings of the Annual
Conference on Innovation and Technology in Computer Science Education,
ITiCSE, (New York, NY: ACM), 177–210. doi: 10.1145/3344429.3372508

Becker, B. A., Glanville, G., Iwashima, R., McDonnell, C., Goslin, K., and
Mooney, C. (2016). Effective compiler error message enhancement for novice
programming students. Comput. Sci. Educ. 26, 148–175. doi: 10.1080/
08993408.2016.1225464

Becker, B. A., Murray, C., Tao, T., Song, C., McCartney, R., and Sanders, K. (2018).
“Fix the first, ignore the rest: dealing with multiple compiler error messages,”
in Proceedings of the 49th ACM Technical Symposium on Computer Science
Education, 2018-Janua, SIGCSE 2018, (New York, NY), 634–639. doi: 10.1145/
3159450.3159453

Brown, N. C. C., and Altadmri, A. (2017). Novice Java programming mistakes:
large-scale data vs. educator beliefs. ACM Transact. Comput. Educ. 17:21. doi:
10.1145/2994154

Brown, P. (1983). Error messages: the neglected area of the man/machine interface.
Commun. ACM 26, 246–249. doi: 10.1145/2163.358083

Denny, P., Luxton-Reilly, A., and Carpenter, D. (2014). “Enhancing syntax error
messages appears ineffectual,” in Proceedings of the 19th ACM Conference
on Innovation & Technology in Computer Science Education, New York, NY,
273–278. doi: 10.1145/2591708.2591748

Denny, P., Luxton-Reilly, A., and Tempero, E. (2012). “All syntax errors are not
equal,” in Proceedings of the 17th ACM Annual Conference on Innovation and
Technology in Computer Science Education – ITiCSE ’12, New York, NY, 75–80.
doi: 10.1145/2325296.2325318

Douce, C., Livingstone, D., and Orwell, J. (2005). Automatic test-based assessment
of programming. J. Educat. Resour. Comput. 5, 1–13. doi: 10.1145/1163405.
1163409

Flowers, T., Carver, C. A., and Jackson, J. (2004). “Empowering students and
building confidence in novice programmers through gauntlet,” in Proceedings
of the Frontiers in Education Conference, FIE, 1, New York, NY. doi: 10.1109/fie.
2004.1408551

Huitt, W., and Hummel, J. (2003). Piaget’s theory of cognitive development. Educ.
Psychol. Interact. 3, 1–5.

Ihantola, P., Ahoniemi, T., Karavirta, V., and Seppälä, O. (2010). “Review of recent
systems for automatic assessment of programming assignments,” in Proceedings
of the 10th Koli Calling International Conference on Computing Education
Research – Koli Calling ’10, New York, NY, doi: 10.1145/1930464.1930480

Jadud, M. C. (2006). “Methods and tools for exploring novice compilation
behaviour,” in Proceedings of the Second International Workshop on Computing
Education Research (New York, NY: ACM), 73–84. doi: 10.1145/1151588.
1151600

Kafai, Y. B., DeLiema, D., Fields, D. A., Lewandowski, G., and Lewis, C. (2019).
“Rethinking debugging as productive failure for CS education,” in Proceedings of
the 50th ACMTechnical Symposium on Computer Science Education, New York,
NY, 169–170. doi: 10.1145/3287324.3287333

Kapur, M. (2008). Productive failure. Cogn. Instruct. 26, 379–424. doi: 10.1080/
07370000802212669

Kapur, M. (2016). Examining productive failure, productive success, unproductive
failure, and unproductive success in learning. Educ. Psychol. 51, 289–299. doi:
10.1080/00461520.2016.1155457

Keuning, H., Jeuring, J., and Heeren, B. (2018). A systematic literature review
of automated feedback generation for programming exercises. ACM Transact.
Comput. Educ. 19, 1–43. doi: 10.1145/3231711

Kohn, T. (2019). “The error behind the message: finding the cause of error messages
in python,” in Proceedings of the 50th ACM Technical Symposium on Computer
Science Education, New York, NY, 524–530. doi: 10.1145/3287324.3287381

McCall, D., and Kölling, M. (2014). “Meaningful categorisation of novice
programmer errors,” in Proceedings of the 2014 Frontiers In Education
Conference, (Madrid: IEEE).

McCall, D., and Kölling, M. (2019). A new look at novice programmer errors. ACM
Trans. Comput. Educ 19:30. doi: 10.1145/3335814

Moulton, P. G., and Muller, M. E. (1967). DITRAN—a compiler emphasizing
diagnostics. Commun. ACM 10, 45–52. doi: 10.1145/363018.363060

Nienaltowski, M. H., Pedroni, M., and Meyer, B. (2008). “Compiler error messages:
what can help novices?” in Proceedings of the 39th ACM Technical Symposium
on Computer Science Education, New York, NY, 168–172. doi: 10.1145/1352135.
1352192

Pettit, R., and Prather, J. (2017). Automated assessment tools: too many cooks, not
enough collaboration. J. Comput. Sci. Coll. 32, 113–121.

Pettit, R., Homer, J., and Gee, R. (2017). “Do enhanced compiler error messages
help students? Results inconclusive,” in Proceedings of the Conference on
Integrating Technology into Computer Science Education, ITiCSE, New York,
NY, 465–470. doi: 10.1145/3017680.3017768

Prather, J., Pettit, R., McMurry, K., Peters, A., Homer, J., and Cohen, M.
(2018). “Metacognitive difficulties faced by novice programmers in automated
assessment tools,” in Proceedings of the 2018 ACM Conference on International
Computing Education Research, New York, NY, 41–50. doi: 10.1145/3230977.
3230981

Qian, Y., and Lehman, J. (2017). Students’ misconceptions and other difficulties in
introductory programming: a literature review. ACM Transact. Comput. Educ.
18:24. doi: 10.1145/3077618

Qian, Y., and Lehman, J. (2020). An investigation of high school students’ errors in
introductory programming: a data-driven approach. J. Educ. Comput. Res. 58,
919–945. doi: 10.1177/0735633119887508

Qian, Y., and Lehman, J. (2021). Using an automated assessment tool to explore
difficulties of middle school students in introductory programming. J. Res.
Technol. Educ. 21, 1–17. doi: 10.1080/15391523.2020.1865220

Qian, Y., and Lehman, J. D. (2019). Using targeted feedback to address common
student misconceptions in introductory programming: a data-driven approach.
SAGE Open 9:215824401988513. doi: 10.1177/2158244019885136

Rosen, S., Spurgeon, R. A., and Donnelly, J. K. (1965). PUFFT: The Purdue
University fast FORTRAN translator. Communications of the ACM. New York,
NY: ACM. doi: 10.1145/365660.365671

Schmidt, R. A., and Bjork, R. A. (1992). New conceptualizations of practice:
common principles in three paradigms suggest new concepts for training.
Psychol. Sci. 3, 207–217. doi: 10.1111/j.1467-9280.1992.tb00029.x

Schorsch, T. (1995). CAP: an automated self-assessment tool to check Pascal
programs for syntax, logic and style errors. ACM SIGCSE Bull. 27, 168–172.
doi: 10.1145/199691.199769

Stefik, A., and Siebert, S. (2013). An empirical investigation into programming
language syntax. ACM Transact. Comput. Educ. 13:40. doi: 10.1145/2534973

Traver, V. J. (2010). On compiler error messages: what they say and what they
mean. Adv. Hum. Comput. Interact. 2010:602570. doi: 10.1155/2010/602570

Watson, C., Li, F., and Godwin, J. (2012). BlueFix: using crowd-sourced feedback
to support programming students in error diagnosis and repair. Lect. Notes
Comput. Sci. 7558, 228–239. doi: 10.1007/978-3-642-33642-3_25

Webb, M., Davis, N., Bell, T., Katz, Y., Reynolds, N., Chambers, D. P., et al. (2017).
Computer science in K-12 school curricula of the 2lst century: why, what and
when? Educ. Inform. Technol. 22, 445–468. doi: 10.1007/s10639-016-9493-x

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Zhou, Wang and Qian. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Psychology | www.frontiersin.org 8 November 2021 | Volume 12 | Article 768962

https://doi.org/10.1145/2839509.2844584
https://doi.org/10.1145/3344429.3372508
https://doi.org/10.1080/08993408.2016.1225464
https://doi.org/10.1080/08993408.2016.1225464
https://doi.org/10.1145/3159450.3159453
https://doi.org/10.1145/3159450.3159453
https://doi.org/10.1145/2994154
https://doi.org/10.1145/2994154
https://doi.org/10.1145/2163.358083
https://doi.org/10.1145/2591708.2591748
https://doi.org/10.1145/2325296.2325318
https://doi.org/10.1145/1163405.1163409
https://doi.org/10.1145/1163405.1163409
https://doi.org/10.1109/fie.2004.1408551
https://doi.org/10.1109/fie.2004.1408551
https://doi.org/10.1145/1930464.1930480
https://doi.org/10.1145/1151588.1151600
https://doi.org/10.1145/1151588.1151600
https://doi.org/10.1145/3287324.3287333
https://doi.org/10.1080/07370000802212669
https://doi.org/10.1080/07370000802212669
https://doi.org/10.1080/00461520.2016.1155457
https://doi.org/10.1080/00461520.2016.1155457
https://doi.org/10.1145/3231711
https://doi.org/10.1145/3287324.3287381
https://doi.org/10.1145/3335814
https://doi.org/10.1145/363018.363060
https://doi.org/10.1145/1352135.1352192
https://doi.org/10.1145/1352135.1352192
https://doi.org/10.1145/3017680.3017768
https://doi.org/10.1145/3230977.3230981
https://doi.org/10.1145/3230977.3230981
https://doi.org/10.1145/3077618
https://doi.org/10.1177/0735633119887508
https://doi.org/10.1080/15391523.2020.1865220
https://doi.org/10.1177/2158244019885136
https://doi.org/10.1145/365660.365671
https://doi.org/10.1111/j.1467-9280.1992.tb00029.x
https://doi.org/10.1145/199691.199769
https://doi.org/10.1145/2534973
https://doi.org/10.1155/2010/602570
https://doi.org/10.1007/978-3-642-33642-3_25
https://doi.org/10.1007/s10639-016-9493-x
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles

fpsyg-12-768962 November 24, 2021 Time: 19:57 # 9

Zhou et al. Effectiveness of Enhanced Error Messages

APPENDIX

Appendix A | Common LSEs and the translated EPEMs.

Errors Translated enhanced programming error messages (EPEMs)

LSE1 Invalid syntax Your program has statements that do not follow the Python syntax. For example, failing to put strings within quotation marks,
incorrectly using operators, and so forth. Please carefully read your program again. Note: Python does not have any intelligence and
can only understand code that meets its rules.

LSE2 NameError Probably, you used wrong variable or function names in your code. Please check if you misspelled any variable or function names. It
is also possible that you used a variable in expressions before initialization.

LSE3 ValueError Your program had something wrong the value of variables. You probably used the int() function to convert a variable or the input data
into the int type. Please make sure that the value given to the int() function is able to be converted into the int type. For example,
you may have wrong code like int(′ ′3.14′ ′). Please read the problem description carefully, particularly the example test cases.

LSE4 TypeError This error is about the type of the variables and related operations. First, please check if you forgot to add parentheses after the
input (e.g., a = input). Second, the input() function reads data as strings (the str type), and you must do type conversion before any
arithmetic operations. You may have wrong operations like str ∗ str, int + str, and so on.

LSE5 IndentationError You did not correctly indent your code. You may have extra spaces at the beginning of a line. Please also check the conditionals or
loops to see whether you missed the colon or failed to use the same level of indentation in the code below the colon.

LSE6 EOFError Please read the problem description carefully and pay attention to the input data part. Your program has to read the correct number
of input data by using the input() function. It is possible that your program used the input() function too many times when the given
input data was only one number or a string. Please read the problem description carefully, particularly the example test cases.

LSE7 Invalid character in
identifier

You used Chinese punctuation marks in your code! Python only accepts English punctuation marks. Please read your code carefully
to see if you used any Chinese parentheses, quotation marks, commas, and so on. Do not forget to use English input mode when
typing code.

LSE8 EOL while scanning
string literal

You may have mismatched or missing quotation marks. Make sure you have them in pairs.

Frontiers in Psychology | www.frontiersin.org 9 November 2021 | Volume 12 | Article 768962

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles

	Learning From Errors: Exploring the Effectiveness of Enhanced Error Messages in Learning to Program
	Introduction
	Related Work
	Purpose of the Study

	Materials and Methods
	Participants and Context
	Procedures
	Data Analysis

	Results
	Enhanced Programming Error Messages Was Not Effective in Reducing Students' Errors
	Enhanced Programming Error Messages Was Not Effective in Helping Students Better Debug Code
	Students Receiving Enhanced Programming Error Messages Did Not Show Better Learning Performance Than Those Receiving Raw Programming Error Messages

	Discussion
	Effectiveness of Enhanced Programming Error Messages
	The Viewpoint of Productive Failure
	Limitations and Future Research Directions

	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	References
	Appendix

