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Due to the non-invasiveness and high precision of electroencephalography (EEG), the
combination of EEG and artificial intelligence (AI) is often used for emotion recognition.
However, the internal differences in EEG data have become an obstacle to classification
accuracy. To solve this problem, considering labeled data from similar nature but
different domains, domain adaptation usually provides an attractive option. Most of
the existing researches aggregate the EEG data from different subjects and sessions
as a source domain, which ignores the assumption that the source has a certain
marginal distribution. Moreover, existing methods often only align the representation
distributions extracted from a single structure, and may only contain partial information.
Therefore, we propose the multi-source and multi-representation adaptation (MSMRA)
for cross-domain EEG emotion recognition, which divides the EEG data from different
subjects and sessions into multiple domains and aligns the distribution of multiple
representations extracted from a hybrid structure. Two datasets, i.e., SEED and SEED
IV, are used to validate the proposed method in cross-session and cross-subject transfer
scenarios, experimental results demonstrate the superior performance of our model to
state-of-the-art models in most settings.

Keywords: EEG, emotion recognition, domain adaption, deep learning, affective computing, SEED

INTRODUCTION

Emotion is a physiological state of humans, which appears when people are stimulated by external
or their own factors. Emotion is the basis of human daily life and work and plays an important role
in human psychological development, interpersonal communication, rational decision-making,
and cognition. Correct recognition of emotions is of great significance in the fields of education,
medical treatment, psychology, cognitive science, and artificial intelligence. For example, in the
medical field, emotion recognition can help doctors diagnose and treat patients with expression
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disorders; in the education field, through emotion recognition,
teachers can quickly find and encourage students with poor
emotions to create a more positive learning environment.

Data sources used for emotion recognition can be roughly
divided into two categories: non-physiological signals and
physiological signals. Many scholars have carried out researches
on emotion recognition using non-physiological signals such
as gestures, facial expressions, eye expressions, and voice. Said
and Barr (2021) proposed a face-sensitive convolutional neural
network (FS-CNN) to detect human emotion. Trigeorgis et al.
(2016) utilized a convolutional recurrent model based on the raw
signal to achieve end-to-end spontaneous emotion prediction. In
addition, some scholars (Camurri et al., 2003; Durupinar et al.,
2016; Senecal et al., 2016) try to identify emotions from dance
movements. These methods are limited to specific dance moves
and lack practical significance. Due to the easy camouflage of
non-physiological signals, those non-physiological signal-based
emotion recognition methods are unstable, and the recognition
effect is easily affected by subjective factors. Compared with
non-physiological signals, physiological signals [such as blood
pressure (BVP), electroencephalogram (EEG), electrooculogram
(EOG), electrocardiography (ECG), electromyogram (EMG),
etc.] are spontaneously generated by the human body and can
truly reflect the emotional state of humans, which has high
reliability. Therefore, scholars have shifted the focus of research
to emotion recognition using physiological signals. Among
physiological signals, EEG, which has the characteristics of non-
subjectivity, real-time difference, and rich information, has been
widely used in the field of emotion recognition. Studies have
shown that EEG played an important role in the research of
human emotion and that regional brain activity was closely
related to some emotional states (Niemic, 2004).

With the continuous development of artificial intelligence
technology, artificial intelligence has also shown a broader
prospect in the field of emotion recognition based on EEG.
Employing emerging intelligent technologies like machine
learning and computer vision to realize EEG-based quantitative
analysis and recognition of emotions has become a research
hotspot. Existing EEG-based emotion recognition methods can
be roughly divided into two categories: traditional machine
learning-based methods and deep learning-based methods.
Among the methods based on traditional machine learning,
Support Vector Machine (SVM) (Anh et al., 2012; Moshfeghi
et al., 2013; Zulkifli et al., 2015), Bayesian network (Yoon and
Chung, 2013), K-means algorithm (Mohanty and Swain, 2011),
decision tree algorithm, K-Nearest Neighbor (KNN) (Heraz and
Frasson, 2007) and other classifiers are exploited for emotion
classification and recognition. However, traditional machine
learning highly relies on manual feature extraction, which is time-
consuming and labor-intensive. Because of the advantages of
deep learning technology in automatic feature extraction, many
EEG-based emotion recognition methods based on deep neural
networks are proposed, such as Yang et al. (2018) using a hybrid
neural network which combines ‘Convolutional Neural Network
(CNN)’ and ‘Recurrent Neural Network (RNN)’ to effectively
learn the compositional spatial-temporal representation of raw
EEG streams, and Song et al. (2018) utilized the dynamical graph

convolutional neural network (DGCNN) to model multichannel
EEG features and then classify the EEG emotion.

Since EGG signals are subject-specific, there are large
variations between individuals (Jayaram et al., 2015). To solve the
problem, Hwang et al. (2020) proposed an adversarial learning
method for subject-independent EEG-based classification
methods and achieved good performance on the SEED data
set. Li et al. (2019a) proposed a multisource transfer learning
method for cross-subject EEG emotion recognition, which can
generalize existing models to a new person. But this method
did not consider the invariant features of the domain, which
would lead to the loss of part of the information. Therefore,
many scholars introduce domain adaptation (DA) into deep
learning models to obtain domain-invariant representations
and achieve remarkable results. Zhu D. et al. (2019) provided a
two-stage alignment framework for deep learning methods based
on Multi-source Unsupervised Domain Adaptation (MUDA),
which not only aligns the domain-specific distributions of each
pair of source and target domains in multiple feature spaces
to learn multiple domain-invariant representations but also
align the domain-specific classifiers’ output for target samples.
This type of approach (Long et al., 2016) mainly matches
the embedding of distributions by introducing an adaptive
layer (Zhu J. et al., 2019). Another mainstream method based
on deep learning is to directly utilize adversarial methods or
generative adversarial methods, such as Wasserstein generative
adversarial network domain adaptation (WGANDA) (Luo
et al., 2018), few-label adversarial domain adaption (FLADA)
(Wang et al., 2021), joint distribution adaptation method (Li
et al., 2019b), and so on. However, most of these methods are
single-representation adaptation, which leads to the alignment
of the source and target domains to concentrate on partial
information (Zhu J. et al., 2019). Besides, due to the non-
stationary between individual sessions (Sanei and Chambers,
2007), EEG-based emotion recognition still has the problem
of cross-domain. Most of the existing studies aggregate the
EEG data from different subjects and sessions into one source
domain, ignoring the difference in the edge distribution of
different EEG domains. Thus, how to achieve cross-subject
and cross-session EEG-based emotion recognition is still
a huge challenge.

To address these problems, we propose a cross-domain EEG
emotion recognition method based on multi-source and multi-
representation adaptation (MSMRA). In the data processing
stage, the EEG signal is divided into multiple source domains to
avoid destroying the edge distribution of the source domain data.
Since the multi-source will complicate the network structure,
we propose a two-partition method to aggregate two EEG data
into one source domain. On this basis, the low-level domain-
invariant features of different EEG data are extracted by the
common feature extraction module. Then for multiple source
domains, the multi-domain specific feature extractor (MDSFE)
module enhances the representation capability of the source by
aligning multiple representation distributions excavated from a
hybrid structure. The multiple distributions are converted into
a vector and fed into the classifier for final sentiment inference.
Our extensive experiments on two public datasets show that

Frontiers in Psychology | www.frontiersin.org 2 January 2022 | Volume 12 | Article 809459

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-12-809459 January 7, 2022 Time: 14:2 # 3

Cao et al. Emotion Recognition Based on EEG

FIGURE 1 | Process flow for brain-computer interfaces.

MSMRA can achieve remarkable performance compared with
state-of-the-art competitors.

The contributions of this paper are summarized as follows.

(1) We propose the MSMRA network to aggregate the EEG
data of different subjects and sessions into multiple source
domains, thereby improving the accuracy of emotion
classification based on EEG in cross-domain scenarios.

(2) A two-partition method is proposed to divide EEG data
into multiple source domains, which not only significantly
reduces the redundancy of the network structure but also
expands the data of a single source to improve the emotion
classification accuracy.

(3) To obtain more high-level features of EEG signals, we
constructed an MRA module to align the distribution of
multiple different representations.

(4) We conducted extensive experiments on two public
datasets to validate the performance of MSMRA compared
with state-of-the-art methods.

MATERIALS

BCI Process Flow for Emotion
Recognition
As observed in Figure 1, the BCI process flow for emotion
recognition usually consists of four-steps (Vasiljevic and
Miranda, 2020; Gu et al., 2021). The subject is first stimulated
with some stimuli, which are often movie clips containing various
emotions, then the electrodes placed in the subject’s skull are used
to record the EEG signal. After data processing, the EEG data is
finally fed into classification models.

Datasets
To evaluate the proposed methods, we conduct experiments on
two public datasets, namely SEED and SEED-IV (Duan et al.,
2013; Zheng and Lu, 2015; Zheng et al., 2019). In the SEED
dataset, a total of 15 subjects (7 males and 8 females) participated
in the experiment. Their EEG data was collected via 62 EEG
electrodes when they were watching 15 Chinese movie clips

with negative, positive, and neutral emotions. To avoid subject
fatigue, the entire experiment will not last for a long time, and
the duration of each segment is about 4 min. Since the video can
be understood without explanation and the video only triggers a
single target emotion, all EEG signals will be classified into one of
three emotional states (positive, neutral, and negative). The data
collection lasts for 3 different periods at approximately 1-week
intervals, corresponding to three sessions, so each subject has a
total of 45 EEG data trials. In addition, to ensure that the collected
EEG data and the movie clips presented to the subjects have
the same emotional state, an additional subjective self-assessment
will be performed on each subject after the subjects watch the
movie. The relevant information about the SEED dataset is shown
in Table 1.

Similar to SEED, SEED-IV contains a total of 15 subjects (7
males and 8 females) of 62-channel EEG data. These data are
the four types of emotions collected by the subjects when they
watch emotion-induced movie clips, namely, neutral, sad, fear,
and happy. Each movie clip lasts about 2 min. A total of three
sessions are collected. Each session includes 24 trials/movies for
each subject. Compared to SEED that only uses EEG signals,
the database also includes eye movement features recorded by
SMI eye-tracking glasses. The relevant information about the
SEED-IV dataset is shown in Table 2.

Experimental Scenarios
Due to the non-stationarity of the EEG signals between sessions
and subjects (Sanei, 2013), the EEG signals of different subjects
in the same session and the EEG signals of the same subject

TABLE 1 | Information about SEED dataset.

Attributes Details Information

Source BCMI laboratory

Sessions Three

Subjects Fifteen

Trials Fifteen

Emotions Positive Neutral Negative

Channels of recorded 62 EEG channel
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TABLE 2 | Information about SEED-IV dataset.

Attributes Details Information

Source BCMI laboratory

Sessions Three

Subjects Fifteen

Trials Twenty four

Emotions Neutral Sad Fear Happy

Channels of recorded 62 EEG channel

in different sessions will have a certain degree of difference.
Therefore, in the field of emotion recognition of EEG signals,
domain adaptation can be divided into several situations:

Cross-Subject Transfer
In the same session, take the EEG data of the new last subject as
the target domain, and the EEG data of all the remaining subjects
as the source domain. In this article, since the SEED and SEED-
IV datasets have a total of 3 sessions and 15 subjects, we will
group the EEG data of the subjects in pairs to form a source field,
there are 7 in total, and the final subject’s EEG data is used as
the target domain.

Cross-Session Transfer
In different session experiments of the same subject, we combine
the EEG data of the previous two sessions into a source domain,
and the EEG data of the last session is regarded as the target
domain (see section “Methods” for details).

Electroencephalography Data
Pre-processing
The collected data is first down-sampled to a sampling rate
of 200 Hz, and then a band-pass frequency filter of 0–75 Hz
is applied to filter noise and remove artifacts. After the EEG
sequence is converted to the frequency domain, the differential
entropy features of each frequency band (Delta, Theta, Alpha,
Beta, and Gamma) and each channel (62 channels) are extracted
(62 channel positions are shown in Figure 2), where the
frequency of the Delta band is 1∼4 Hz, and the frequency of the
Theta band is 4–8 Hz, the frequency of the Alpha band is 8–14 Hz,
the frequency of the Beta band is 14–31 Hz, and the frequency of
the Gamma band is 31–50 Hz.

The differential entropy feature is defined as Equation 1:

DE = −
∫
∞

−∞

P(x)ln [P(x)]dx (1)

where DE represents the differential entropy features, x denotes a
random variable, P(x) indicates the probability density of x.

We assume that the EEG signal obeys a normal distribution
xN(,2 ), then the calculation of the DE feature can be simplified
to Equation 2:

DE = −
∫
∞

−∞

1
√

2πσ
exp

(x− µ)2

2σ 2 ln (
1

√
2πσ

exp
(x− µ)2

2σ 2 )dx

(2)

FIGURE 2 | EEG electrode placement.

In this work, in both the Cross-Subject Transfer and Cross-
Subject Transfer scenarios, we use DE features extracted from
EEG raw data as input, and one data from one subject in one
session for both databases is in the form of trials (SEED 15, SEED-
IV 24) × channel (62) × band (5) × samples, we then merge the
channel and frequency band data into trials (SEED 15, SEED-
IV 24) × 310 × samples. For the SEED dataset, 15 movie clips
contain a total of 3,394 samples corresponding to each session,
and for the SEED-IV dataset, 24 movie clips contain a total of
851/832/822 samples corresponding to three sessions.

METHODS

There are two significant concepts in the domain adaptation:
the source domain represents a domain different from the test
sample but has rich supervision information, and the target
domain represents the domain where the test sample is located,
without or only have a few labels (Pan and Qiang, 2010). The
source domain and the target domain often belong to the same
task, but the distribution is different. In this article, we regard
the newly collected EEG data as the target domain, and all the
remaining previously collected EEG data as the source domain.
Given the data of the source domain and target domain, we
are not simply aggregating all EEG data into a source domain,
which ignores the internal differences of EEG data of different
subjects and different sessions (Zhu D. et al., 2019), in contrast,
we combine two groups of EEG data into multiple source
domains, which not only considers the internal differences of
EEG data but also expands the number of samples of source
domain data, which can prove to be effective in improving the
accuracy of sentiment classification based on EEG. Moreover, we
believe that just projecting the source domain and target domain
into a common feature subspace cannot cover all information
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FIGURE 3 | Architecture of proposed Multi-Source and Multi-Representation Adaptation (MSMRA) method.

(Zhu J. et al., 2019), so we extract multiple representations from
low-pixel images to obtain more information. The architecture is
shown in Figure 3.

As shown in Figure 3, suppose we have N source domains,
which can be defined as:

S = {S1,S2, ...,SN} (3)

Where S denotes the collection of source domains, SN means
Nth source domain. Each source domain consists of two different
EEG data, which is expressed as follows:

Si = {ES
2i−1,ES

2i}
N
i = 1 (4)

The target domain can be expressed as T = {ET}. The data of
the source domain and the target domain are fed into a common
feature extractor module c( · ) to extract low-level feature of both
{FS

i }
N
i 1?FT

i :

FS
i = c(Si) (5)

FT
i = c(T) (6)

Then the low-level features of the source domain and the
target domain {FS

i }
N
i = 1 and FT

i are fed into the multi-domain
specific feature extractor module {hi

j( · )}
r
j = 1

to obtain the multi-

expression, respectively, {RS
i }

N
i = 1 and RT

i .

RS
ij = {h

i
j(F

S
i )}

r
j = 1

(7)

RT
ij = {h

i
j(F

T
i )}

r
j = 1

(8)

The multi-domain-specific feature extractor has r different
sub-domain-specific feature extractors, and each sub-domain-
specific feature extractor can obtain various high-level feature
expressions. Compared with a simple single representation,
multiple representations can cover more information to better
judge emotion classification. After obtaining the multiple
representations of the source domain and the target domain
{RS

i }
N
i 1 and RT

i , the maximum mean discrepancy (MMD) loss
of the different expressions of the source domain and the
corresponding target domain expression can be calculated. The
MMD loss is a measure of the distance between the current
source domain and the target domain (Borgwardt et al., 2006),
and the final MMD loss is the sum of the MMD loss of each
source domain expression and the corresponding target domain
expression. The MMD loss can be formulated as Equation 9, and
the final MMD loss can be defined as Equation 10.

MMDj(RS
ij, RT

ij ) = ||
1
n

n∑
x = 1

φ(rS
x) −

1
m

m∑
y = 1

φ(rT
y )||

2

H

(9)

MMDi
fianl =

r∑
j = 1

MMDj(RS
ij, RT

ij ) (10)

Finally, the multi-representation vector [RS
ij]

r
j 1

is connected
into a new vector and fed into the classifier module cls( · )to
realize the emotion classification of the EEG signal. Details of
these modules are described below.
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Source Domain Selection
Most existing domain adaptation methods simply aggregate all
source domain data into one source domain, which often destroys
the edge distribution of the source domain, or increases the
difficulty of adaptation. Considering the practicality of the model,
if the data of a single participant in a single session is simply
divided into a source domain, this will greatly increase the
complexity of the model and increase the number of parameters.
Therefore, based on the above assumptions, we combine two
different EEG data from one subject in one session to form a
source domain, which not only satisfies the presumption that
domain adaptation has a certain source marginal distribution, but
also reduces the complexity of the model.

Common Feature Extractor
This module is used to map the original data of the source domain
and the target domain to a common shared latent space, and then
extract the low-level features of the two respectively, which are
some low-level domain invariant features that represent similar
characteristics of different EEG data.

Multi-Domain Specific Feature Extractor
After obtaining low-level features with domain invariance, we
build N multi-domain specific feature extractors corresponding
to N source domains. Each multi-domain specific feature
extractor has r different domain-invariant feature extractors
for learning multiple domain-invariant representations.
Since diverse neural network structures can extract different
representations from low-level features, we apply a multi-domain
specific feature extractor to map each pair of source and target
domain data to r latent spaces, and then in each latent space
extract the high-level features of the two separately to obtain
more domain-specific information. To apply DA and make this
r pair of high-level features with different representations close
to the corresponding latent space, we choose MMD to estimate
the distance between the two domains in the latent space. The
final MMD loss of the source domain is the MMD of all r latent
spaces. Each source domain has r potential spaces, thus the final
MMD loss is the sum of the MMD losses of all source domains
and target domains, which can be expressed by Equation 11.

MMDfinal =

N∑
i = 1

MMDi
final (11)

Classifier
The multiple high-level feature representations obtained from the
multi-domain specific feature extractor are connected into a new
vector and sent to the classifier for classification. Each source
domain corresponds to a softmax classifier. We use cross-entropy
to evaluate classification loss, as shown in Equation 12:

Li
cls = −

M∑
a = 1

ca ∗ log(pa) (12)

In summary, we first synthesize N source domains into two
sets of 2N data from one subject in one session and consider the

last collected single-session single-subject EEG data as the target
domain, and then all source domains and target domain data are
fed into the general feature extractor to extract low-level features.
Next, we use a multi-domain specific feature extractor to map the
low-level features of the source and target domains to multiple
different latent spaces and apply MMD loss to measure the high-
level feature representations of the source and target domains in
various latent spaces. Finally, we connect different expressions
into a new vector and send it to the classifier for classification.
The final loss function can be expressed as Equation 13:

Li
loss = Li

cls + αMMDi
fianl (13)

The total loss function of all source and target domain data can
be defined as Equation 14:

Lloss =

N∑
i = 1

Li
loss (14)

The training is based on Equation 14 and follows the algorithm
shown in Algorithm 1. Minimizing this formula is to minimize
the classification loss and MMD loss so that the distance between
the source domain and the target domain can be as small
as possible in different potential spaces, and the classification
prediction is as close as possible to the actual label.

EXPERIMENTS

In our experiment, we use the public SEED dataset and SEED-
IV dataset to classify emotions. In addition, we not only
compare our proposed method with the baseline method but
also conduct a large number of ablation experiments and
exploratory experiments.

ALGORITHM 1 Overview of MSMRA module.

Input:

S,T: the source domain and the target domain of EEG data

epoch: the number of epoch

for e←1:epoch do

Draw one batch of training samples from each source domain Si and the

target domain T;

Obtain low-level features of the source and target domains;

Fs
i = c(Si), FT

i = c(T)

Obtain multi-Representations of low-level features in the source and

target domains;

RS
ij = {h

i
j(F

S
i )}

r

j = 1
,RT

ij = {h
i
j(F

T
i )}

r

j = 1

Calculate the final MMD loss;

MMDj(RS
ij , RT

ij ) = ||
1
n

∑n
x = 1 φ(r

S
x ) −

1
m

∑m
y 1 φ(r

T
y )||

2

H

MMDi
fianl =

∑r
j = 1 MMDj(RS

ij , RT
ij )

Concat the multi-representations high-level features and send them to

the classifier to calculate the cross-entropy loss Li
cls

The total loss is Li
loss = Li

cls + αMMDi
fianl

Update model by minimizing the total loss

end for
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FIGURE 4 | Extract 48-dimensional, 32-dimensional, and 16-dimensional high-level feature representations process from 64-dimensional low-level features,
respectively.

Implementation Details
The SEED dataset and SEED-IV dataset are first pre-processed
(mentioned in section “EEG Data Pre-processing”) to obtain
DE features, and reshaped into trials (SEED 15, SEED-IV
24) × 310 × samples. Then we normalize the dimensions
of samples, and the ablation experiment in section “Ablation
Study” will confirm the effect. After that, we divide the data
into N source domains and one target domain in pairs in
the manner mentioned in section “Methods.” As described
in section “Methods,” the various modules of MSMRA have
many details. For the common feature extraction module,

TABLE 3 | Comparisons of the average accuracies and standard deviations of
cross-session and cross-subject scenarios on SEED database among the
various methods.

Dataset Method Cross-session Cross-subject

DGCNN – 79.95 ± 9.02

DDC 81.53 ± 6.83 68.99 ± 3.23

DAN 79.93 ± 7.06 65.84 ± 2.25

SEED DCORAL 76.86 ± 7.61 66.29 ± 4.53

DANN – 79.19 ± 13.14

PPDA – 86.70 ± 7.10

MS-MDA 88.56 ± 7.80 89.63 ± 6.79

MSMRA (Ours) 90.30 ± 5.26 87.62 ± 7.53

Bold indicates the maximum average accuracies of cross-session and cross-
subject scenarios among the various methods.

since we do not have as many samples as the original data,
so in this layer, we take a simple three fully connected
layers, which reduce the dimension from 310 (62 × 5) to
64, each fully connected layer is followed by a LeakyReLU
activation function (Xu et al., 2015). We also evaluated the
ReLU activation function (Nair and Hinton, 2010). Since EEG
data is very sensitive, using ReLU will delete many values
less than 0, which often loses a lot of information, so we
choose LeakyReLU as the activation function. For the multi-
domain specific feature extractor module, we use 3 fully
connected layers to downsample the low-level feature vector
from 64-dimensional to 48-dimensional, 32-dimensional, and
16-dimensional high-level feature representations and then
connect them into a vector, as shown in Figure 4. Like the
common feature extraction module, 3 fully connected layers
are followed by a LeakyReLU activation function. The vector
connected by the high-level features is fed into the final
classifier, which is a simple fully connected layer, reducing
the number of emotion categories (SEED 3, SEED-IV 4)
corresponding to the dataset from 96 dimensions. During the
network training process, the initial value of the learning rate
is 0.01, the batch size is 256, and the epoch is set to 50.
The Adam optimizer is used for gradient descent (Kingma and
Ba, 2014). In addition, we dynamically adjust the coefficient
to achieve the effect of giving priority to the classification
results, and the coefficient can be expressed as Equation 15.

α =
2

1+ e−10∗i/epoch−1 (15)
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TABLE 4 | Comparisons of the average accuracies and standard deviations of
cross-session and cross-subject scenarios on SEED-IV database among the
various methods.

Dataset Method Cross-session Cross-subject

DDC 57.63 ± 11.28 37.71 ± 6.36

DAN 55.14 ± 12.79 32.44 ± 9.02

SEED-IV DCORAL 44.63 ± 11.38 37.43 ± 3.08

MS-MDA 61.43 ± 15.71 59.34 ± 5.48

MSMRA (Ours) 72.38 ± 10.12 69.77 ± 7.37

Bold indicates the maximum average accuracies of cross-session and cross-
subject scenarios among the various methods.

TABLE 5 | Ablation study of MSMRA on SEED and SEED-IV.

Dataset Method Cross-session Cross-subject

SEED Ours full 90.30 ± 5.26 87.62 ± 7.53

w/o normalization 80.21 ± 9.95 84.12 ± 6.17

w/o MDSFE 89.55 ± 5.17 87.17 ± 5.41

w/o normalization + MDSFE 77.02 ± 11.11 80.88 ± 7.22

SEED-IV Ours full 72.38 ± 10.12 69.77 ± 7.37

w/o normalization 43.39 ± 6.97 52.27 ± 5.18

w/o MDSFE 71.97 ± 12.53 60.19 ± 9.60

w/o normalization + MDSFE 43.33 ± 4.79 50.94 ± 3.24

Bold indicates the maximum average accuracies of cross-session and cross-
subject scenarios among the various methods.

BaseLines
We compare the MSMRA model with the latest various
competitors on the SEED dataset and SEED-IV dataset, including
Deep domain confusion (DDC) (Tzeng et al., 2014), which
treats the MMD algorithm as an adaptive metric, domain
adaptation model (DAN) (Li et al., 2018), which adopts deep
adaptation network to EEG-based emotion recognition, Deep
coral (DCORAL) (Sun and Saenko, 2016), which aligns the
second-order statistical features of the source domain and target
domain distribution by linear transformation method, Domain-
Adversarial Training of Neural Networks (DANN) (Ganin et al.,
2017), which introduces the idea of adversarial network to
the field of transfer learning, Plug-and-play domain adaptation
(PPDA) (Zhao et al., 2021), which proposes a plug-and-play
domain adaptation method for reducing the calibration time.
Dynamical Graph Convolutional Neural Networks (DGCNN)
(Song et al., 2018) and Multisource Marginal Distribution
Adaptation (MS-MDA) (Chen et al., 2021) which applies a multi-
source domain method.

Results
All the experimental results of the two data sets are shown
in Tables 3, 4, respectively. In the experiment, except for
some results directly taken from the original paper (MS-MDA,
DGCNN), all the hyperparameters are the same. From these
results, we have the following profound observations.

• In the SEED data set, our proposed method MSMRA
surpasses most of the current state-of-the-art methods in
Cross-subject and Cross-session scenarios. It can be seen

that our method improves the accuracy of at least close to
2% compared to other methods in the Cross-session scene,
and for the first time exceeded the 90% accuracy rate, as
far as we know. In the Cross-subject scenario, although our
method is 2% lower than MS-MDA, it is better than all other
methods, which shows that our method is competitive.
• On the SEED-IV dataset, it can be clearly seen that

our proposed method significantly exceeds all other
competitors, and each has improved by at least 11 and
10% compared to others in Cross-session and Cross-
subject scenarios, it is a piece of exciting news. From the
results, we can infer that our method can also achieve
good classification results on small sample datasets because
multiple high-level features containing rich information are
extracted from the MDSFE module.

Ablation Study
To further understand the MSMRA model we proposed, we
performed the ablation experiments of removing the initial
normalization of the data and removing the MDSFE module on
the SEED and SEED-IV datasets respectively, and evaluate the
performance of the ablated model. The hyperparameters of all
ablation experiments are consistent, and the experimental results
are shown in Table 5. As shown in the table, the first row of the
two datasets is the complete method we proposed, and we can
see that the accuracy rate is the highest; the second row removes
the initial data normalization, which makes the model prone to
be affected by outliers resulting in a decrease in accuracy; the
third row removes the multi-domain specific feature extraction
module, which weakens the feature representation ability of the
model. In the fourth row, the initial data normalization module
and the multi-domain specific feature extraction module are
removed. It can be seen that the experimental accuracy is lower
than the removal of a single ablation module. Moreover, notice
that although a certain module is removed, our proposed method
is still competitive with other methods.

CONCLUSION

In general, the current emotion classification based on EEG
signals is hindered due to the instability of the internal data of
Cross-session and Cross-subject when collecting data. Domain
adaptation increases the classification accuracy of cross-domain
data by finding a mapping relationship to map the source domain
and target domain to a latent space, and minimizing the distance
between the two. Based on the above, we propose a multi-source
and multi-representation domain adaptive network (MSMRA),
which regards EEG signals as multiple source domains rather
than simply as one source domain, which satisfies the assumption
that the source domain data has a certain marginal distribution.
It can be seen from Tables 3, 4 that the classification accuracy
of our proposed method significantly exceeds that of the latest
single-source domain method. Since the multi-source domain
method is easy to cause the network to be bloated and
complicated, we propose a pairwise combination method to
solve this problem. Moreover, considering that the representation
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distribution extracted in a single structure of aligning may only
contain partial information, we propose a multi-domain specific
feature extraction module, which can extract multiple high-level
features of different dimensions. Table 5 shows that this module
is helpful to improve the accuracy of emotion classification.
Future work will focus on how to divide multi-source domains
and how to extract more effective multi-domain specific features.
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