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Editorial on the Research Topic

Moving Beyond Non-informative Prior Distributions: Achieving the Full Potential of Bayesian

Methods for Psychological Research

Over the last two decades, Bayesian statistics have been established as an alternative to the
well-known frequentist approaches primarily based on maximum likelihood (ML) estimation
(van de Schoot et al., 2017; Koenig and van de Schoot, 2018). With the possibility of
incorporating background knowledge into new analyses, Bayesian methods can potentially
transform psychological research into a truly cumulative scientific discipline. However, the primary
tool to achieve this, namely informative prior distributions, remains a seemingly elusive concept,
especially for novice users. Reasons include, but are not limited to, the frequent criticism regarding
their alleged subjective nature and a lack of knowledge about methods to formalize background
knowledge (Goldstein, 2006; Vanpaemel, 2011). These two aspects are the primary point of
departure for the twelve articles in this Special Issue.

The first set of two articles provides interested readers with means to comprehend the nature
and potential impact of prior distributions in general. As Depaoli et al. (p. 3) state, “Understanding
the impact of priors, and then making subsequent decisions about these priors, is perhaps the
trickiest element of implementing Bayesian methods.” Consequently, their tutorial paper presents
an interactive Shiny app that enables novice and experienced users of Bayesian statistics to
investigate and determine the impact of their specified prior distributions on model results. Arts
et al. examine the impact of different prior distribution specifications for the variance parameter in
a Bayesian approximate measurement invariance with alignment optimization (e.g., van de Schoot
et al., 2013). The authors illustrate visually how the prior specification for the variance parameter
affects the rank ordering of 30 countries in a large-scale assessment of the latent construct”
willingness to sacrifice the environment.” Visualizing different outcomes aids in understanding the
effect of various prior specifications on model results.

The second set of articles aims to convince interested readers of the benefits and advantages of
weakly and fully informative prior distributions compared to their non-informative counterparts
and frequentist ML estimation. The five articles illustrate these benefits across a wide range of
statistical models, with a particular focus on small-sample situations. Tong and Ke show the
benefits and advantages of using weakly and fully informative priors for the precision parameter in
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Bayesian non-parametric growth curve models. Their simulation
demonstrates that using weakly or fully informative priors aids
model convergence and the accuracy of the precision parameter
of the Dirichlet process. This conclusion is essential, as previous
research showed that the precision parameter is crucial for
obtaining good results.

Similarly, Zyphur et al. show that using weakly or fully
informative priors also aids model convergence and parameter
accuracy for cross-lagged panel models. They concluded
that using such priors increases model parsimony, estimate
stability, and thus the general trustworthiness of results,
compared to results obtained with ML estimation. When
dealing with small samples, the role of Bayesian prior
distributions becomes even more crucial for model convergence
and parameter accuracy. Smid and Winter present a tutorial
discussing the dangers and pitfalls of using default priors
implemented in software for Bayesian structural equation
models. They introduce an interactive Shiny app, where
users can investigate the impact of various priors on model
estimates, depending on sample size. Lüdtke et al. examine
the stability of estimates across different Bayesian estimators
in small-sample confirmatory factor analysis. The results
show that estimates based on the posterior mean (EAP)
produced more accurate estimates. Parameter estimates can be
further stabilized using the four-parameter beta distribution
for loadings and factor correlations (e.g., Merkle and Rosseel,
2018). The benefits of using this prior distribution in the
weakly informative specification are present even when prior
distributions are mildly misspecified. Another specification of
weakly informative priors is illustrated in Zitzmann et al. In
the context of multilevel latent variable models, they describe
two strategies (direct and indirect; Zitzmann et al., 2015) to
specify weakly informative priors for the group-level slope
parameter. Their simulation results show that introducing
additional information via these priors stabilizes the model
and provides more accurate parameter estimates in small-
sample situations.

Finally, the third set of articles focuses on different
approaches to formalize background knowledge objectively.
The ultimate aim is to build confidence in the specification
and use of informative prior distributions. In this regard,
Veen et al. focus on expert knowledge for specifying
informative prior distributions. In their paper, they
illustrate how the five-step method (Veen et al., 2017) is
used for prior elicitation for the parameters of a latent
growth curve model. They show how to aggregate expert
knowledge and specify appropriate densities to be used
in a Bayesian analysis. Moreover, they compare the prior
densities with posterior densities from traditionally collected
data and guide how to set up procedures for appropriate
expert elicitation.

Van de Schoot et al. provide another example of eliciting
expert knowledge and using it to specify informative prior
distributions. They also use lesser-known Bayesian methods,

such as tests for prior-data conflicts (Box, 1980), a scoring
algorithm to incentivize truthful responses (John et al.,
2012), and Bayes factors for replication success (Verhagen
and Wagenmakers, 2014), to investigate the prevalence of
questionable research practices among Dutch and Belgian early
career researchers. These articles are complemented by three
illustrations focusing on more quantitative ways to formalize
background knowledge. In this regard, Tran et al. focus on
formalizing background knowledge with systematic parameter
reviews. These reviews consist of a systematic literature search for
studies containing estimates of relevant model parameters and
necessary transformations to make the parameter comparable
across studies. They illustrate how to specify informative prior
distributions based on these synthesized parameter estimates in
the context of the Diffusion Decision Model (DDM; Ratcliff
and McKoon, 2008). The two remaining studies extend this
approach and illustrate ways to consider the similarity of the
available background knowledge and demonstrate how to apply
the necessary weighting of the contributions of the individual
studies to the informative prior distribution. In this regard,
Schulz et al. implement a distribution-based approach. In the
context of mother-adolescent interaction behavior, they illustrate
three methods for pooling results from previously conducted
studies to specify informative prior distributions. Moreover, they
show how to use expert knowledge to weigh the contribution
of each previously conducted study and how to use these
weights in a power prior approach (Carvalho and Ibrahim,
2021).

Lastly, Koenig illustrates how to specify informative prior
distributions using random-effects meta-analytic models. In
the context of Bayesian multiple regression models, they
present a novel method based on propensity-score and
mixed-effects meta-analytic approaches (Tipton, 2014; Cheung,
2015) for quantifying the similarity of background knowledge.
Moreover, they illustrate how to use this similarity measure
to specify similarity-weighted informative prior distributions,
an evidence-based informative prior also based on the power
prior concept (Kaplan and Depaoli, 2013; Ibrahim et al.,
2015).

To enhance reproducibility, crucial for Bayesian papers with
informative priors (van de Schoot et al., 2021), each article in this
Special Issue is accompanied by comprehensive supplementary
material, including annotated code, which provides researchers
with the means to apply the models and methods directly
to their Bayesian analyses. In conclusion, we hope that this
Special Issue enables novice and more experienced Bayesian
researchers to move beyond non-informative prior distributions
and unlock the full potential of Bayesian methods for
psychological research.
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