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Introduction: Radiologists routinely make life-altering decisions. Optimizing 

these decisions has been an important goal for many years and has prompted 

a great deal of research on the basic perceptual mechanisms that underlie 

radiologists’ decisions. Previous studies have found that there are substantial 

individual differences in radiologists’ diagnostic performance (e.g., sensitivity) 

due to experience, training, or search strategies. In addition to variations 

in sensitivity, however, another possibility is that radiologists might have 

perceptual biases—systematic misperceptions of visual stimuli. Although a 

great deal of research has investigated radiologist sensitivity, very little has 

explored the presence of perceptual biases or the individual differences in 

these.

Methods: Here, we  test whether radiologists’ have perceptual biases using 

controlled artificial and Generative Adversarial Networks-generated realistic 

medical images. In Experiment 1, observers adjusted the appearance of 

simulated tumors to match the previously shown targets. In Experiment 2, 

observers were shown with a mix of real and GAN-generated CT lesion images 

and they rated the realness of each image.

Results: We show that every tested individual radiologist was characterized 

by unique and systematic perceptual biases; these perceptual biases cannot 

be simply explained by attentional differences, and they can be observed in 

different imaging modalities and task settings, suggesting that idiosyncratic 

biases in medical image perception may widely exist.

Discussion: Characterizing and understanding these biases could be important 

for many practical settings such as training, pairing readers, and career 

selection for radiologists. These results may have consequential implications 

for many other fields as well, where individual observers are the linchpins for 

life-altering perceptual decisions.
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Introduction

Medical image perception is fundamentally important for 
decisions that are made on a daily basis by clinicians in fields 
ranging from radiology and pathology to internal medicine 
(Samei and Krupinski, 2018). At a fundamental level, the kinds of 
decisions that are made depend on the perceptual information 
that is available to these clinicians (Kundel, 2006; Samei and 
Krupinski, 2009; Krupinski, 2010). This hinges largely on the 
clinicians’ basic perceptual abilities as human observers (Kundel, 
1989; Quekel et al., 1999; Donald and Barnard, 2012), as well as 
their specific training and experience (Fletcher et  al., 2010; 
Theodoropoulos et al., 2010; Sha et al., 2020).

It has been known for decades that radiologists have 
significant individual differences in their diagnostic performance 
(Elmore et  al., 1994; Feldman et  al., 1995; Beam et  al., 1996; 
Elmore et al., 1998, 2002; Lazarus et al., 2006; Tan et al., 2006; 
Elmore et al., 2009; Pickersgill et al., 2019; Sonn et al., 2019). For 
example, radiologists vary in the accuracy of their mammography 
reading (e.g., Feldman et al., 1995; Beam et al., 1996; Elmore et al., 
2002; Tan et  al., 2006). Similar results were found in prostate 
magnetic resonance imaging screening (e.g., Pickersgill et  al., 
2019; Sonn et al., 2019). Some studies suggested that these strong 
individual differences are due to variation in radiologists’ training 
(e.g., Linver et al., 1992; Berg et al., 2002; Van Tubergen et al., 
2003), as well as their experience level (e.g., Herman and Hessel, 
1975; Elmore et al., 1998; Manning et al., 2006; Molins et al., 2008; 
Rosen et al., 2016). Other studies proposed that some differences 
may be due to the strategies adopted by radiologists (Kundel and 
La Follette Jr, 1972; Kundel et al., 1978; Krupinski, 1996). For 
example, radiologists tend to follow two main search strategies. 
“Drillers” keep fixation on a certain area, and scroll through depth, 
whereas “Scanners” scan an entire image before moving to the 
next one (Drew et al., 2013; Mercan et al., 2018).

In recent years, more and more studies have documented and 
investigated the individual variations in the perceptual 
performance among groups of untrained observers (e.g., Wilmer 
et al., 2010; Kanai and Rees, 2011; Wang et al., 2012; Schütz, 2014; 
Wexler et al., 2015; Grzeczkowski et al., 2017; Wilmer, 2017; Canas-
Bajo and Whitney, 2020; Cretenoud et al., 2020; Wang et al., 2020; 
Cretenoud et  al., 2021) and a few studies also investigated the 
perceptual abilities among clinicians including radiologists (see 
Waite et al., 2019 for a review; Smoker et al., 1984; Corry, 2011; 
Birchall, 2015; Langlois et al., 2015; Sunday et al., 2017, 2018). 
Typical human observers actually have substantial individual 
differences in their perceptual abilities and biases (for reviews, see 
Grzeczkowski et al., 2017; Mollon et al., 2017; Wilmer, 2017). These 
individual differences have been documented from the very lowest 
level perceptual functions, including localization, motion, and 
color perception (Schütz, 2014; Wexler et al., 2015; Kosovicheva 
and Whitney, 2017; Kaneko et al., 2018; Emery et al., 2019; Wang 
et  al., 2020) to higher-level object and face recognition skills 
(Wilmer et al., 2010; Richler et al., 2019; Canas-Bajo and Whitney, 
2020; Cretenoud et  al., 2020, 2021). For example, we  localize 
objects nearly every moment of every day, making saccades and 

other eye movements to the text on this page, reaching for a pen or 
a coffee cup, or appreciating the position of a pedestrian stepping 
off a curb into the road. Despite the extensive training in localizing 
objects, individual observers have strong, stable, and consistent 
idiosyncratic biases in the locations they report objects to 
be (Kosovicheva and Whitney, 2017; Wang et al., 2020).

Another example of striking individual differences is face 
recognition, which varies substantially between observers 
(Duchaine and Nakayama, 2006; Russell et al., 2009; Wilmer et al., 
2010; Russell et al., 2012; Wang et al., 2012; Bobak et al., 2016). For 
example, so called “super recognizers” can match the identity of 
random photographs of children to their corresponding adult 
photographs, whereas those with prosopagnosia often cannot 
recognize the identity of faces, even themselves or loved ones 
(Duchaine and Nakayama, 2006; Klein et al., 2008; Russell et al., 
2009). These individual differences arise despite extensive training 
and everyday experiences observers have with faces, and despite 
the many brain regions and networks devoted to the processing of 
faces (Kanwisher et al., 1997; Gauthier et al., 2000; Haxby et al., 
2001). Holistic face recognition, inversion effects, fractured faces, 
and other kinds of illusions demonstrate the richness, 
sophistication, and specialization that we have for recognizing 
faces (Moscovitch et al., 1997; Farah et al., 1998; Maurer et al., 
2002; Rossion, 2013). Still, despite all of that training and 
exposure, human observers have wildly different face recognition 
abilities. A great deal of the individual differences in human visual 
perception might be  explained by genetic variations (Wilmer 
et al., 2010; Zhu et al., 2010; Wang et al., 2018; Zhu et al., 2021), 
but other individual differences are due to training and experience 
(Germine et  al., 2015; Chua and Gauthier, 2020; Sutherland 
et al., 2020).

This body of recent perceptual research provides important 
insights for the idiosyncrasies among radiologists. A first 
possibility is that there are differences in perceptual sensitivity1 
including visuospatial skills and novel object recognition abilities 
between clinicians (Smoker et al., 1984; Corry, 2011; Birchall, 
2015; Langlois et al., 2015; Sunday et al., 2017, 2018), just like 
individuals vary in their sensitivity when recognizing faces 
(Wilmer et al., 2010). This has been the major focus of previous 
studies investigating individual differences in radiologist 
perception (see Waite et al., 2019 for a review). These differences 
in sensitivity could be  a natural consequence of variability in 
experience and training (Herman and Hessel, 1975; Linver et al., 
1992; Elmore et al., 1998; Berg et al., 2002; Van Tubergen et al., 
2003; Manning et al., 2006; Molins et al., 2008; Rosen et al., 2016). 
Other potential factors include genetic variations, and are not 
unexpected and could be superseded by training (Bass and Chiles, 
1990). A second non-exclusive possibility is that there are 

1 Note that here sensitivity refers to perceptual discriminability (i.e., d’ or 

Just Noticeable Difference, JND), but we acknowledge that in the medical 

research literature, the term “sensitivity” could refer to accuracy or the hit 

rate (independent of false alarms). For clarity and comparison to previous 

research, we use sensitivity to refer to perceptual discriminability (e.g., d’).
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differences in perceptual biases between different clinicians. For 
example, clinicians might systematically and consistently 
misperceive textures, colors, shapes and locations in different 
ways, as it is known to occur in untrained observers (Schütz, 2014; 
Wexler et al., 2015; Kosovicheva and Whitney, 2017; Kaneko et al., 
2018; Emery et  al., 2019; Canas-Bajo and Whitney, 2020; 
Cretenoud et al., 2020; Wang et al., 2020; Cretenoud et al., 2021).

Whether there are idiosyncratic perceptual biases that 
clinicians bring to medical image recognition tasks has not been 
closely studied, but any biases that exist could influence accuracy, 
diagnostic errors, etc., even if perceptual sensitivity was constant. 
Conversely, the individual differences in perceptual sensitivity 
among radiologists (Birchall, 2015; Sunday et al., 2017, 2018) do 
not predict that there are necessarily systematic idiosyncratic 
perceptual biases. In fact, there may be no idiosyncratic biases in 
perception despite the individual differences in accuracy. This is 
worth reiterating: individual differences in sensitivity need not 
be the same as individual differences in bias (even if they could 
be correlated suggested by Wei and Stocker, 2017). Therefore, the 
question of idiosyncratic biases in clinician perception remains 
unknown and untested in prior literature.

One reason we believe that investigating perceptual biases (as 
opposed to sensitivity) was difficult in prior research is that the 
stimuli used were natural (clinical settings) and therefore not 
easily or well controlled. Hence, it is almost impossible to measure 
systematic perceptual biases in radiologists in those studies. In 
order to measure these idiosyncratic biases in the medical image 
perception performance of radiologists, we  need controlled 
stimuli and experiments. The goal of this study was to test for 
idiosyncratic perceptual biases in a group of radiologists with 
controlled visual stimuli. We  also compared the radiologists’ 
results to a comparable group of naïve participants who were 
untrained and inexperienced with medical images.

Experiment 1

Raw data for Experiment 1 were obtained from a previously 
published experiment on perceptual judgments by radiologists 
and untrained non-clinical observers (Manassi et al., 2021).

Methods

Participants
Fifteen radiologists (4 female, 11 male, age: 27–72 years) and 

eleven untrained college students (7 female, 4 male, age: 
19–21 years) were tested in the experiment. Radiologists 
participated on site at RSNA annual meeting and college students 
were recruited at the University of California, Berkeley. Two 
radiologists did not finish the study, and their data were excluded. 
Sample size was determined based on radiologists’ availability at 
RSNA and was similar to previous studies on the perceptual 
performance of radiologists and individual differences in visual 
perceptual biases (Kosovicheva and Whitney, 2017; Manassi et al., 

2019; Wang et  al., 2020; Manassi et  al., 2021). Experiment 
procedures were approved by and conducted in accordance with 
the guidelines and regulations of the Institutional Review Board 
at University of California, Berkeley. Participants all consented to 
their participation in the experiment.

Stimuli and design
Three random objects were created to simulate tumor 

prototypes. Between each pair of prototypes, 48 morph images 
were generated using FantaMorph (Abrosoft Co.). This resulted in 
a continuum of 147 simulated tumors in total (Figure 1A). In 
addition to the simulated tumors, 100 real mammogram images 
taken from The Digital Database for Screening Mammography 
were used in this study as background textures (Bowyer 
et al., 1996).

On each trial, one of the 147 simulated tumors was randomly 
chosen and presented on top of a randomly chosen real 
mammogram background image (see Figure 1B for an example 
trial). The simulated tumor was shown at a random angular 
location relative to central fixation (0.35 degrees of visual angles) 
in the peripheral visual field with an eccentricity of 4.4 degrees of 
visual angle. After 500 ms, a noise mask covered the whole screen 
for 1,000 ms to reduce retinal afterimages. Next, one random 
simulated tumor image was shown at the center of the screen, and 
participants (trained radiologists and untrained observers) were 
instructed to adjust the current image to match the previously 
shown simulated tumor. This adjustment was performed by 
pressing the left and right arrow keys to move along the simulated 
tumor continuum. Participants were allowed to take as much time 
as needed to complete this task. Once they decided on the chosen 
image, they confirmed their response by pressing the space bar. A 
brief 250 ms pause followed their response, and then the next trial 
began. Each participant completed 255 trials in total.

Data analysis

For each participant, we estimated their perceptual biases with 
their response errors on each trial by calculating the shortest 
distance in morph unit on the simulated tumor continuum 
between the target and their response.

In order to directly compare the discriminability of the 
simulated tumors between radiologists and untrained observers, 
we  calculated the just-noticeable-difference (JND) by fitting a 
Gaussian function on the response error frequency on individual 
observers, and calculated half of the distance between the 25th 
and 75th percentile of the cumulative Gaussian distribution that 
was transformed from the best-fitted Gaussian function.

Within-subject consistency in the response errors was 
calculated with a split-half correlation for each observer. To 
compensate for the lack of trials for each image, we first binned 
every three simulated tumors into one, so that the number of 
unique simulated tumors was reduced to 49, but every binned 
simulated tumor had on average 5 trials of response errors. 
We  then used a nonparametric bootstrap method to estimate 
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split-half correlations (Efron and Tibshirani, 1994). On each 
iteration, for each observer and each binned simulated tumor, 
we randomly split the responses into two halves and calculated the 
mean response errors for each half (see Figures 2A,D for the two 
randomly-split halves from all radiologists and Figures 3A,C for 
all untrained observers). Next, the two halves were correlated and 
then the Pearson’s r value was transformed into a Fisher z value 
(see Figures 2B, 3B for the individual within-subject correlations 
for each radiologist and each untrained observer). We  then 
averaged the z values from radiologists and untrained observers 
separately and the averaged Fisher z values from two groups were 
transformed back to Pearson’s r values (Fisher transformations 
were applied for all analyses when calculating the average of 
correlation values). We repeated this procedure 1,000 times so that 
we could estimate the mean within-subject correlations and 95% 
bootstrapped confidence intervals (CI) for radiologists and 
untrained observers separately (Figure 2C, left panel).

Between-subject consistency was calculated similarly. After 
splitting every observer’s data into two random halves (i.e., by 
randomly selecting 50% of the data on each iteration), 
we  correlated one half from one observer with one half from 
another observer. All pairwise correlations were averaged to 
estimate the between-subject consistency. By repeating the 
procedure 1,000 times, we obtained the mean between-subject 
correlations and 95% bootstrapped CIs separately for radiologists 
and untrained observers (Figure 2C, right panel).

Next, we  estimated the expected chance-level within and 
between-subject correlations by calculating permuted null 
distributions. On each iteration, and for each observer, we again 
split the response errors for each binned simulated tumor into two 
halves as we did in the bootstrap procedure. We then systematically 

shifted one half by some random units (for example, simulated 
tumors 1, 2, 3 might be labeled as simulated tumors 7, 8, 9), and 
the shifted half was correlated with another unchanged half. For 
within-subject correlations, the unchanged half came from the 
same observer. For the between-subject correlations, the 
unchanged half came from a different observer. The resulting 
correlations from individual participants (within-subject) or 
different pairs of participants (between-subject) were averaged 
together to get the permuted within-subject or between-subject 
correlations. This permutation method allowed us to estimate the 
null correlations by correlating the response errors of different 
stimuli with each other while at the same time preserving the 
relationship between similar stimuli (Monte Carlo Permutation 
Test, MCPT, Dwass, 1957; Edgington and Onghena, 2007; Manly, 
2018). This permutation procedure was repeated 10,000 times to 
estimate permuted null distributions for within-subject and 
between-subject consistency. We  did this separately for 
radiologists and untrained observers. The mean empirical 
bootstrapped correlations were then compared to their 
corresponding permuted null distributions to estimate the 
statistical significance of the mean bootstrapped within and 
between-subject correlations.

Internal consistency of the stimuli used in the experiment was 
calculated using Cronbach’s alpha (Cronbach, 1951). We  first 
binned the simulated tumors into three categories (i.e., the three 
prototypes). Each image was labeled as the closest simulated 
tumor prototype based on its distance on the simulated tumor 
continuum. Participants’ responses (i.e., selected images) were 
also transformed into three categorical responses as above. 
We estimated Cronbach’s alpha separately for radiologists and 
untrained observers.

A B

FIGURE 1

Stimuli and an example trial in Experiment 1. (A) The simulated tumor continuum was generated from three tumor-shape prototypes. Between 
each pair of prototype images, 48 morph images were generated, resulting in a total of 147 images. (B) On each trial, observers saw a simulated 
tumor target (indicated by the red arrow; note that the red arrow was never shown in actual experiment) superimposed on a real radiograph for 
500 ms, which was followed by a noise mask covering the full screen for 1,000 ms. Then a randomly chosen simulated tumor was shown at the 
center of the screen and observers pressed the left or right arrow key to adjust it and match it with the target. They confirmed their response by 
hitting the space bar and after a 250-ms inter-trial-interval, the next trial began.
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Results

Our goal was to measure individual differences in radiologist 
perception and compare these to the individual differences found 
in a sample of untrained observers. In Experiment 1, we used 
artificial radiographs: images with controlled shapes that were 
presented briefly in noise (Figure 1A). The background noise was 
taken from authentic radiographs (Bowyer et al., 1996), and was 
therefore realistic. The simulated tumors, on the other hand, were 
intentionally artificial because we  aimed at having highly 
controlled stimuli with solid ground truth information; this 
allowed us to precisely measure perceptual biases in judgment. On 
each trial, the clinician saw a brief image of a radiograph with a 
simulated tumor. The clinician was asked to find the simulated 
tumor in the noise image, and then to match that simulated tumor 
with a test stimulus in a continuous report paradigm (Figure 1B). 
The advantage of this paradigm over categorization or forced-
choice tasks is that it gives trial-wise errors and allows us to 
measure a complete error distribution with high-resolution 
information. The goal here was not to recreate a diagnostic 
imaging task, but to measure perceptual biases for visual stimuli 

that used noise backgrounds similar to those found in 
typical radiographs.

The results showed that the practicing radiologists are able to 
match the artificial tumor with a corresponding shape very 
accurately: mean JND was 10.5 morph unit with standard 
deviation 2.0 morph unit). This confirms that they were able to 
detect and recognize the simulated tumors. Our goal was to look 
for individual differences that may have been stable and consistent 
within a particular observer—whether there are idiosyncrasies in 
clinician perception. To measure this, we  calculated the 
consistency in the observer judgments of the simulated tumors. 
Each simulated tumor was different, and we measured systematic 
errors in judgments for each specific image. Insofar as there are 
differences in clinician perception, they might report deviations 
or biases and (mis)report a simulated tumor consistently.

Figure 2A shows an example of an individual radiologist’s 
biases as a function of stimulus number and all remaining 
radiologists are shown in Figure 2D. We calculated the split half 
correlation within each observer (Figure 2B) across all of the 
stimuli and found that there was a significant within-participant 
correlation (Figure  2C, left panel, red bar; mean Pearson’s 

A

D

B C

FIGURE 2

Experiment 1, individual differences in radiologists’ perception. (A) An example radiologist’s error plot. The abscissa shows the stimulus index (from 
Figure 1A) and the ordinate is the observer’s continuous report error. Because of the limited number of trials, data were down-sampled by binning 
every three neighboring simulated tumors on the continuum into one; this resulted in 49 instead of 147 data points (see Experiment 1, Data 
Analysis). For the purposes of visualization, we randomly split the data into two halves (red and blue curves) and plotted them separately (in the 
analysis this procedure was repeated, see Methods). The shaded area around the two halves represents the 95% bootstrapped confidence interval 
for each half. (B) The average bootstrapped split-half within-subject correlation for each radiologist. Error bars represent the 95% bootstrapped 
CIs for each individual radiologist. (C) Within-subject consistency and between-subject consistency were averaged within each group of observers 
(radiologists in red; untrained observers in yellow). For both groups, the within-subject correlations were significantly higher than between-subject 
correlations, and radiologists were significantly more consistent within themselves compared to untrained observers. Error bars represent the 95% 
bootstrapped CIs and the horizontal black lines represent the 97.5% upper bounds of the permuted null distributions. *p < 0.05, ***p < 0.001. 
(D) Individual radiologist’s error plots for Radiologists B-M. Strong idiosyncrasies are clear between different radiologists while at the same time 
there are noticeable consistencies within each radiologist, indicating stable response biases. The abscissa and ordinates for error plots in (D) are 
exactly the same as those in (A) so for visual simplicity, they are not labeled.
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r = 0.37, p < 0.001, permutation test). Hence, each observer had 
idiosyncratic biases in their perceptual reports, and those were 
consistent within each observer. We  also calculated the 
between-observer correlation, using the same approach. This is 
the correlation between different clinicians, or how similar their 
residual errors were to each other; it is a measure of how much 
agreement there is between observers. We found that there was 
significantly more correlation within a given clinician than 
between clinicians (Figure  2C, right panel, red bar; mean 
r = 0.22, bootstrap test, p < 0.001). This cannot be attributed to 
noise. Simply adding noise reduces the correlation both within 
and between observers; adding noise cannot increase the within 
observer correlation. The results suggest that individual 
clinicians have consistent biases in their perceptual reports. The 
source of these biases is unclear, but they are 
observer-specific.

To compare this sample of clinicians with an untrained 
group, we collected data on the same experiment with another 
group of naive untrained non-clinical observers (Figure 3). The 
observers performed the exact same continuous report 

matching task. Untrained observers also perceived the 
simulated tumors accurately (mean JND: 10.0 morph unit, 
standard deviation: 1.9 morph unit; see Experiment 1, Data 
Analysis for the estimation of JNDs) and their discriminability 
did not differ from that of radiologists (t = 0.64, p = 0.53). 
We also looked into the within-subject and between-subject 
consistency among untrained observers and found qualitatively 
similar results (Figure  2C). First, there were significant 
individual differences in the untrained observers (Figure 2C, 
left panel, yellow bar; mean r = 0.30, p < 0.001, permutation test; 
individual observer within-subject correlations in Figure 3B). 
The between-subject correlation was significantly lower 
(Figure 2C, right panel, yellow bar; mean r = 0.17, p < 0.001, 
bootstrap test). This echoes the group of radiologists: there are 
individual differences in simulated tumor recognition, even in 
untrained observers.

There are, however, several differences between the 
radiologists and untrained observers that are worth noting. First, 
the within-observer correlation was higher for the radiologist 
group than for the untrained observers (p < 0.05, bootstrap test). 

A

C

B

FIGURE 3

Experiment 1, individual differences in untrained observer perception of simulated tumors. (A) An example untrained observer’s error plot (as in 
Figure 2). The shaded ribbons around the two halves (red and blue data) represent the 95% bootstrapped confidence intervals for each half. 
(B) The bootstrapped within-subject correlation for each untrained observer (c.f., the group average in Figure 2C). One observer (Observer K) 
showed a moderately negative within-subject correlation, but this could be due to chance. Error bars represent the 95% bootstrapped CIs. 
(C) Individual subject error plots for untrained observers B-K. The individual differences previously found among radiologists (Figure 2) were 
replicated with the untrained observers. Ordinate and abscissa for each error plot in (C) are identical to those in panel (A).
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Clinicians are more consistent in their observer-specific biases 
than untrained observers. Given that clinicians and untrained 
observers do not differ significantly in their perceptual sensitivity 
measured by JNDs, this result echoes our hypothesis that 
idiosyncratic perceptual biases could be observed even without 
differences in overall perceptual sensitivity. Second, the between-
subject correlation was not 0  in either group (ps < 0.001, 
permutation test). There are therefore some consistencies 
between observers in how these stimuli are judged. The 
individual differences, however, significantly outweighed the 
commonality, since the within-subject correlations of both 
groups were significantly higher than the between-subject 
correlations (ps < 0.001). Together, the results in Experiment 1 
showed that radiologists and untrained observers both 
demonstrated strong individual differences in their perceptual 
biases towards different simulated tumors in a shape matching 
task, and radiologists tend to have higher consistency in their 
own biases.

However, several questions were still left unanswered. First, in 
Experiment 1, although we  used real mammograms as 
backgrounds, the simulated “tumors” were clearly artificial and 
different from real tumor shapes (Figure 1A). It is unclear whether 
radiologists would show any idiosyncratic perceptual biases on 
real or very-close-to-real radiographs. Second, it remains 
unknown whether these perceptual biases can be observed in 
perceptual tasks other than continuous report shape matching. 
Third, we wondered whether similar individual differences would 
still exist for medical images other than mammograms. Therefore, 
to further explore these questions, we  conducted a 
second experiment.

Experiment 2

Raw data for Experiment 2 were obtained from a published 
study (Ren et al., 2022).

Methods

Participants
Seven trained radiologists (3 female, 4 male, age: 

28–40 years) and five untrained observers (3 female, 2 male, 
age: 23–25 years) were recruited in the experiment. Sample size 
was determined based on previous studies on the perceptual 
performance of radiologists and individual differences in 
visual perceptual biases (Kosovicheva and Whitney, 2017; 
Manassi et al., 2019; Wang et al., 2020; Manassi et al., 2021). 
Experiment procedures were approved by and conducted in 
accordance with the guidelines and regulations of the 
Institutional Review Board at University of California, 
Berkeley. Participants all consented to their participation in 
the experiment.

Stimuli and design
Fifty CT lesion images were randomly sampled from the 

DeepLesion Dataset (Yan et al., 2018), and fifty simulated lesion 
images were generated through the Generative Adversarial 
Networks (GAN) trained with 20,000 real CT lesion images from 
the DeepLesion Dataset (Ren et al., 2022). This resulted in a total 
of 100 images (see Figure 4A for examples). According to Yan et al. 
(2018), there were multiple types of lesions in the DeepLesion 
Dataset, including lung nodules, liver tumors, enlarged lymph 
nodes, and so on, and images included both chest and abdomen 
CT images.

Both radiologists and untrained observers were recruited to 
perform an image rating task (Figure 4B). On each trial, one of the 
100 images was pseudo-randomly chosen to present to the 
observers and it remained on the screen for at most five seconds. 
Observers were instructed to rate the realness of the image on a 
continuous scale ranging from 0 to 10 (0: fake, 10: real). 
Participants could respond at any point during image presentation, 
or they could take as much time as necessary after the image 
offset. The next trial started immediately after their response. Each 
image was shown exactly once in these 100 trials. Both radiologists 
and untrained observers were informed that the stimuli shown in 
the experiment were composed of 50% real images and 50% 
GAN-generated images.

To estimate test–retest reliability, 20 real images and 20 
GAN-simulated images were randomly chosen from the 
aforementioned 100 images. These 40 images were randomly 
inserted in the previous 100 image list and were presented in the 
same manner. Thus, there were in total 140 trials for 
each participant.

Data analysis

Due to a technical problem during image display, one of the 
40 repeated images failed to show up for some participants, so 
only the ratings for 39 out of the 40 repeated images were used (39 
initial ratings and 39 retest ratings) in all following analyses.

We recognized that the raw ratings could be influenced by 
participants’ extreme response tendencies. For example, some 
might tend to give higher ratings across all images while some 
may rate lower. Throughout the manuscript we refer to these types 
of response tendencies as “response propensities,” to avoid 
confusion with other terms like response bias, that can mean 
different things in different circumstances. To reduce the effect of 
response propensities, for each participant, we first normalized 
their raw ratings by rescaling them to range from 0 to 10 using the 
equation below ( X  is the raw ratings from one participant, 
Xmin  is the minimum of this participant’s raw ratings and Xmax  

is the maximum).
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After normalization, for each participant, we  again used 
response errors as a proxy for perceptual biases. We estimated 
their response errors by calculating the absolute difference 
between the normalized ratings and the corresponding ground 
truth of each image (0 for GAN-generated images and 10 for real 
CT images). Then, similar to Experiment 1 (see Data Analysis), 
we estimated the within-subject and between-subject consistency 
of their response errors. Within-subject consistency was 
estimated by the average test–retest reliability among participants 
(i.e., correlating the response errors from the 39 initial trials and 
the 39 retest trials). Figure 4C shows the individual split-half 
within-subject correlations for each radiologist and each 
untrained observer. Between-subject consistency was estimated 
as the average pairwise correlations among participants. This 
was calculated separately for radiologists and 
untrained observers.

Bootstrap distributions of the within and between-subject 
correlations were estimated to test whether the average 
correlations were simply driven by extreme observer(s). For 
within-subject correlations, on each iteration, we  randomly 

sampled seven radiologists and five untrained observers with 
replacement, calculated each observer’s within-subject correlation 
and then averaged the correlations through Fisher transformation 
(Figure 4D, left panel). For between-subject correlations, on each 
iteration, we sampled the same number of pairs of subjects from 
all possible pairs of subjects with replacement, calculated all 
pairwise correlations for the sample and the between-subject 
correlation was estimated as the mean of all pairwise correlations 
(Figure 4D, right panel). These procedures were repeated 1,000 
times to estimate the 95% within-subject and between-subject 
bootstrapped CIs for radiologists and untrained 
observers separately.

To examine the expected correlations by chance, permuted 
null distributions were also calculated in Experiment 2 by 
shuffling the image labels for the initial trials and the retest trials, 
so that the response error for one image might then be treated as 
the response error for another. Null distributions were separately 
calculated for radiologists and untrained observers. On each 
iteration, the shuffled response errors from initial trials and retest 
trials from the same observer were correlated to obtain a null 

A

C D

B

FIGURE 4

Experiment 2 example stimuli and results. (A) Examples of real (left column) and GAN-generated (right column) CT lesion images used in the 
experiment. Visually and qualitatively the images are similar, and a previous study showed that these GAN-generated images were visually 
metameric: they were indistinguishably realistic to both radiologists and untrained observers (Ren et al., 2022). (B) An example trial in Experiment 
2. On each trial, either a real CT lesion image or a GAN-generated image was shown on the screen for at most 5 s. Participants could rate the 
realness of the image from 0 to 10 (0: fake, 10: real) anytime during the image presentation or after the disappearance of the image (self-paced). 
The next trial began after the rating was made. (C) Within-subject consistency for each radiologist and untrained observer, calculated from the 
split-half correlation of each observer’s response errors of the same images. (D) Within-subject correlations significantly exceeded between-
subject correlations for both groups (p < 0.01 for untrained observers and p < 0.001 for radiologists), which replicated the individual differences 
found in Experiment 1 and extended the results to a new task, a new type of medical image, and with more realistic stimuli. Error bars represent 
the 95% bootstrapped CIs and the horizontal lines represent the 97.5% upper bounds of the permuted null distribution. **p < 0.01, ***p < 0.001.
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estimate of within-subject consistency. This was done for every 
observer (every radiologist and every untrained observer), and the 
set of pairwise correlations were averaged across the group of 
observers to create one null sample. This procedure was repeated 
10,000 times to create a null within-subject distribution. To create 
between-subject null distributions, we  calculated all pairwise 
correlations between the shuffled initial response errors from one 
observer and the shuffled retest response errors from another 
observer. This was repeated 10,000 times to generate a between-
subject null distribution. Permuted null distributions were 
calculated separately for radiologists and untrained observers, 
and, from these, 95% permuted confidence intervals (CIs) 
were estimated.

Results

In Experiment 2, we tested whether idiosyncratic perceptual 
biases can be observed with images from a different modality (CT 
images), a very different perceptual task and highly realistic 
GAN-generated images. Generative Adversarial Networks (GAN) 
were trained by Ren et al. (2022) with real CT lesion images taken 
from the DeepLesion Dataset (Yan et al., 2018), and then the GAN 
model was used to generate artificial lesion images. Observers 
were recruited to perform an image discrimination task including 
50 real lesion images and 50 GAN-generated images (see 
Figure 4A for example stimuli), in which both radiologists and 
untrained observers rated how realistic each image appeared. 
Among these 100 images, 20 real images and 20 artificial images 
were repeated twice so that we could estimate the within-subject 
consistency. Figure 4B shows an example trial.

In general, the GAN-generated images were indistinguishable 
from real lesion images for both untrained observers and 
radiologists (mean d’ values: 0.18 and 0.27 respectively) and there 
was no significant difference between different groups of 
participants (t = 0.4, p > 0.5). This suggested that the artificial 
GAN-generated images were highly realistic and even experts 
with training could not distinguish them effectively (Ren et al., 
2022). This general lack of sensitivity, however, does not preclude 
individual biases in the discrimination of the CT lesion images.

The goal of the following analysis was to measure whether 
there are systematic and idiosyncratic stimulus-specific biases in 
the perception of CT lesions by radiologists and untrained 
observers. As in the first experiment, we measured within and 
between subject consistency of the perceptual judgments. Since 
raw ratings may be subject to observers’ response propensities, 
we normalized the ratings for each observer and then calculated 
response errors to get a more accurate estimate of their perceptual 
biases based on the normalized ratings (see Experiment 2, Data 
Analysis). Figure  4C shows each observer’s within-subject 
consistency and the mean within-subject and between-subject 
consistency is shown in Figure 4D. We again found a significantly 
higher within-subject consistency (Figure 4D, left panel) in both 
radiologists (Pearson’s r = 0.56) and untrained observers (Pearson’s 

r = 0.34) compared to their corresponding between-subject 
consistencies (Figure  4D, right panel; r = 0.22 and r = 0.12, 
bootstrap test, p < 0.001 and p < 0.01, for radiologists and untrained 
observers respectively). This replicated the findings in Experiment 
1, indicating that each radiologist and each untrained observer 
have their own unique biases in the perception of medical images 
that cannot be  explained by shared biases among observers. 
We  again found that between-subject correlations were 
significantly higher than the permuted null correlations for both 
groups of observers (permutation test, p < 0.001 and p < 0.01 for 
radiologists and untrained observers respectively), suggesting that 
observers do share some of their biases. This could be due to some 
textures or features of the images that commonly influenced the 
observers’ discrimination of the real or fake CT lesion images.

Taken together, in Experiment 1 we found idiosyncratic biases 
in radiologists when they made perceptual judgments about 
artificial simulated tumor shapes, and their biases were stronger 
compared to untrained observers. Experiment 2 further extended 
these results and demonstrated strong individual variations in 
radiologists’ biases in the perceived realness of GAN-generated 
and real CT lesion images, suggesting that idiosyncratic perceptual 
biases among radiologists are not tied to a specific type of medical 
images or tasks, but rather they can be generally observed among 
different modalities of medical images and different tasks. These 
individual observer specific biases are found even without 
significant difference between observers’ perceptual sensitivity 
measured by d’.

Discussion

We found significant individual differences in radiologists’ 
perceptual biases. Experiment 1 showed that each radiologist 
demonstrates unique perceptual biases towards simulated tumors 
in a shape matching task, and their own internal biases were even 
more consistent than untrained observers (Figure 2C). Experiment 
2 replicated and extended the results by again showing individual 
differences in radiologists when they perceived GAN-generated 
and real CT lesion images in an image discrimination task 
(Figure 4D). These individual differences were not simply induced 
by task or stimuli since they were found across different 
radiologists, different modalities of medical images, and different 
tasks. Thus, we  propose that the individual differences in 
radiologist perception may arise at least in part because of 
distortions in perceptual judgments at the level of specific 
clinicians. These kinds of individual differences in basic perceptual 
bias could, in turn, potentially influence the performance of 
radiologists in diagnostic practice.

What are the potential mechanisms underlying these 
idiosyncratic perceptual biases among radiologists? One 
possibility is that different radiologists may have different 
perceptual templates or perceptual representations of the tumor 
or of medical images in different modalities, analogous to 
studies showing that human observers have different perceptual 
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templates of faces (e.g., Dotsch and Todorov, 2012; Moon et al., 
2020). Differences in these templates could be associated with 
different biases, and could arise as a natural consequence of 
their intensive training and years of experience (Imhoff et al., 
2011; Jack et  al., 2012; Soto, 2019). Previous research has 
supported that attention towards perceptual stimuli can 
be guided differently according to the perceptual templates or 
mental representations (e.g., Griffin and Nobre, 2003; Olivers 
et  al., 2011), so the variations in observers’ mental 
representations could potentially direct their attention to 
different parts of the simulated tumors or the radiograph 
background and thus lead to idiosyncratic perceptual biases. It 
remains unknown if this is the case, but it is worth pursuing in 
future research.

Another possible explanation is natural statistics. Radiologists 
may not have literal “templates,” but may have some priors or 
learned distributions of the statistics in medical images, similar to 
how human observers represent the statistics of scenes (Torralba 
and Oliva, 2003; Stansbury et al., 2013). These priors may include 
low-level information such as luminance and contrast, but may 
also contain higher-level, multi-dimensional representations of 
textures. These kinds of image statistics could underlie perception 
of gist in medical images (Evans et al., 2019). Sensitivity to this 
information can be shaped specifically by the natural statistics of 
medical images that clinicians are exposed to during their medical 
training and diagnostic practice, and it can also come from other 
non-specific visual images or perceptual experiences in their 
everyday life. This could explain why the GAN-generated medical 
images may have confused the experts in Experiment 2, since the 
image statistics would have been learned and captured by the 
GAN. Our current study cannot pinpoint the underlying 
mechanism responsible for idiosyncratic perceptual biases, but 
image statistics or templates (or both) could be involved. It would 
be valuable to explore this in future research.

There are several concerns raised by our results that 
we  address here. First, it might be  argued that stronger 
idiosyncratic biases in the radiologists in Experiment 1 could 
simply result from the radiologist group being more attentive to 
the task or lapsing less frequently. In principle, that may explain 
the higher within-subject correlation as well as the higher 
between-subject correlation in Figure  2C. Although this is 
possible, this does not seem likely, as the overall discriminative 
ability was fairly similar between the two groups and the just 
noticeable difference was comparable and not significantly 
different for both the clinician group and the naïve untrained 
group (see Experiment 1 results). Hence, the stronger within-
subject correlations—stronger individual differences within the 
clinicians—did not simply arise because of attentiveness. On the 
other hand, the stronger individual differences in the clinician 
group could arise, in part, from the unique and lengthy training 
that the clinicians receive, or the practice that they have had in 
related types of perceptual tasks.

One limitation is that the task we used in the Experiment 1 
was not realistic and arguably was not representative or typical of 

a radiologist’s task because radiologists mostly perform detection 
or categorization tasks in their everyday routine, while our task 
was a continuous report adjustment method. However, the 
adjustment task can be  more advantageous than detection or 
categorization tasks since it can measure the subjective perceptual 
representations and criterion of the observers (Pelli and Farell, 
1995), it provides very fine-grained information about errors, and 
it provides critical behavioral insights for understanding the 
perceptual biases in medical image perception. Moreover, there is 
no evidence that we know of that continuous report psychophysical 
measures systematically misrepresent recognition processes (e.g., 
Prinzmetal et al., 1998; see Stevens, 1958; Gescheider, 2013 for 
reviews). Nevertheless, future studies could extend our results by 
testing radiologists with our controlled realistic stimuli in a task 
that is more similar to those in clinical practice.

Another related concern is that the task in Experiment 1 may 
be  unrealistic because it required a variety of perceptual and 
memory related skills. Observers (naïve observers or skilled 
radiologists) were asked to detect and recognize a simulated 
tumor. During this task, they had to hold information in visual 
short-term memory and subsequently match a stimulus to what 
was previously seen. This is indeed broader in scope than a 
traditional forced-choice paradigm. Nevertheless, the detection, 
recognition, and visual short term memory processes involved in 
our task are the kinds of abilities that are used by clinicians on a 
daily basis. Multitasking is not uncommon for radiologists in 
realistic settings; they often have multiple screens and multiple 
radiographs; they gaze between different regions of the visual field 
and integrate information separately from multiple radiographs 
and files; radiologists often need to hold in short term memory 
information about the patient, diagnostic history, etiology, 
referring physician, etc.; and, they may be  interrupted 
mid-diagnosis by the phone, noise, and other realistic factors (see 
Kansagra et al., 2016, for a review). Moreover, visual short term 
memory processes work even at the shortest time scales (e.g., even 
across saccades; Irwin, 1991). In other words, the complexity of 
the radiologist’s task goes well beyond a simple instantaneous 
forced-choice.

Our experiment does not capture the full complexity of the 
radiologist’s family of tasks, but the basic processes it taps are 
highly relevant to those used by radiologists. The results 
reinforce this: radiologists had higher within-subject 
consistency than the untrained observers. This suggests that 
individual radiologists have more consistent and systematic 
biases in this simulated tumor matching task compared to 
untrained observers, indicating that their expertise or 
experience is in fact reflected in this task. Although radiologists 
and untrained observers had similar sensitivity, as measured by 
JNDs, this is not surprising since previous studies have found 
that untrained, naïve observers can perform significantly better 
than chance in the Vanderbilt Chest Radiograph Test (Sunday 
et al., 2017), and other studies found that MDs are not always 
more sensitive than untrained participants in medical image 
perception tasks, and sometimes they even have lower 
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sensitivity compared to less experienced observers (e.g., Wolfe, 
2022). The similar sensitivity in MDs and untrained observers 
in our experiment could be due to a ceiling effect in our data, 
but the fact that the consistency in reports is higher for MDs 
suggests that they do, in a sense, perform the task better than 
untrained observers.

One way to address this question about ecological validity is 
to test whether our results extend to other tasks, especially 
involving real medical images and stepping beyond the artificial 
radiographs. Therefore, we  analyzed data from a second 
experiment that used realistic CT lesion images. Although this is 
a different area of medical image perception, we hypothesized that 
idiosyncratic perceptual biases can be observed across domains 
and should not be limited to any particular modality, stimulus, or 
task. In the second experiment, we used real CT lesion images 
combined with artificial but realistic lesion stimuli created by Ren 
et  al. (2022). These stimuli (see Figure  4A for example) are 
different than artificial stimuli in Experiment 1 (Figure  1A) 
because they were highly realistic, even metameric (completely 
confusable) with real lesions (Ren et  al., 2022). Using those 
realistic images, we found that both radiologists and untrained 
observers showed clear individual differences in their perception 
of the real or fake CT lesion images, which extended our previous 
findings from a matching task to a real/fake rating task and from 
artificial shapes to highly realistic CT images. The results from 
Experiment 2 further supported our hypothesis that observer-
specific perceptual biases are not domain modality or task-specific. 
Rather, they are likely a ubiquitous effect in realistic medical 
imaging tasks with implications across domains. Therefore, 
though our tasks might not be  the most realistic or cannot 
be directly linked with diagnostic performance of radiologists, 
these compelling results clearly demonstrate that even well-trained 
radiologists can have idiosyncratic and stimulus-specific 
perceptual biases with medical images under different task settings.

One might still be concerned about the internal consistency for 
these idiosyncratic biases. Using the split-half Pearson’s correlation, 
we  found that radiologists had an internal reliability of 0.37 
(Experiment 1) and 0.42 (Experiment 2). While this may seem 
somewhat low, it is significantly higher compared to what was 
expected by chance (i.e., the permuted null distributions) and it 
may appear low only because our stimuli were numerous and very 
finely spaced. In order to compare our results with previous 
published studies, in Experiment 1, we dummy-coded the data into 
binned categories (like a three-alternative-forced-choice, 3AFC, 
classification task, see Experiment 1, Data Analysis for details) and 
the Cronbach alpha rises substantially (alpha = 0.85 for 
radiologists), and in Experiment 2, the Cronbach alpha for 
radiologists was 0.95, which are indeed comparable to that reported 
in a previous study on individual difference in a radiograph-related 
task (Sunday et al., 2017). This is unsurprising because noise at the 
individual stimulus level is averaged out and what remains is a less 
noisy estimate of the more substantial individual differences.

The between-observer consistency is typically the focus of 
most medical image perception research (see Donovan et al., 2017 

for a review; Elmore et al., 1994; Feldman et al., 1995; Beam et al., 
1996; Elmore et al., 2002; Lazarus et al., 2006; Tan et al., 2006; 
Elmore et al., 2009; Donovan and Litchfield, 2013; Sunday et al., 
2017, 2018; Pickersgill et al., 2019; Sonn et al., 2019). Recently, a 
study by Sunday et al. (2017) explored the internal within-observer 
consistency in medical image perception. Our results complement 
this from a different perspective, showing that it is equally or even 
more important to measure individual differences in each 
radiologically-relevant task by measuring both the within-subject 
and between-subject consistency in radiologists. Our results also 
go a step further to compare the individual differences in 
radiologists with untrained non-clinical observers, and they 
provide evidence for a stronger idiosyncrasy in radiologists’ 
perception of artificial and realistic medical images across domains, 
which was not clear in previous studies on individual differences 
in radiologists. The stronger within-subject consistency compared 
to between-subject consistency also provides a direct insight about 
the relative importance of the individual perceptual variations and 
shared biases among observers: individual differences are 
substantial, and can even swamp the between-subject similarities.

The scarcity of the expert radiologist pool undoubtedly 
limited the number of available observers we were able to test. 
Although this is a limit in group-wide analyses, we analyzed every 
individual observer and measured trial-wise effects within each 
observer. In fact, even when sample size was limited, past research 
has been able to demonstrate strong and consistent idiosyncratic 
visual perceptual biases towards object location, size, motion and 
face perception with the help of psychophysics (Afraz et al., 2010; 
Schütz, 2014; Wang et al., 2020). Our results aligned with these 
previous findings and provided new insights of the prevalent 
idiosyncratic perceptual biases that can be found with medical 
images and among well-trained radiologist experts.

There are several implications of the findings reported here. 
First, clinicians vary in their perceptual abilities. Although this is 
not at all surprising, the stimulus-specific way in which clinicians 
vary in the perceptual biases is novel. Second, we  found that 
individual differences are not washed out by training. To address 
this, we performed a Fisher’s combined probability test (Fisher, 
1925; Fisher, 1948; Rosenthal, 1978), which combines the 
statistical results from both Experiment 1 and Experiment 2 in a 
type of “mini meta-analysis” (Goh et al., 2016). We found that, 
across the experiments, there is a significantly higher within-
subject consistency for radiologists compared to untrained 
observers (χ2

2  = 12.9, p < 0.005). That is to say, counterintuitively, 
some biases may get stronger with training, leading to more stable 
individual differences within radiologists compared to untrained 
observers. Combined with the fact that radiologists and untrained 
observers were not significantly different in terms of perceptual 
sensitivities (measured by JNDs in Experiment 1 and d’ in 
Experiment 2), this result again echoes our hypothesis that 
variations in perceptual biases could exist even without overall 
differences in perceptual sensitivity. Third, our results show that 
even untrained observers bring with them individual biases and 
idiosyncrasies in their perceptual judgments. Fourth, 

https://doi.org/10.3389/fpsyg.2022.1049831
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Wang et al. 10.3389/fpsyg.2022.1049831

Frontiers in Psychology 12 frontiersin.org

idiosyncratic distortions were found across two different 
domains, two different modalities, and two different imaging 
techniques (see Experiment 1 vs. Experiment 2).

More importantly, the fact that there are individual differences 
between observers could have critical implications for diagnostic 
medical imaging. For example, in some countries, it is common 
practice to have multiple readers rate or diagnose radiographs 
(Australia, 2002; Yankaskas et al., 2004; Amendoeira et al., 2013). 
Given that much of the variance in observer judgments is attributable 
to the individual observer themselves, it may directly influence the 
employment or selection of the pairs of observers: two observers that 
have similar individual differences may perform more poorly (since 
the biases could potentially exaggerate after combining) than two 
readers who have more independent individual differences. 
Individual differences that are more independent will tend to cancel 
out and thus lead to more accurate medical image perception (Van 
Such et al., 2017; Corbett and Munneke, 2018; Taylor-Phillips and 
Stinton, 2019). Thus, our results may suggest the importance of 
measuring perceptual biases in radiologists before grouping them 
into pairs. We believe this could be a valuable strategy in paired 
reading, as it goes well beyond simply relying on radiologists’ 
diagnostic accuracy (e.g., Brennan et al., 2019).

Another important implication of our results is that different 
clinician observers may show different native ability in particular 
specialties or even different imaging modalities. Returning briefly to 
the face recognition literature, the individual differences in face 
recognition arise because of many factors including age and 
experience, but also genetic differences (Wilmer et  al., 2010; 
Shakeshaft and Plomin, 2015). Some observers are simply genetically 
predisposed to be more sensitive to faces. The same may be true in 
medical image perception. Although we  do not know what 
proportion of the individual differences are accounted for by genetic 
factors, this will be an important future area of research. Whether or 
not there is a substantial genetic contribution, the individual 
differences in clinician perception can also be measured, selected, 
and trained. Some previous work has already started to address this 
with mostly focusing on perceptual sensitivity (Corry, 2011; Birchall, 
2015; Langlois et al., 2015; Sunday et al., 2017, 2018; see Waite et al., 
2019 for a review). The individual differences reported here also echo 
those found in other domains of perception research (e.g., Wilmer 
et al., 2010; Wang et al., 2012; Schütz, 2014; Wexler et al., 2015; 
Grzeczkowski et al., 2017; Canas-Bajo and Whitney, 2020; Wang 
et al., 2020), and raise the possibility that idiosyncratic distortions in 
clinician perception may be  widespread and extend across 
different domains.

Conclusion

Our findings provide a new insight about the individual 
differences that exist in the perceptual judgments of professional 
radiologists: apart from perceptual sensitivity, which has been 
proposed and investigated extensively in the past, there may 
actually be idiosyncratic and systematic biases in their perceptual 
judgments. Understanding these idiosyncratic perceptual biases 

could be critically important for a variety of reasons, including 
training, career selection, bias compensation, and employing paired 
readers in the field of medical imaging. At an even broader level, it 
is worth noting that individual differences in observer perception 
could have important consequences in many fields beyond 
medicine. For example, in TSA screeners, professional drivers, 
airline pilots, radar operators, and in many other fields where single 
observers are relied on for life-altering perceptual decisions.
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