
fpsyg-13-882446 April 18, 2022 Time: 14:4 # 1

ORIGINAL RESEARCH
published: 25 April 2022

doi: 10.3389/fpsyg.2022.882446

Edited by:
Siyuan Chen,

University of New South Wales,
Australia

Reviewed by:
Antonella Lopez,

University of Bari Aldo Moro, Italy
Alessandro Oronzo Caffò,

University of Bari Aldo Moro, Italy

*Correspondence:
Stefan J. Teipel

stefan.teipel@med.uni-rostock.de

Specialty section:
This article was submitted to

Human-Media Interaction,
a section of the journal
Frontiers in Psychology

Received: 23 February 2022
Accepted: 22 March 2022

Published: 25 April 2022

Citation:
Teipel SJ, Amaefule CO,

Lüdtke S, Görß D, Faraza S, Bruhn S
and Kirste T (2022) Prediction

of Disorientation by Accelerometric
and Gait Features in Young and Older

Adults Navigating in a Virtually
Enriched Environment.

Front. Psychol. 13:882446.
doi: 10.3389/fpsyg.2022.882446

Prediction of Disorientation by
Accelerometric and Gait Features in
Young and Older Adults Navigating in
a Virtually Enriched Environment
Stefan J. Teipel1,2* , Chimezie O. Amaefule1, Stefan Lüdtke3,4, Doreen Görß2,
Sofia Faraza2, Sven Bruhn5 and Thomas Kirste3

1 Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Rostock/Greifswald, Rostock, Germany, 2 Department
of Psychosomatic Medicine, University Medicine Rostock, Rostock, Germany, 3 Mobile Multimedia Information Systems,
Institute for Visual and Analytic Computing, University of Rostock, Rostock, Germany, 4 Institute for Enterprise Systems,
University of Mannheim, Mannheim, Germany, 5 Institute for Sports Science, University of Rostock, Rostock, Germany

Objective: To determine whether gait and accelerometric features can predict
disorientation events in young and older adults.

Methods: Cognitively healthy younger (18–40 years, n = 25) and older (60–85 years,
n = 28) participants navigated on a treadmill through a virtual representation of the city
of Rostock featured within the Gait Real-Time Analysis Interactive Lab (GRAIL) system.
We conducted Bayesian Poisson regression to determine the association of navigation
performance with domain-specific cognitive functions. We determined associations
of gait and accelerometric features with disorientation events in real-time data using
Bayesian generalized mixed effect models. The accuracy of gait and accelerometric
features to predict disorientation events was determined using cross-validated support
vector machines (SVM) and Hidden Markov models (HMM).

Results: Bayesian analysis revealed strong evidence for the effect of gait and
accelerometric features on disorientation. The evidence supported a relationship
between executive functions but not visuospatial abilities and perspective taking with
navigation performance. Despite these effects, the cross-validated percentage of
correctly assigned instances of disorientation was only 72% in the SVM and 63% in
the HMM analysis using gait and accelerometric features as predictors.

Conclusion: Disorientation is reflected in spatiotemporal gait features and the
accelerometric signal as a potentially more easily accessible surrogate for gait features.
At the same time, such measurements probably need to be enriched with other
parameters to be sufficiently accurate for individual prediction of disorientation events.
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INTRODUCTION

Aging is associated with a decline in walking ability (Baudendistel
et al., 2021) and cognitive performance (Iachini et al.,
2009). These changes become particularly evident in dual-task
conditions. For example, older people have difficulties walking
and navigating in a new environment (Lithfous et al., 2013; Lester
et al., 2017), resulting in reduced wayfinding abilities. These
changes are even more pronounced during the transition from
healthy aging to cognitive impairment and dementia (Gazova
et al., 2012; Cohen and Verghese, 2019; Costa et al., 2020). They
represent a high burden on older people and lead to fear of
getting lost, social withdrawal, and a subsequent decrease in
physical mobility (Panel on Prevention of Falls in Older Persons,
American Geriatrics Society and British Geriatrics Society, 2011).

At the same time, wayfinding problems are amenable to
technical assistance. Navigation systems are already part of our
everyday environment; they support drivers and pedestrians,
for example. For older people and people with cognitive
impairments, in particular, it is important that assistance systems
do not replace remaining cognitive abilities, but rather make
use of them. Previous work has shown that habitual use
of navigation aids may decrease spatial memory performance
even in cognitively healthy people (Dahmani and Bohbot,
2020). Current technology development is therefore aimed at
situation-aware navigation assistance that supports the user
only when necessary (Teipel et al., 2016). Such systems require
accurate detection of navigation behavior, especially real-time
detection of episodes of disorientation before the user is lost
(Yordanova et al., 2017).

Previous studies used experiments in virtual reality (VR)
environments to assess spatial orientation (Zakzanis et al., 2009;
Kizony et al., 2017; Tascon et al., 2018; Costa et al., 2020;
Paliokas et al., 2020). VR approaches are highly controlled but
lack the dual-task characteristic of combining spatial navigation
with walking. One previous study found that navigational
performance results were comparable between a VR and a real-
world navigational test in young and older cognitively normal
adults and people with dementia (Cushman et al., 2008), but
VR testing alone obviously does not allow assessment of gait
and motion features during spatial navigation. On the other
hand, several studies used wearable sensors to assess the gait
and movement characteristics of cognitively normal older people
and people with dementia in real-life situations (Becu et al.,
2020; Mc Ardle et al., 2021; Pawlaczyk et al., 2021; Weizman
et al., 2021). Some of these real-world studies were primarily
aimed at exploring different components of spatial orientation
in normal human behavior and the underlying neural basis but
did not aim to map the full range of navigational behavior
in everyday situations (Wei et al., 2020). Other studies mainly
focused on the early detection of dementia symptoms using gait
characteristics in real-world environments (Mc Ardle et al., 2021;
Mulas et al., 2021; Weizman et al., 2021) or under dual task
conditions (Oh, 2021).

In a previous study, we had assessed whether accelerometric
features from wearable sensor devices were useful to identify
episodes of disorientation even before an individual has deviated

from the intended route (Schaat et al., 2019). We found that
accelerometry-detected episodes of disorientation with an area
under the receiver operating characteristics (ROC) curve (AUC)
of 75% and 79% correctly allocated disorientation episodes in
people with mild cognitive impairment (MCI) or dementia
moving through an urban environment (Schaat et al., 2019). This
level of accuracy suggested that there were relevant features in
the accelerometric signal to detect disorientation at the group
level. At the same time, the accuracy was not high enough for
individual situation detection. In addition, people with dementia
or MCI experienced a relatively small number of disorientation
episodes, which limited the training of an accurate model based
on positive events (Schaat et al., 2019).

Here, we transferred our previous approach to the better-
controlled environment within the Gait Real-Time Analysis
Interactive Lab (GRAIL) system. The GRAIL consists of a
physical treadmill combined with a large hemisphere screen
(Amaefule et al., 2020). In our experiment, the GRAIL
screen featured a virtual representation of the city center of
Rostock, resembling the environment of the previous real-
world experiment (Schaat et al., 2019). Participants were asked
to navigate through this environment while walking on the
treadmill. In a previous pilot study, we showed that this set-up
was feasible for use with older participants, including people with
cognitive decline, and allowed us to record a comprehensive set
of predictive features, including accelerometry, gait features, and
physiological signals (Amaefule et al., 2020). In addition, we were
able to induce disorientation episodes by removing landmarks
from the virtual environment to provide more instances for
model training. The key role of landmarks for spatial orientation
in virtual environments has previously been shown (Caffo
et al., 2018). In this study, we presented the results of this
approach in young and older adults without manifest cognitive
impairment. As a primary aim, we wanted to determine whether
a combination of accelerometry and gait characteristics was
accurate enough to immediately detect episodes of disorientation.
We hypothesized that the accerelometric and gait features may
yield sufficient accuracy for individual detection of disorientation
episodes in real time. Especially, we expected a level of
accuracy above 80% for the binary outcome of oriented vs.
disoriented. As a secondary aim, we determined whether the
number of disorientation events per participant was associated
with cognitive scores and aggregated accelerometric and gait
characteristics. The results of this study will be relevant to the
design of experiments with individuals with manifest cognitive
decline and also to the design of future real-world experiments
targeting situation-aware navigation aids.

MATERIALS AND METHODS

Subjects
For the ongoing GRAIL study, we recruited three groups of
participants: mobile, physically and cognitively healthy younger
(18–40 years) and older (60–85 years) participants, and physically
healthy persons with diagnosed MCI or mild dementia due to AD
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(Age: 60–85 years, MMSE: 15–27) according to NIA-AA criteria
(Albert et al., 2011; McKhann et al., 2011).

Patients and healthy older adults were recruited from the
memory clinic of the Rostock University Medical Center,
while the healthy young adults were recruited from within
the University of Rostock student community. Exclusion
criteria for all groups were other neurological conditions
besides MCI or dementia in the patient group, inability to
understand task instructions and questionnaire items, deaf-
muteness, and blindness.

Due to the COVID pandemic restrictions, recruitment of
patients with MCI and dementia was not possible for a longer
time interval so only four patients had been recruited during
the planned run-time of the project. Therefore, for the current
analysis, we used only the data of a subset of 28 older and 25
young cognitively healthy participants that had complete data
sets and behavioral annotation.

This study has been reviewed and approved by the Ethics
committee of the Rostock University Medical Center (Approval
No. A 2019-0062).

Experimental Set-Up
The experimental set-up has been described before (Amaefule
et al., 2020). In brief, the participants were guided along a path
in the virtual environment. Afterward, they were set back to
the starting point and asked to walk the same path again, this
time unguided. Navigation was possible by walking more to
the left or right on the treadmill; this rotated the participant’s
position in the virtual environment to the left or right. The
navigation route consisted of 14 major decision points (DP)
which were primarily locations at which the participant had to
decide to either continue in a particular direction, make a turn,
or identify the goal position. For half of the healthy young or
older subjects (the experimental group), phases of disorientation
were induced by changing landmarks or decision points in
the VR environment. These changes included (a) moving a
landmark from one intersection to the next intersection, (b)
adding a decision point, that is, an intersection, (c) blocking a
road, and (d) moving the goal indicator to a different location.
Overall, five locations were manipulated in the experimental
group as follows: DP4 – a red pillar was moved from DP7
to DP4; DP9 – the road was blocked; DP11 – a new path
was introduced; DP13 – the color of the pillar was changed to
red; DP14 – the goal location was moved a little further away
to DP14a. No changes to the environment were conducted in
the control group.

Before the experiment, the participants were familiarized with
the depicted city center by briefly showing them a map, such
that problems in wayfinding would be due to disorientation
instead of exploration in an unknown environment. We
recorded spatiotemporal and kinematic gait parameters through
the GRAIL system. In addition, we recorded accelerometric
signals from three wearable sensors on the left wrist, right
ankle, and chest, respectively, that each contained a three-axes
accelerometer and three-axes gyroscope sampled with 64 Hz.
Additionally, the chest sensor recorded an electrocardiogram

(ECG, 1,024 Hz), and the wrist sensor recorded electrodermal
activity (EDA, 32 Hz).

The experiments were video-recorded for subsequent offline
annotation of behavior.

Randomization of the young and older participants into the
experimental or control group was carried out using the program
Research Randomizer, accessible at https://www.randomizer.org.

Behavior Annotation
An offline annotation procedure was applied to the video
data recorded during the orientation task, for assessing the
observable orientation behavior of the participants using
the ELAN 5.8 tool (Wittenburg et al., 2006). As a coding
scheme, we used an adequate adaption of the coding scheme
provided by Yordanova et al. (2017). The same scheme
had been used in one field study before (Schaat et al.,
2019). This coding scheme also covers aspects of orientation
behavior, which were beyond the scope of wayfinding in
our VR set-up (e.g., behaviors associated with attention to
traffic). For this reason, we adapted the coding scheme to
capture only those behaviors that are obtainable within our
virtual reality set-up.

Specifically, to identify instances of disorientation, we
annotated when participants showed wandering behavior (i.e.,
non–goal-directed walk), communication behavior (i.e., asking
for help when disoriented), topological orientation (i.e., trying
to orient themselves based on the surrounding environment),
or spatial orientation (i.e., trying to orient themselves based
on landmarks). In addition, different types of errors that
are associated with disoriented behavior were annotated (i.e.,
initiation, realization, sequence, and completion errors). The
annotations were being evaluated based on the level of agreement
between two annotators independently rating the data of five
individuals, resulting in a Cohen’s kappa of 0.87.

For the current analysis, the different types of disorientation
behaviors were collapsed into a single feature of disorientation to
provide a binary outcome of oriented vs. non-oriented state at a
given time interval.

Neuropsychological Assessment
Neuropsychological assessment was only conducted on the older
participants and the MCI or dementia patients. The assessment
included the CERAD neuropsychological battery (Morris et al.,
1989), the Rey–Osterrieth Complex Figure Test (Rey, 1941;
Osterrieth, 1944), and the Perspective Taking/Spatial Orientation
Test (PTSOT) (Hegarty and Waller, 2004). Cognitive domain
composite scores assessing visual memory, executive functions,
visuospatial constructional ability, and spatial orientation were
computed by transforming raw scores of single tests to z-scores
(Coley et al., 2016; Voss et al., 2018). Each of these domain
scores were calculated as the mean score of specific tests,
after transformation to z-scores. The visual memory composite
included the delayed figural recall scores from the CERAD
and the Rey Complex Figure Test after 3 min; the visuospatial
composite included the direct figure copy scores from CERAD
and the Rey Complex Figure Test. For executive function, we
used the ratio of Trail Making Test B to A, and for the domain
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of spatial orientation, we included cognitive scores from the
Perspective Taking/Spatial Orientation Test.

Predictors
We included spatiotemporal and kinematic gait parameters from
the GRAIL system, as well as the mean accelerometric signal
from ankle, chest, and wrist-worn sensors and variability of these
measures. To reduce the dimensionality of the models for the
association analysis, we selected a priori features of interest. These
included the ankle, wrist, and chest-worn mean accelerometric
signal as well as the mean values of the spatiotemporal gait
characteristics of walking speed, step length, stride time, step
width, stance time, and swing time (Beauchet et al., 2017).
The explorative multivariate models for real-time detection were
allowed to select across all spatiotemporal and kinematic gait
features (Lohman et al., 2011) first and second moments (mean
and variance), the accelerometric signal means and variances at
the time point of behavior assessment as well as the time-lagged
features one, two, or three time intervals before the rated behavior
(lagged features). Supplementary Table 1 provides an overview
of the feature sets defined for the different analyses.

Gait and Accelerometric Data
Preprocessing
Accelerometric data, gait parameters, as well as video annotations
were synchronized by an event-based mechanism (participants
performed a distinctive movement at the beginning of the
recording, which could be easily located in all sensors). The data
were resampled at 100 Hz using cubic spline interpolation. We
then aggregated the data in non-overlapping segments of length
10 s. Specifically, for the accelerometric data, we computed the
mean, variance, skewness, and kurtosis of the magnitude of each
of the three sensor positions, resulting in 12 features per segment.
For the spatio-temporal gait parameters (walking speed, step
length, stride time, stance time, swing time, and step width), the
mean and coefficient of variation (CV) were computed for each
segment. The CV was calculated for each gait parameter as the
ratio of the standard deviation to the mean multiplied by 100.

We assigned a binary disorientation label to each 10-s
segment based on the video annotation using the following rule:
Whenever a navigation error or disoriented behavior was noted
at any time during the segment, the segment was labeled as
“disoriented.” Conversely, if neither a navigation error nor a
disoriented behavior was noted during the segment, the segment
was labeled “not disoriented.”

Statistical Analysis
Unless otherwise noted, all statistical analyses were performed
using R statistical software, version 4.1.2, accessed via R
Studio version 2021.09. Analyses were conducted in a Bayesian
framework to allow estimation of model plausibility and
determining effect sizes with credibility intervals. Demographic
characteristics were compared between experimental groups
using the Bayesian t-test or the Chi-square test as appropriate
using Jeffreys’s Amazing Statistics Program (JASP) 0.16
with default priors.

Subsequently, we conducted two groups of analyses:
The first group of analyses (A1) used the disorientation data

aggregated across the entire observation period per participant.
We selected two readouts for disorientation: the number of
disorientation per subject during the navigation experiment
(henceforth called disorientation counts) and the percentage
of the length of the disorientation episodes relative to the
overall length of the experiment per subject (henceforth called
disorientation percentage).

First, we determined the regression of aggregated
disorientation data on cognitive scores (only in old people)
and aggregated accelerometric and gait features (in young
and old people). We used generalized linear models with
disorientation counts and percentage, respectively, as dependent
variables, and cognitive scores and aggregated accelerometric and
gait features as independent variables, respectively, controlling
for age, gender, and experimental condition. The dependent
variable (count data) was not normally distributed, therefore we
fitted a Poisson regression model using the R library “brms.” We
compared the fit of the Poisson with the Gaussian regression
model using leave-one-out cross-validation for Bayesian models
with the R library “loo.”

The second group of analyses (A2) used the binary variable of
oriented (0) vs. disoriented (1) during each of the 10-s intervals
as the dependent variable in all individuals. To enrich for
disorientation episodes, we only considered time intervals during
decision points (see Supplementary Table 2 for the proportion of
disorientation events per decision point).

First (A2.1), we used the Bayesian mixed-effects logistic
regression models with accelerometric or gait features at each of
the 10-s intervals as independent variables, controlling for age,
gender, and experimental condition as fixed effects covariates,
and with a random intercept for patients as random effect
variable (observations nested within patients). These models were
calculated using the R library “brms.

Second (A2.2), we determined, whether single accelerometric
or gait features that had shown an effect in the previous analysis
had a relevant predictive accuracy for episodes of disorientation.
We used the area under the ROC curve to estimate a single
feature’s ability to predict disorientation at a time interval. ROC
analysis was done using the library “ROCnReg” in R allowing
for Bayesian estimates of credibility intervals for the areas
under the ROC curves.

Third (A2.3), we used a multivariate approach to find
a combination of accelerometric or gait features that may
contribute to relevant accuracy in the detection of disorientation
episodes. In this study, we used as the primary model a support
vector machine (SVM), implemented using the R library “e1071.”
Before SVM training, we used feature selection based on the
correlation coefficient of every single predictive feature with
the dependent binary variable “oriented” vs. “disoriented.” Only
features with an absolute value of the correlation coefficient
larger than 0.12 were entered into the SVM training. After visual
inspection of the data revealed no linear separation between
groups, we decided to use a radial kernel whose parameters cost
and gamma function were determined using a 10-fold cross-
validation using the function tune in library “e1071.” To account
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for the binding of the data within patients, we determined the
accuracy of the SVM models using patients as folds. Within each
patient, 80% of each patient’s data were used as training data
and the remaining 20% as test data. Accuracy was determined
as the percentage of correctly classified time intervals where the
predicted states of orientation or disorientation agreed with the
observed states of orientation or disorientation relative to all
observations per patient.

Finally (A2.4), we used a Gaussian Hidden Markov Model
(HMM) respecting the temporal nature of the data. Using the
HMM approach, we generated states (constraining the model to
two possible states only) from the observed response variables,
and subsequently compared the distribution of the generated
states with the distribution of the observed states. This analysis
was conducted using library “depmixS4” in R. Taking into
account the origin of the time-series data, we split the analysis
according to participants. We estimated transition matrices
and means and standard deviations of the response variables
from the data and used these estimates to fit the states’ model
per participant.

RESULTS

Demographic characteristics of our sample can be found in
Table 1. Bayes factor analysis suggested no evidence in favor
of a difference in sex distribution and education years across
the groups and was in favor of no difference in age between
experimental and control conditions within the young and
older groups, respectively. By design, young and older groups
differed in age. Participants in the experimental condition
were presented with altered landmarks to induce disorientation,
whereas participants in the control condition were not.

Aggregated Data
The average number of disorientation events, mean ankle-worn
accelerometric signal, and walking speed per age group and
the experimental condition is plotted in Figure 1. We found
extreme evidence in favor of a difference between older control
and experimental cases and between older experimental and
young control cases, and moderate evidence in favor of a
difference between older experimental and young experimental
cases. Evidence for differences within the young age group and
between the older control and the young control groups was
not conclusive. For ankle-worn accelerometry and walking speed,
there was mainly an age effect and a less-pronounced effect of
experimental condition (see Table 1 for details).

Leave-one-out-cross-validation of the Watanabe-Akaike
information criterion (WAIC) (Vehtari et al., 2017) confirmed
that the Poisson regression was superior to the Gaussian
regression model fit [WAIC difference in favor of Poisson = –21.6
(SE = 8.9)] when using condition, age, and gender as the only
predictors for the base model.

The number of disorientation events across the experiment
were associated with executive function (smaller number of
disorientation counts with higher executive function), but
not with visuospatial constructional ability, visual memory,

or perspective-taking/spatial orientation. Ankle-worn sensor
overall level of activity was associated with counts of
disorientation (more activity, less disorientation), but not wrist
or chest-worn sensors.

When considering gait features, slower walking speed and
lower step length were associated with a higher number of
disorientation events.

Across all models, experimental condition and higher age
were associated with a higher number of disorientation events,
whereas gender was unrelated to disorientation events.

Detailed results can be found in Table 2. When repeating
these analyses with the percentage of disorientation events per
patient’s time of experiment as an outcome, the results were
essentially unchanged (data not shown). The only difference was
that in addition to the previous effects, a higher wrist-worn
accelerometric signal was associated with a higher percentage of
disorientation events (main effect = 5.50, 95% credibility interval
2.25–8.67) as well.

Real-Time Data
For accelerometric features, we found the main effect of lower
ankle, wrist, and chest-worn sensors’ levels of activity with more
disorientation events. In addition, we found interactions of ankle-
and wrist-worn sensors’ levels of activity with the experimental
condition, showing more pronounced negative associations in
the control than in the experimental condition (see Figure 2
for an example of ankle-worn sensor activity). In addition,
experimental condition, but not age or gender, was associated
with more disorientation events. See Table 2 for details.

For gait features, all a priori selected gait features showed
a main effect on disorientation events. Lower walking speed
and step length and width as well as longer stride, swing, and
stance times were associated with more disorientation events. In
addition, we found interactions of walking speed, step length,
step width, and swing time with an experimental condition,
showing more pronounced negative associations in the control
than the experimental condition for walking speed, step length,
and step width, and a more positive association for swing time
(see Figure 3 for an example of walking speed). In addition,
experimental condition, but not age or gender, was associated
with more disorientation events. See Table 3 for details.

Accuracy of Disorientation Event
Detection
We used the Bayesian ROC curve analysis to estimate the
accuracy of single markers that had shown an association with
orientation in the previous mixed-effect models. For ankle-
worn accelerometric signal, the area under the ROC curve was
0.60 (95% credibility interval 0.588–0.615). For the remaining
accelerometric features and the gait features, AUC values were
below 0.60. These number indicate a detectable, but clinically
irrelevant effect of single markers on accuracy levels.

Subsequently, we implemented a multivariate cross-validated
support vector machine to determine the accuracy of a (non-
linear combination of markers). Feature selection was done
using absolute correlation coefficients > 0.12 between candidate
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TABLE 1 | Demographic, orientation, and gait characteristics.

Young controls Young experimental Older controls Older experimental

N (f/m)1 4/6 8/7 9/5 9/5

Age2 (years) (SD) 24.2 (2.7) 24.7 (4.3) 69.5 (4.0) 72.0 (5.3)

Education3 (years) (SD) 13.3 (0.9) 14.0 (1.5) 13.9 (2.9) 15.0 (2.5)

Mean number disorientation4 (SD) 0.30 (0.95) 2.20 (2.57) 0.57 (1.09) 5.79 (3.22)

Mean accelerometry5 ankle (SD) 1.49 (0.11) 1.37 (0.01) 1.34 (0.10) 1.28 (0.05)

Mean walking speed6 (SD) 1.44 (0.16) 1.23 (0.17) 1.06 (0.21) 0.93 (0.13)

1Bayes factor in favor of no difference between groups, BF10 = 0.157.
2Bayes factor in favor of no difference, BF10 = 0.736, between older experimental and control cases, and in favor of no difference, BF10 = 0.390, between young
experimental and control cases.
3Bayes factor in favor of no difference between groups, BF10 = 0.341.
4Bayes factor in favor of a difference between older controls and older experimentals, older experimentals and both young controls and young experimentals (BF10 > 14.7).
5Bayes factor in favor of a difference between older controls and young experimentals, older experimentals and young controls, and young experimentals and young
controls (BF10 > 9.0).
6Bayes factor in favor of a difference between older controls and young controls, older experimentals and young experimentals and young controls, and young
experimentals and young controls (BF10 > 9.0).

FIGURE 1 | Aggregated disorientation events, accelerometry, and walking speed by age group by condition. Disorientation events (upper row), ankle worn
accelerometric signal (middle row), and walking speed mean (lower row) according to age group and condition [control (C) vs. experimental (E)]. Bars show mean
and 95% credibility intervals.

features and orientation status across all data. We chose a radial
kernel as the plotting of data did not indicate a linear separation
(see Figure 4), with a cost parameter of 10 and a gamma
parameter of 1, based on the initial grid search using the whole
data set. Subsequently, we determined group discrimination
within each patient fold applied to a random selection of 80%
of the data as a training sample and the remaining 20% of
data as a test sample. The mean accuracy of correctly allocated

instances of orientation/disorientation was 72% (SD 11%) across
the cross-validated patient folds.

Using a generative Hidden Markov model implemented in
library “depmixS4” in R reached an average accuracy of correctly
allocated instances of orientation/disorientation of only 64% (SD
14%) when comparing the binary states of oriented/disoriented as
generated from the observed variables ankle-worn accelerometric
signal and walking speed mean and variance as compared with
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TABLE 2 | Number of disorientation events by cognitive, accelerometric, and gait features.

Cognitive scores

Independent variables Main effect cognitive score Condition Age (years) Gender

Visuospatial 0.01 (–0.25 to 0.29) 2.26 (1.56 to 3.05) 0.04 (0 to 0.08) –0.04 (–0.5 to 0.4)

Executive function –0.2 (–0.4 to 0.01) 2.2 (1.49 to 3.01) 0.06 (0.01 to 0.11) –0.09 (–0.53 to 0.34)

Visual memory –0.15 (–1.22 to 1) 2.29 (1.57 to 3.11) 0.04 (0 to 008) –0.03 (–0.47 to 0.37)

PTSOT –0.12 (–0.82 to 0.48) 2.26 (1.52 to 3.07) 0.02 (–0.03 to 0.07) 0.1 (–0.47 to 0.67)

Accelerometric features

Independent variables Main effect accelerometry Condition Age (years) Gender

Ankle mean (g) –4.62 (–7.66 to –1.73) 1.97 (1.34 to 2.63) 0.01 (0.01 to 0.02) 0.01 (–0.37 to 0.38

Wrist mean (g) 3.02 (–1.79 to 7.52) 2.25 (1.68 to 2.93) 0.02 (0.01 to 0.03) –0.22 (–0.64 to 0.2)

Chest mean (g) 1.01 (–11.18 to 13.17) 2.23 (1.63 to 2.92) 0.02 (0.01 to 0.03) –0.08 (–0.47 to 0.31)

Gait features

Independent variables Main effect gait Condition Age (years) Gender

Walking speed (m/s) –2.23 (–3.46 to –0.99) 1.97 (1.38 to 2.63) 0.01 (0 to 0.02) 0.08 (–0.3 to 0.44)

Step length (m) –2.85 (–5.45 to –0.31) 2.04 (1.44 to 2.75) 0.01 (0 to 0.02) 0 (–0.38 to 0.37)

Stride time (s) –0.06 (–1.08 to 0.87) 2.24 (1.61 to 2.96) 0.02 (0.01 to 0.03) –0.09 (–0.48 to 0.31)

Step width (m) 0.93 (–4.56 to 6.32) 2.22 (1.63 to 2.9) 0.02 (0.01 to 0.03) –0.12 (–0.56 to 0.3)

Stance time (s) 0.43 (–0.73 to 1.56) 2.33 (1.71 to 3.12) 0.02 (0.01 to 0.03) –0.04 (–0.43 to 0.33)

Swing time (s) –2.78 (–5.91 to 0.11) 2.11 (1.5 to 2.8) 0.02 (0.01 to 0.03) –0.15 (–0.52 to 0.22)

Gender = factor level effects for male vs. female sex.
Cognitive variables represent domain scores derived as the mean score of specific tests, after transformation to z-scores.
Values in bold indicate effects where the 95% credibility interval excludes 0.
g = acceleration constant g (1 g = 9.81 m/s2).
m = meter.
s = seconds.

the observed disorientation instances. As can be seen from
Figure 5, the Hidden Markov model produced substantially
fewer disorientation states than had been observed (Figure 5A),
and accuracy decreased with a higher number of observed
disorientation states per patient (Figure 5B), with a correlation
coefficient of –0.51.

DISCUSSION

Here, we studied the association of accelerometric and gait
features with episodes of disorientation in cognitively normal
young and older adults in a hybrid experiment. We found that
decreased accelerometric signal from ankle-worn sensors as well
as decrease in walking speed and step length were associated with
a higher number of aggregated disorientation events. Similarly,
decreases in accelerometric signal and changes in a range
of spatiotemporal gait features were associated with a higher
number of episodes of disorientation in real time. At the same
time, the prediction accuracy of single accelerometric and gait
features for episodes of disorientation in real time was below 60%.
However, even when combining the most strongly associated
features in a multivariate non-linear support vector machine,
reached only 72% accuracy for correctly allocated instances of
orientation/disorientation. This level of accuracy would not be
sufficient for individual detection of disorientation episodes and

situation-aware assistance. Thus, we were able to confirm the
expected association of accelerometric and gait characteristics
with disorientation in cognitively unimpaired individuals, but we
did not find sufficient accuracy for individual prediction.

Our study was able to replicate the age-related decline in
spatiotemporal gait features that has been reported in a large
number of studies, systematically reviewed in Herssens et al.
(2018) and Osoba et al. (2019). Spatial orientation requires
visuospatial abilities and higher-order cognitive processes, such
as egocentric and allocentric representations, cognitive mapping,
spatial strategies, encoding, and processing of spatial information
(Lithfous et al., 2013; Meneghetti et al., 2014; Muffato et al.,
2016). In our study, we focused on the domains of visual
memory, visuoconstructional ability, executive function, and
spatial orientation. Our results demonstrated a relationship
between executive function and aggregated orientation in older
adults; the number of disorientation events was lower in
individuals with higher executive function. In this study, we
had used the ratio of Trail Making Test B to A as a measure
of executive function, assessing motor speed and visual speed
(Arbuthnott and Frank, 2000; Sanchez-Cubillo et al., 2009). The
Trail Making Test ratio serves as an index of executive control
function because it can provide an independent measure of
cognitive flexibility (Bezdicek et al., 2017). Moreover, it has also
been associated with frontal executive function (Arbuthnott and
Frank, 2000). An association of executive functions and effective
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FIGURE 2 | Real-time data, ankle worn accelerometry. Bayesian mixed-effect logistic regression of disorientation events on ankle worn accelerometric signal (main
effect, upper left and interaction effect with condition, upper right), condition (experimental or control, middle left), age group (middle right), and gender (lower row).
The graphs feature mean effects and 95% credibility intervals.
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FIGURE 3 | Real-time data, walking speed. Bayesian mixed-effect logistic regression of disorientation events on mean walking speed (main effect, upper left and
interaction effect with condition, upper right), condition (experimental or control, middle left), age group (middle right), and gender (lower row). The graphs feature
mean effects and 95% credibility intervals.
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TABLE 3 | Incidence of disorientation events and accelerometric and gait features in real time.

Accelerometric features

Independent variables Main effect Accelerometry by Condition Condition Age group Gender

Ankle mean –0.48 (–0.64 to –0.32) 0.2 (0.02 to 0.38) 0.93 (0.44 to 1.39) 0.04 (–0.45 to 0.49) –0.19 (–0.65 to 0.26)

Wrist mean –0.67 (–0.91 to –0.43) 0.27 (0.01 to 0.54) 1.21 (0.78 to 1.65) –0.16 (–0.61 to 0.29) –0.03 (–0.47 to 0.4)

Chest mean –0.45 (–0.68 to –0.24) 0.18 (–0.08 to 0.43) 0.99 (0.53 to 1.46) –0.23 (–0.76 to 0.28) –0.21 (–0.66 to 0.24)

Gait features

Independent variables Main effect Gait by Condition Condition Age group Gender

Walking speed –0.47 (–0.62 to –0.32) 0.27 (0.1 to 0.44) 1 (0.56 to 1.44) 0.04 (–0.44 to 0.5) –0.2 (–0.64 to 0.22)

Step length –2.69 (–3.5 to –1.85) 2.08 (1.13 to 2.99) 1.07 (0.62 to 1.52) 0.07 (–0.35 to 0.52) –0.21 (–0.67 to 0.22)

Stride time 0.19 (0.11 to 0.29) –0.03 (–0.21 to 0.21) 1.17 (0.72 to 1.61) 0.27 (–0.16 to 0.7) –0.29 (–0.7 to 0.12)

Step width –0.71 (–0.95 to –0.5) 0.79 (0.55 to 1.04) 1.36 (0.92 to 1.84) 0.21 (–0.24 to 0.67) –0.32 (–0.78 to 0.14)

Stance time 0.14 (0.06 to 0.22) 0.05 (–0.14 to 0.28) 1.18 (0.73 to 1.61) 0.25 (–0.16 to 0.67) –0.32 (–0.73 to 0.12)

Swing time 0.34 (0.19 to 0.52) –0.27 (–0.5 to –0.04) 1.17 (0.74 to 1.61) 0.27 (–0.17 to 0.7) –0.3 (–0.74 to 0.14)

Age group = old vs. young.
Gender = factor level effects for male vs. female sex.
The accelerometric and gait variables were z-score transformed before being entered into the models.
Values in bold indicate effects where the 95% credibility interval excludes 0.

spatial navigation has been previously reported (Wei et al., 2020;
Laczo et al., 2021). Based on our results, we assume that higher
executive functions play an important role in tasks requiring
the use of effective wayfinding strategies. Effects on visuospatial
abilities were absent, whereas effects on visual memory were
not conclusive. We had expected an association between these
domains, since they have been implicated in navigation efficiency
and environment learning (Meneghetti et al., 2014; Wei et al.,
2020). Previous studies have demonstrated an age-related decline
in navigation skills, due to difficulties in environment route
learning and spatial recall of relationships between landmarks
and directions at decisions points (Zhong and Moffat, 2016;
Ramanoel et al., 2020). The absence of an effect, therefore, was
unexpected. A post hoc explanation would relate to previous
observations that paper–pencil testing of spatial abilities found
a poor correlation with real-world navigation performance
(Nadolne and Stringer, 2001; Taillade et al., 2015), which has been
used as an argument for the creation of novel ecologically valid
test instruments (Nadolne and Stringer, 2001).

Furthermore, we had expected an association of orientation
with the Perspective Taking/Spatial Orientation Test, since
previous work suggested alterations of egocentric topographic
orientation in older adults (Caffo et al., 2020). Two of
the 28 participants, however, were not able to perform the
task at all and several participants had difficulties when
performing the Perspective Taking/Spatial Orientation Test. As
we saw in practice, it was challenging for our participants
to understand the task instructions and they might have
felt overstrained. Difficulties regarding the understanding of
instructions on similar tasks have been previously reported
in young adults (Hegarty and Waller, 2004). Although the
Perspective Taking/Spatial Orientation Test by design seemed
well suited to test a trait of orientation ability and it has been
widely used in spatial cognition literature (Friedman et al., 2020),
it was not easy to use, at least in our hands, even for cognitively

normal older people. The test has only been used in a few
previous studies with older people (Zancada-Menendez et al.,
2016) who on average were 8–10 years younger than our older
group of participants.

A relationship between gait characteristics and disorientation
has already been demonstrated in conditions such as delirium
and dementia (Arjunan et al., 2019; Evensen et al., 2019; Oh,
2021; Weizman et al., 2021). In contrast, the detection of
disorientation events using gait and accelerometry features has

FIGURE 4 | Distribution of orientation status across features.
Three-dimensional representation of the distribution of orientation status
(oriented – black beads, disoriented – red beads) across ankle and
chest-worn accelerometric signal and walking speed mean.
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FIGURE 5 | Hidden Markov model generated states and observed orientation states. (A) Time series of states within 5,000 s. The upper row plots the orientation
states generated from the Hidden Markov model during the first 500 time segments (= 5,000 s, pooled across participants) with 1 = oriented, 2 = disoriented; the
lower row plots the observed orientation states from the same time segments. (B) Association between number of disorientation events and accuracy of HMM
generated states. This graph plots the accuracy of the HMM generated states relative to the observed states per participant (y-axis) vs. the number of disorientation
events per participant (x-axis).

been little explored. In a similar set-up to our study, one
previous study reported gait features for a group of 17 young
and 17 older participants navigating on a treadmill through a
virtual shopping mall (Kafri et al., 2021). However, detection
of disorientation was not an outcome parameter in this earlier
study. In the current study, we found that reduced ankle-worn

accelerometry signal was associated with more disorientation
events in both aggregated and real-time data. The reduction
of walking speed and step length and the increase in stance,
swing, and stride time was associated with more disorientation
events. This is consistent with the reduction in overall signal from
the ankle-worn sensors and suggests that the acceleration signal
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may be useful as a surrogate measure for less easily measured
gait characteristics, but with the caveat that none of the gait
characteristics examined achieved a useful level of predictive
accuracy for disorientation events.

Even when combining features in a non-linear support vector
machine, the accuracy level in our hybrid set-up was below
the accuracy level which we had achieved in a real-world
experiment with people with MCI or dementia. In this study, the
accelerometric features had achieved an AUC of 75% and 79% of
correctly allocated instances of orientation/disorientation (Schaat
et al., 2019). In the previous experiment, we struggled with the
low occurrence of disorientation episodes relative to the total
time of the experiment, which made training the models difficult
and led to unbalanced sensitivity and specificity estimates. In
this study, we wanted to improve this situation in a much more
controlled environment. Based on this setting, we were able to
focus on the time series at the decision points only and induce
disorientation even in young individuals. Indeed, this approach
was successful with a proportion of 41% of intervals being
annotated as disorientated in the total time series, and 49% at
the decision points compared with less than 10% in the previous
real-world setting (Schaat et al., 2019). Although we achieved a
higher proportion of disorientation events our models performed
less accurately. There are several post hoc explanations for this
unexpected result which also relate to the limitations of our study.

The limitations of our study include the following points: First,
the measurement of orientation states was based on offline video
annotation which carries some imprecision. However, inter-rater
reliability was very good (Cohen’s kappa > 0.8), and even using
lagged features, allowing sensor values of a time frame of 30 s
before the actual rating of disorientation to be included in the
prediction models, did not alter the results. Second, the difference
in set-up where walking on a treadmill and walking on a street
pose different requirements on cognitive and motion abilities so
that the resulting gait and movement features may not directly
be comparable. A previous study reported a slower gait with
shorter, less variable strides during treadmill walking compared
with walking outdoors on the sideway in young and older adults
(Schmitt et al., 2021). Thus, walking on a motorized treadmill
may reduce the variability of gait characteristics compared with
walking outdoors, thereby also reducing disorientation-induced
changes in gait characteristics. Third, in this study, we had
studied cognitively unimpaired individuals who may show less
pronounced changes in walking behavior during episodes of
disorientation than individuals with MCI or dementia who were
lost in a real-world setting (Schaat et al., 2019). Fourth, from
the Hidden Markov model, it became obvious that the model
produced less instances of disorientation than were observed,
that is, only approximately 64%. In comparison, the previous
model for the real-world data had produced a high number
of false alarms, that is, more instances of disorientation than
had been observed (Schaat et al., 2019). This may suggest that
grouping disorientation events into only two states (oriented
vs. not oriented) was too simplistic for the present data.
There may be different subtypes of disorientation states, each
associated with different behavioral characteristics. For example,
externally triggered disorientation events might represent a
different category of disorientation states than spontaneously

occurring disorientation events; however, the two states were
not distinguished in our models. Finally, the sample size was
relatively small in our study. Consequently, our study was only
powered to detect moderate-to-large effects. The effort required
to complete the experiment was high for each participant.
So we had even considered to use a cross-over design where
each participant would undergo both conditions, experimental
and control, in a randomized, balanced design. We decided
against this option because already the experiment with only one
condition was exhausting for some of the older participants.

In summary, in a prospective analysis of young and older
cognitively healthy adults in a hybrid environment featuring
a treadmill-based navigation through a virtual environment,
we found an association between executive function, ankle-
worn accelerometric signal, and spatiotemporal gait features
with an aggregated number of disorientation events across age
groups and experimental conditions. This was replicated by
an association of accelerometric signal and spatiotemporal gait
features with disorientation events in the real-time data analysis.
Despite these consistent associations, the predictive accuracy of
single or combined acceleration and gait features was insufficient
for individual detection of disorientation events in real time. The
lessons from this analysis are that age-related and experimentally
induced disorientation is reflected in spatiotemporal gait features
and also in the accelerometric signal as a potentially more
easily accessible surrogate for gait features. At the same time,
such measurements probably need to be enriched with other
parameters to be sufficiently accurate for individual prediction of
disorientation events. In future directions, further experiments
may test whether such predictions can be more accurate for
people with dementia. For this group of individuals, based on our
preliminary experience with a small number of patients, external
induction of disorientation events is not necessary, as they
already showed pronounced disorientation under undisturbed
control conditions. Finally, the set-up of our experiment may be
useful not only to monitor but even to train navigation abilities
under dual-task conditions with high transfer potential to real-
world environment.
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