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Researchers can express their expectations with respect to the group means

in an ANOVA model through equality and order constrained hypotheses. This

paper introduces the R package SSDbain, which can be used to calculate

the sample size required to evaluate (informative) hypotheses using the

Approximate Adjusted Fractional Bayes Factor (AAFBF) for one-way ANOVA

models as implemented in the R package bain. The sample size is determined

such that the probability that the Bayes factor is larger than a threshold value

is at least η when either of the hypotheses under consideration is true. The

Bayesian ANOVA, Bayesian Welch’s ANOVA, and Bayesian robust ANOVA are

available. Using the R package SSDbain and/or the tables provided in this

paper, researchers in the social and behavioral sciences can easily plan the

sample size if they intend to use a Bayesian ANOVA.
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1. Introduction

In a classical one-way ANOVA, two hypotheses, the null hypothesis H0 and the

alternative hypotheses Ha are contrasted:

H0 :µ1 = µ2 = · · · = µK (1)

vs.

Ha : not all means are equal, (2)

where µk denotes the mean for group k = 1, 2, ...,K, and K denotes the number

of groups.

Statistical power is the probability to correctly reject the null hypothesis when an

effect exists in the population. Cohen (1988, 1992) published some of the most cited

literature on power analysis; he proposed the effect size measure f = σm/σ , where

σm denotes the standard deviation of the means of the K groups, and σ the common

within-group standard deviation. The classical sample size table of the one-way ANOVA

based on the F-test (Cohen, 1992) indicates that in the case of three groups, 322, 52, or

21 subjects per group are needed to obtain a power of 0.8 to detect a small (f = 0.1),

medium (f = 0.25), or large (f = 0.4) effect size at a Type I error rate α = 0.05.
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Required sample sizes for other scenarios can be calculated using

software for power analysis and optimal study design, such as

G*Power (Faul et al., 2007, 2009; Mayr et al., 2007), nQuery

Advisor (Elashoff, 2007) and PASS (Hintze, 2011). Power

analysis has become more important in a scientific world with

competition for limited funding for research grants. Funding

agencies often require value for money: if an effect size exists

in the population then it should be detected with sufficient

probability. However, many studies in the behavioral and

social sciences are underpowered, mainly because of insufficient

funding or numbers of subjects willing to participate. As

well as a reduced probability of detecting an important effect

size, underpowered research causes many problems, including

overestimation of effect size, poor replicability of research

findings, and thus an increased risk of drawing incorrect

conclusions. For relevant articles, see Fraley and Vazire (2014),

Maxwell (2004), Simonsohn et al. (2014), Dumas-Mallet et al.

(2017), and Szucs and Ioannidis (2017).

Recently, null-hypothesis significance testing (NHST) has

been criticized in numerous articles. Unnecessary detail will not

be given in this paper, but see the typical references Nickerson

(2000), Wagenmakers (2007), Masicampo and Lalande (2012),

Harlow et al. (2016), andWicherts et al. (2016). Alternatives such

as Bayesian statistics have as a consequence become increasingly

popular over the past decade (Van de Schoot et al., 2017;

Vandekerckhove et al., 2018; Wagenmakers et al., 2016). Among

them, Bayes factor is the most important tool to evaluate the

competing hypotheses. The Bayes factor is the measurement

of the relative evidence between two competing hypotheses.

For example, if H0 vs. H1, and the Baye factor BF01 = 10,

then the support for H0 is 10 times more than H1. The Bayes

factor cannot only provide evidence in favor of the alternative

hypothesis, but, in contrast to the p-value, also provides evidence

in favor of the null hypotheses. The Bayes factor quantifies the

strength of current data to support for H0 and H1, respectively,

which is more balanced than the traditional NHST where Bayes

factor are more balanced in terms of support for H0 and H1,

and thus its tendency to reject H0 is relatively less strong.

Under the traditional NHST hypothesis, as long as the collected

data is enough the researcher can obtain p < 0.05 and thus

reject H0, in contrast to the NHST, the Bayes factor tends to

be stable with the increase of data. The Bayes factor does not

depend on the unknown or nonexistent sampling plan, while

the p-value is affected by the sampling plan. In addition, the

traditional null and alternative hypotheses as specified by (1) and

(2) may not reflect the researcher’s expectations. The researcher

can express his or her expectations with regard to the ordering

of the group means µ1,µ2, ...,µK in an informative hypothesis

(Hoijtink, 2011). For example, consider a comparison of the

average body heights of adults in the Netherlands, China, and

Japan, as denoted by µN , µC and µJ . Informative hypotheses

may be formulated on the basis of observations, expectations or

findings in the literature. One example is hypothesis H1 :µN >

µC > µJ . It is worth mentioning that the Bayes factor can not

only be used to compare the null hypothesis with alternative

hypotheses, but also can be used to compare two informative

hypotheses directly. Accordingly, in NHST if ordered hypothesis

is included, multiple testing should be carried, which leads

to increased chances of false positive results. Software for

calculating Bayes factor are the R package BayesFactor, the

R package BFpack, and the R package bain, which make the

Bayes factor readily accessible to applied researchers. Therefore,

it is important that sample size calculations for the Bayesian

approach to hypothesis testing become available to researchers

in the behavioral and social sciences.

Recently, a sequential Bayesian t-test (Schönbrodt et al.,

2017) was developed that can, when applicable, avoid an a priori

sample size calculation. A sequential test (Wald, 1945) allows

researchers to add additional observations at every stage of an

experiment depending on whether target strength of evidence is

reached. That is, the size of the Bayes factor is large enough or a

decision rule whether to i) accept the hypothesis being tested; ii)

reject the hypothesis being tested; or iii) continue the experiment

by making additional observations is satisfied.

However, a sequential test based on Bayesian updating

is not always possible, for example, when the population of

research is small (e.g., rare disease or cognitive disorder), when

the study is longitudinal and runs for many years, when a

research plan with an a priori sample size calculation is to be

submitted to an ethical committee, or when researchers want

to have an indication of the sample sizes needed even when

they do use a sequential design. In these situations sample

size determination is necessary. In practice, a combination of

sample size determination and Bayesian updating is the best

choice. For a more extensive overview of the role of sample size

determination and Bayesian updating, the reader is referred to

Fu et al. (2020).

Throughout this paper sample size determination (SSD)

for the comparison of null, informative, and alternative

hypotheses under a one-way ANOVA in the Bayesian framework

van den Bergh et al. (2020), which will build on the sample

size calculations for t-tests discussed in Schönbrodt and

Wagenmakers (2018), Stefan et al. (2019), and Fu et al.

(2020), will be performed. However, the observed data in social

and behavioral research are often non-normal distributed or

homogeneous of variance, see, for example, Glass et al. (1972),

Micceri (1989), Harwell et al. (1992), Coombs et al. (1996),

Keselman et al. (1998), and Blanca et al. (2013). To solve these

problems, alternative ANOVAs will also be considered: (1) SSD

for Bayesian Welch’s ANOVA is available when homogeneity of

variance does not hold; (2) SSD for Bayesian robust ANOVA

is available when homogeneity of variance and normality of

residuals do not hold and/or when the data contain outliers.

The outline of this paper is as follows. First, the models that

are used in the article are introduced, the informative hypotheses

that are evaluated is described, and the Approximate Adjusted
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Fractional Bayes Factor (AAFBF) approach as implemented

in the R package bain is elaborated. Subsequently, sample

size determination will be introduced, features of SSD will be

highlighted, and examples will be provided and discussed. The

paper ends with a short conclusion.

2. One-way ANOVAs, (Informative)
hypotheses, and Bayes factor

In this paper, K mutually independent group means,

µ1,µ2, · · · ,µK are compared. Three different types of ANOVA

models are considered:

Model 1: ANOVA, that is, the within-group variances for the K

groups are equal

ytk =

K
∑

k=1

µkDtk + ǫtk, ǫtk ∼ N(0, σ 2), (3)

Model 2: Welch’s ANOVA, that is, the within-group variances

for the K groups are unequal

ytk =

K
∑

k=1

µkDtk + ǫtk, ǫtk ∼ N(0,

K
∑

k=1

σ 2
kDtk), (4)

Model 3: Robust ANOVA, that is, the within-group variances for

the K groups are unequal, and the distribution of the residuals is

non-normal and/or the data contain outliers

ytk =

K
∑

k=1

µk,ROBDtk + ǫtk, ǫtk ∼ fk(ǫtk), (5)

where ytk for person t = 1, · · · ,N belonging to group k =

1, 2, · · · ,K is the dependent variable, N denotes the sample size

per group,Dtk = 1 denotes that person t is a member of group k

and 0 otherwise, ǫtk denotes the error in prediction for person t

in group k, fk(ǫtk) is an unspecified distribution of the residuals

in group k, σ 2 denotes the common within-group variance for

each group in case of ANOVA, σ 2
k
denotes the within-group

variance of group k in case of the Welch’s ANOVA, and µk,ROB

is the robust estimator of population mean.

In this paper, sample size will be determined under the

following situations:

Situation 1: If the researchers believe that nothing is going

on or something else is going on but they do not know what,

sample size will be determined for the comparison of

H0 :µ1 = µ2 = · · · = µK vs. Ha, where Ha: not all means

are equal;

Situation 2: Many researchers have clear ideas or

expectations with respect to what might be going on. These

researchers might believe nothing is going on or have a specific

expectation about the ordering of the means. Therefore sample

size will be determined for a comparison of

H0 :µ1 = µ2 = · · · = µK vs. Hi :µ1∗ > µ2∗ > · · · > µK∗ ;

where 1∗, 2∗, · · · ,K∗ are a re-ordering of the numbers

1, 2, · · · ,K;

Situation 3: Or, continuing Situation 2, researchers may want

to compare their expectation with its complement. Therefore

sample size will be determined for a comparison of

Hi :µ1∗ > µ2∗ > · · · > µK∗ vs. Hc: not Hi;

Situation 4: The researchers have two competing

expectations

Hi :µ1∗ > µ2∗ > · · · > µK∗ vs. Hj :µ1# > µ2# > · · · >

µK# ,

where 1#, 2#, · · · ,K# denote a re-ordering of numbers

1, 2, · · · ,K that is different from Hi. Note that, SSD is also

possible if some of the ">" in Hi or Hj are replaced by "=."

The AAFBF as implemented in the R package bain will be

used to determine the relative support in the data for a pair

of hypotheses. The interested reader is referred to Gu et al.

(2018), Hoijtink et al. (2019a) and Hoijtink et al. (2019b) for

the complete statistical background. Here only the main features

of this approach will be presented. If, for example, BFij = 10,

this implies that the data are 10 times more likely to have

been observed under Hi than under Hj. In this manuscript, the

AAFBF will be used because it is currently the only Bayes factor

available that can handle the four situations introduced above

for regular ANOVA, Welch’s ANOVA, and robust ANOVA. In

what follows, the AAFBF implementation for ANOVAs will be

described. First of all, the Bayes factor with whichH0 andHi can

be compared to Ha will be introduced. Subsequently, BFij and

BFic will be introduced.

Let Hz denote either of H0 and Hi, and note that for robust

ANOVA µ has to be replaced by µROB, then

BFza =
fz

cz
=

∫

µ∈Hz
ga(µ)dµ

∫

µ∈Hz
ha(µ)dµ

(6)

where fz and cz are the fit and complexity of Hz relative

to Ha, respectively, ga(µ) denotes a normal approximation

to the posterior distribution of µ under Ha, and ha(µ) the

corresponding prior distribution of µ under Ha. The fit is the

proportion of the posterior distribution ga(·) in agreement with

Hz , and the complexity is the proportion of the prior distribution

ha(·) in agreement withHz . The Bayes factor (BF) forHi against

Hj is:

BFij =
BFia

BFja
=

fi
/

ci

fj
/

cj
, (7)

and the BF of Hi vs. Hc is:

BFic =
BFia

BFca
=

fi
/

ci

(1− fi)
/

(1− ci)
. (8)

The posterior distribution used in the AAFBF is a normal

approximation of the actual posterior distribution of the K
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group means. This can be justified using large sample theory

(Gelman et al., 2013, pp. 101). This normal approximation can

be specified using the estimates ofµ, the residual variance s2 and

N. For the regular ANOVA (Model 1) this renders:

ga(µ) =

∫∫

µ∈µ

πa(µ, σ
2) dµ dσ 2

=

∫

µ∈µ

πa(µ) dµ = N









[

µ̂

]

,









ŝ2/N 0

. . .

0 ŝ2/N

















;(9)

for the Welch’s ANOVA (Model 2) this renders:

ga(µ) = N









[

µ̂

]

,









ŝ21/N 0

. . .

0 ŝ2K/N

















; (10)

where µ̂ = [µ̂1, µ̂2, · · · , µ̂K ] denotes the maximum likelihood

estimates of theK groupmeans, ŝ2 denotes the unbiased estimate

of the residual variance, and ŝ21, ŝ
2
2, · · · , ŝ

2
K denote unbiased

estimates of the K within-group variances. For the robust

ANOVA (Model 3),

ga(µ) = N









[

µ̂ROB

]

,









ŝ21,ROB/N 0

. . .

0 ŝ2K,ROB/N

















. (11)

where µ̂ROB is the 20% trimmed mean, which according to

Wilcox (2017, pp. 45-93) is the best choice, and ŝ2
k,ROB

is a robust

estimate of the residual variance in Group k, which is based on

the Winsorized variance (see, Wilcox, 2017, pp. 60-64). If the

data are severely non-normal or contain outliers, the estimates

of means can be very poor estimates of central tendency, and

the within-group variances can be very poor estimates of the

variability within a group (Bosman, 2018) therefore in these

situations it may be preferable to use µ̂ROB and ŝ2
k,ROB

for k =

1, · · · ,K.

The prior distribution is based on the adjusted (Mulder,

2014) fractional Bayes factor approach (O’Hagan, 1995). As is

elaborated in Gu et al. (2018) and Hoijtink et al. (2019a) for

the regular ANOVA with homogeneous within-group variances

(Model 1), the prior distribution is:

ha(µ) = N









[

0

]

,









1
b
× ŝ2

N 0

. . .

0
1
b
× ŝ2

N

















; (12)

and, for the Welch’s ANOVA with group specific variances

(Model 2) the prior distribution is

ha(µ) = N











[

0

]

,











1
b
×

ŝ21
N 0

. . .

0
1
b
×

ŝ2K
N





















; (13)

and, for the robust ANOVA (Model 3) the prior distribution is

ha(µ) = N











[

0

]

,











1
b
×

ŝ21,ROB
N 0

. . .

0
1
b
×

ŝ2K,ROB
N





















. (14)

For the hypotheses considered in this paper mean of the

prior distribution should be the origin 0. As is elaborated

in Mulder (2014), this choice renders a quantification of

complexity in accordance with Occam’s razor and, as is

elaborated inHoijtink et al. (2019b), it renders a Bayes factor that

is consistent. The variances appearing in the prior distribution

are based on a fraction of the information in the data. For each

group in an ANOVA this fraction is b = J
K × 1

N (Hoijtink et al.,

2019a). The choice for the parameter J is inspired by theminimal

training sample approach (Berger and Pericchi, 1996, 2004): it

is the number of independent constraints used to specify the

hypotheses under consideration, because these can be seen as the

number of underlying parameters (the differences between pairs

of means) that are of interest. Specifically, ifH0 :µ1 = µ2 = µ3

vs Hi :µ1 > µ2 > µ3 is considered, J is equal to 2. The choice

for minimum training samples is to some degree arbitrary. It is

in general common in Bayesian analyzes to execute sensitivity

(to the prior distribution) analyzes. Hence alternative choices of

b = 2J
K × 1

N and b = 3J
K × 1

N are also considered in this paper.

Note that, prior sensitivity only applies to Situations 1 and 2, the

Bayes factors computed for Situations 3 and 4 are not sensitive

to the choice of b (see Mulder, 2014).

3. Sample size determination for
one-way ANOVAs

SSD for the Bayesian one-way ANOVA is implemented

in the R package SSDbain1. This section describes the

specific ingredients needed for the functions SSDANOVA

and SSDANOVA_robust in the R package SSDbain.

The interested reader is referred to Appendices A,B for an

elaboration of the SSD algorithm. After installing the R package

SSDbain, the following Call 1 and Call 2 are used to

calculate the sample size per group for regular ANOVA and

Welch’s ANOVA:

Call 1: using Cohen’s f (Cohen, 1992) to specify the

populations of interest

#load SSDbain package
library(SSDbain)
SSDANOVA(hyp1="mu1=mu2=mu3",hyp2="Ha", type="equal",f1

=0,f2=0.25,var=NULL,
BFthresh=3,eta=0.8,T=10000,seed=10)

1 SSDbain comes with a user manual and can be installed from https://

github.com/Qianrao-Fu/SSDbain. Further information on bain can be

found at https://informative-hypotheses.sites.uu.nl/software/bain/.
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Call 2: using means and variances to specify the populations

of interest

#load SSDbain package
library(SSDbain)
SSDANOVA(hyp1="mu1=mu2=mu3",hyp2="Ha",type="equal",f1=

c(0,0,0),f2=
c(5.5,4.5,2),var=c(4,4,4),BFthresh=3,eta=0.8,T=10000,

seed=10)

and the Call 3 below is used for a robust ANOVA:

#load SSDbain package
library(SSDbain)
SSDANOVA_robust(hyp1="mu1=mu2=mu3",hyp2="Ha",f1=0,f2

=0.25,skews=c(0,0,0),
kurts=c(0,0,0),var=c(1.5,0.75,0.75),BFthresh=3,eta

=0.8,T=10000,seed=10)

The following arguments appear in these calls:

1. hyp1 and hyp2, strings that specify the hypotheses

of interest. If the unconstrained hypothesis is used,

hyp2="Ha;" if the complement hypothesis is

used, hyp2="Hc." In case of three groups the

default setting is hyp1="mu1=mu2=mu3," and

hyp2="mu1>mu2>mu3," which generalizes seamlessly to

more than three groups.

2. type, a string that specifies the type of ANOVA. If

one expects that the K within-group variances are equal,

type="equal," otherwise type="unequal."

3. f1 and f2, parameters used to specify the populations

corresponding to hyp1 and hyp2, respectively. There are two

options. In Call 1 given above f1 and f2 denote Cohen’s f =

σµ/σ where σµ denotes the standard deviation of the means

of the K groups, and σ denotes the common within-group

standard deviation. If type = "equal," the var=NULL

is required, where var = NULL denotes that the variances

do not have to be specified. If type = "unequal," the

var has to be specified by the users (see the next argument

for detail). In Call 2 given above f1 and f2 contain the

population means corresponding to both hypotheses hyp1

and hyp2. This option can always be used and requires the

specification of var. In Call 3, the combination of Cohen’s

f and within-group variances or the combination of means

and variances are used to specify the populations of interest.

In Appendix C it is elaborated how population means are

computed if f1 and f2 denote Cohen’s f .

4. var, vector of length K that specifies the within-group

variances of the K groups. If type = "equal" and f1 and

f2 are Cohen’s f , the specification var = NULL implies that

each within-group variance is set to 1. In case of type =

"unequal" or Call 3, the user needs to input Cohen’s f and

the variances for each group. The corresponding population

means can be computed. In Appendix C it is elaborated

how in both cases the corresponding population means are

computed.

5. skews and kurts, vectors of length K that specify the

skewness and kurtosis for the K groups compared. Here

kurtosis means the true kurtosis minus 3, that is, the kurtosis

is 0 when the distribution is normal. The default setting

is skews=c(0,0,0) and kurts=c(0,0,0), which

renders a normal distribution. Note that the relationship

kurtosis ≥ skewness2 − 2 should hold (Shohat, 1929).

Two situations can be distinguished. If researchers want

to execute an ANOVA that is robust against outliers, both

skews and kurts are zero vectors with dimension K.

Outliers can be addressed in this manner because robust

estimates of the mean and its variance obtained for data

sampled from a normal distribution (that is, without outliers)

are very similar to the robust estimates obtained for data

sample from a normal distribution to which outliers are

added. If researchers want to address skewed or heavy tailed

data, they have to specify the expected skewness and kurtosis

for each group.

The following gives guidelines for choosing appropriate

values for skewness and kurtosis. If the population

distribution is left-skewed, the skewness is a negative value; if

the population distribution is right-skewed, the skewness is a

positive value. The commonly used example of a distribution

with a positive skewness is the distribution of salary data

where many employees earn relatively little, while just

a few employees have a high salary. In addition, typical

response time data often show positive skewness because

long response times are less common (Palmer et al., 2011).

The high school GPA of students who apply for college often

shows a negative skewness. Furthermore, in psychological

research, scores on easy cognitive tasks tend to be negatively

skewed because the majority of participants can complete

most tasks successfully (Wang et al., 2008). If the population

distribution is heavy-tailed relative to a normal distribution,

the kurtosis is larger than 0; if the population distribution

has lighter tailed than a normal distribution, the kurtosis is

smaller than 0.

The values to be used for the skewness and kurtosis

can be chosen based on a meta-analysis or literature review

(e.g., Schmidt and Hunter, 2015). The absolute value of

the skewness is typically smaller than 3 in psychological

studies. As a general rule, skewness and kurtosis values that

are within ±1 of the normal distribution’s skewness of 0

and kurtosis of 0 indicate sufficient normality. Blanca et al.

(2013) studied the shape of the distribution used in the

real psychology, and found that 20% of the distribution

showed extreme non-normality. Therefore, it is essential to

consider robust ANOVA when the non-normal distribution

is involved. After determining the values of the skewness and

kurtosis relevant for their populations, researchers can use

SSDANOVA_robust to determine the sample sizes needed

for a robust evaluation of their hypotheses for data sampled

from populations that skewed and/or show kurtosis. The

non-normal data is generated from a generalization of the

normal distribution that accounts for skewness and kurtosis.
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The Tukey g-and-h family of non-normal distributions (see,

Headrick et al., 2008; Jorge and Boris, 1984) is commonly

used for univariate real data generation in Monte Carlo

studies. If the researchers input the skewness and kurtosis,

g and h can be obtained (Headrick et al., 2008). The data

can be generated as follows. Firstly, T (see point 8 for a

explanation on Page 18) data sets with sample sizeN from the

standard distribution are simulated; secondly, observations

are transformed into a sample from the g-and-h-distribution

as below

if g 6= 0

T(X) = A+ B exp(h/2X2)(exp(gX)− 1)/g (15)

if g = 0

T(X) = A+ B exp(h/2X2)X (16)

whereX ∼ N(0, 1),A is themean parameter, B is the standard

deviation parameter, g is the skewness parameter, and h is the

kurtosis parameter.

3.1. Intermezo: The probability that the
Bayes factor is larger than a threshold
value

In this intermezzo it will be elaborated how the required

sample size is determined once the populations corresponding

to the two competing hypotheses have been specified, that

is, once the population group means, variances, and possibly

skewness and kurtosis have been specified. Figure 1 portrays the

distributions of the Bayes factor under H0 :µ1 = µ2 = µ3

and H1 :µ1 > µ2 > µ3, that is, when data are repeatedly

sampled fromH0 and for each data set BF01 is computed, what is

the distribution of BF01, and, when data are repeatedly sampled

from H1 and for each data set BF10 is computed, what is the

distribution of BF10. Figure 1A shows the distribution obtained

using N = 18 per group, and Figure 1B shows the distribution

obtained using N = 93 per group. To determine these sample

sizes, two criteria are specified. First of all, what is the required

size of the Bayes factor to be denoted by BFthresh; and, secondly,

what should be the minimum probability that BF01 and BF10

are larger than BFthresh denoted by P(BF01 > BFthresh|H0) ≥ η

and P(BF10 > BFthresh|H1) ≥ η, respectively. As can be seen

in Figure 1, BFthresh = 3 and η = 0.90, that is, with N = 18

P(BF01 > 3|H0) ≥ 0.90, and with N = 93 P(BF10 > 3|H1) ≥

0.90. Therefore, to fulfill the criteria for bothH0 andH1,N = 93

persons per group are required.

Two aspects of sample size determination need to be

elaborated: how to choose BFthresh and how to choose η. The

choice of the BFthresh is subjective, common values are 3, 5, and

10. In high-stakes research, such as a clinical trial to compare

a new medication for cancer to a placebo and a standard

medication, one would prefer a large BFthresh. In low-stakes

research, such as an observational study on the comparison of

ages of customers at three different coffeehouses, one may use

a smaller BFthresh. The second is how to determine η. It should

be noted that 1-η is the Bayesian counterpart of the Type I error

rate if hyp1 is true, and the Bayesian counterpart of the Type II

error rate if hyp2 is true. If the consequences of failing to detect

the effect could be serious, such as in toxicity testing, one might

want a relatively high η such as 0.90. In studies where one may

only be interested in large effects, an error for detecting the effect

may not have such serious consequences. Here an η = 0.80 may

be sufficient.

6. BFthresh, a numeric value not less than 1 that specifies

the required size of the Bayes factor. The default setting is

BFthresh=3.

7. eta, a numeric value that specifies the probability that

the Bayes factor is larger than BFthresh if either of

the competing hypotheses is true. The default setting is

eta=0.80.

8. T, a positive integer that specifies the number of data sets

sampled from the populations corresponding to the two

hypotheses of interest. A larger number of samples returns a

more precise sample size estimate but takes longer to run.We

recommend that users start with a smaller number of samples

(e.g., T = 1,000) to get a rough estimate of sample size

before confirming it with the default setting T = 10,000.

9. seed, a positive integer that specifies the seed of R’s random

number generator. It should be noted that different data

sets are simulated in Step 8 if a different seed is used, and

thus, that the results of sample size determination may be

slightly different. However, the sample sizes obtained using

two different seeds give an indication of the stability of the

results (this will be highlighted when discussing Table 4 in

Appendix). The default setting is seed=10.

The results of the functions SSDANOVA and

SSDANOVA_robust include the sample size required per

group and the corresponding probability that the Bayes factor is

larger than BFthresh when either of the competing hypotheses is

true. For example, if the following call to SSDANOVA is executed

library(SSDbain)
SSDANOVA(hyp1 = "mu1=mu2=mu3, "hyp2 = "Ha," type = "

equal," f1 = 0, f2 = 0.25, var = NULL,
BFthresh = 3, eta=0.8, T = 10000, seed = 10)

the results for b based on theminimum value of J, and the results

for b based on 2J and 3J (with the aim to address the sensitivity

to the specification of the prior distribution) are:

using N = 93 and b = 0.007
P(BF0a>3|H0)=0.977
P(BFa0>3|Ha)=0.801

using N = 83 and b = 0.016
P(BF0a>3|H0)=0.949
P(BFa0>3|Ha)=0.802
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FIGURE 1

The sampling distribution of BF01 under H0 and BF10 under H1. The vertical dashed line represents BFthresh = 3, and the gray area denotes η, that

is, the probability that the Bayes factor is larger than 3. (A) N = 18 when H0 is true. (B) N = 93 and f = 0.25 when H1 is true.

using N = 77 and b = 0.026
P(BF0a>3|H0)=0.918
P(BFa0>3|Ha)=0.802

Further interpretation of the results of SSD will be given

in the form of three examples that will be presented after the

next section.

4. Features of sample size
determination for one-way ANOVAs

In this section sample sizes are given based on classical

hypotheses, informative hypotheses, and their complement

hypotheses for one-way ANOVAs with three groups when the

effect size is Cohen’s f = 0.1, f = 0.25, and f = 0.4. Table 1 in

Appendix shows the populations corresponding to H1, H2, Ha,

and Hc for three different effect sizes when the pooled within-

group variance is 1. Tables 2–5 in Appendix show the sample size

and the corresponding probability that the Bayes factor is larger

than BFthresh for regular, Welch’s and robust ANOVA for H0 vs.

Ha, H0 vs. H1, H1 vs. H2, and H1 vs. Hc, respectively. Table 6 in

Appendix displays the robust ANOVA for moderately skewed,

extremely skewed, and heavy tailed populations. All the tables

are obtained with set.seed=10. To illustrate the stability of

the results when using T = 10,000, in Table 4 in Appendix

additionally the results are obtained using set.seed=1234.

Based on the results presented in these tables a number of

features of SSD will be highlighted.

Comparing Table 3 in Appendix with Table 2 in Appendix,

it can be seen that the sample size required is smaller if H0

is compared to the order constrained hypothesis H1 instead of

to the unconstrained hypothesis Ha. For example, if effect size

f = 0.25, BFthresh = 3, η = 0.8, and regular ANOVA are chosen,

the sample size required is 93 per group ifH0 is compared toHa,

while the sample size required is 71 per group if H0 is compared

toH1. This is becauseH1 is more precise thanHa and it is easier

to find evidence against or for a more precise hypothesis.

Comparing Table 4 in Appendix with Table 3 in Appendix,

it can be clearly seen that the comparison of two non-nested

hypotheses like H1 and H2 requires less sample size than the

comparison of nested hypotheses like H0 and H1 (H0 is in fact

on the boundary of H1). For example, if effect size f = 0.25,

BFthresh = 3, η = 0.8, and regular ANOVA is used, the sample

size required is 71 per group if H0 is compared to H1, while the

sample size required is 13 per group for H1 is compared to H2.

The same phenomenon can be observed comparing Table 4 in

Appendix (H1 vs. H2) with Table 5 in Appendix (H1 vs. Hc).

Although in both cases non-nested hypotheses are compared,

H2 is much more precise than Hc and therefore the required

sample size for the comparison ofH1 withH2 is smaller than for

the comparison of H1 with Hc. In summary the more specific

the hypotheses that are evaluated, the smaller the required

sample size. The sample size is further reduced if two non-nested

hypotheses are compared.

From Tables 2–5 in Appendix, it appears that the sample

size required is smaller for a regular ANOVA than for a Welch’s

ANOVA. For example, as shown in Table 2 in Appendix, if effect

size f = 0.25, BFthresh = 3, η = 0.8, and H0 vs. Ha, the

sample size required for regular ANOVA is 93 per group, while

the sample size required is 102 per group for Welch’s ANOVA.

However, this is not always the case. The sample size required for

Welch’s ANOVA may be smaller than the sample size required

for a regular ANOVA. The main determinant is order of the size

of the variances relative to the order of the means.

For the robust ANOVA, two situations are evaluated. First

of all, if the data may include outliers, Tables 2–5 in Appendix

apply, because sampling from a normal distribution and using
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20% trimming is a very good approximation of sampling from

a normal with outliers. Secondly, if the data is skewed or heavy

tailed, the results in Table 6 in Appendix apply. Three situations

are distinguished: skewness = 0.61 and kurtosis = 0.67, skewness

= 1.75 and kurtosis = 5.89, and skewness = 0 and kurtosis

= 6.94. These three situations represent moderately skewed,

extremely skewed, and extremely heavy-tailed distributions that

are often encountered in psychological research (Micceri, 1989;

Cain et al., 2017). From Tables 2–5 in Appendix, it can be

seen that the sample size required is the largest for robust

ANOVA. Comparing Table 3 in Appendix in which the data had

a skewness of 0 and a kurtosis of 0 with Table 6 in Appendix,

it can be seen that the required sample sizes are larger if robust

ANOVA is used to evaluate hypotheses using data sampled from

skewed and heavy tailed population distributions.

In addition, the extremely skewed distribution needs smaller

sample size than moderately skewed, and the extremely heavy

tailed needs a higher sample size than skewed.

Finally, as is illustrated in Table 4 in Appendix, when T =

1,0000 is used, the results of SSD are very stable, that is, the

required sample sizes and η1 and η2 are irrelevantly different

if different seeds are used. This was also observed for the other

tables but these results are not reported in this paper.

5. Examples of sample size
determination for one-way ANOVAs

To demonstrate how to use the functions SSDANOVA and

SSDANOVA_robust to execute SSD for one-way ANOVAs in

practice, in the following we introduce three practical examples.

The first example presents the SSD process for the regular

ANOVA, the second example presents the SSD process for

the Welch’s ANOVA, and the third example presents the SSD

process for the robust ANOVA.

Example 1: A team of researchers in the field of

educational science wants to conduct a study in the area of

mathematics education involving different teaching methods to

improve standardized math scores. The study will randomly

assign fourth grade students who are randomly sampled from

a large urban school district to three different teaching methods.

The teaching methods are 1) The traditional teaching method

where the classroom teacher explains the concepts and assigns

homework problems from the textbook; 2) the intensive practice

method, in which students fill out additional work sheets both

before and after school; 3) the peer assistance learning method,

which pairs each fourth grader with a fifth grader who helps

them learn the concepts. At the end of the semester all students

take the Multiple Math Proficiency Inventory (MMPI). The

researchers expect that the traditional teaching group (Group

1) will have the lowest mean score and that the peer assistance

group (Group 3) will have the highest mean score. That is,

H1: µ3 > µ2 > µ1.

This hypothesis is compared to H0 which states that the

standardized math scores are the same in the three conditions.

H0: µ1 = µ2 = µ3.

The researchers guess a priori that Group 1 has a mean

of 550, Group 2 has a mean of 560, and Group 3 has a

mean that equals 580. Based on prior research, the common

standard deviation σ is set to 50. Therefore the effect size is

f = σm
σ = 0.249. The researchers decide to use BFthresh = 3

because they are happy to get some evidence in favor of the best

hypothesis. They also choose η = 0.8 because their research is

not a high-stakes research. The researchers also want to do a

sensitivity analysis to see how the sample size is influenced by

b. To determine the required sample size the researchers use the

following call to SSDANOVA.

library(SSDbain)
SSDANOVA(hyp1="mu1=mu2=mu3," hyp2 = "mu3>mu2>mu1,"

type = ‘‘equal,’’ f1 = (0,0,0),
f2=c(550,560,580), var = c(2,500,2,500,2,500),

BFthresh=3,eta=0.8, T = 10000,
seed=10)

The results are as follows:

using N = 73 and b = 0.009
P(BF03>3|H0)=0.972
P(BF30>3|H3)=0.801

using N = 62 and b = 0.021
P(BF03>3|H0)=0.944
P(BF30>3|H3)=0.803

using N = 55 and b = 0.036
P(BF03>3|H0)=0.909
P(BF30>3|H3)=0.802

According to the results the researchers should execute their

project using between 55 and 73 persons per group. These are

the numbers that they can submit to the (medical) ethical review

committee, and, to which they should tailor their resources

(time, effort and money). The researchers can combine the

results of SSD with Bayesian updating (see the elaboration on

this topic in Fu et al., 2020) to avoid using too few or too many

persons. Bayesian updating can be executed as follows. They can

use 1/4 of the sample size 73, that is, collect 18 students per

group firstly, and compute the Bayes factor once the data have

been collected. If the Bayes factor is larger than 3, they stop

the experiment; otherwise, they collect another 18 students per

group, compute the Bayes factor using 36 students per group,

and check if the Bayes factor is larger than 3, etc. In this manner,

resources can be used in an optimal way while reaching the

required amount of evidence.

Example 2: A team of psychologists is interested in

whether male college students’ hair color (1: black, 2: blond, or

3: brunette) influences their social extroversion. The students

are given a measure of social extroversion with a range from 0

(low) to 10 (high). Based on a meta analysis of research projects

addressing the same research question, the means in the three

groups are specified as 7.33, 6.13, and 5.00, and the standard

deviations are 2.330, 2.875, and 2.059, respectively. The sampling
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variance which is denoted as ’var’ in the following code is the

squared of standard deviation. The effect size is f = σm
σ = 0.39.

The researchers want to replicate the result emerging of the

existing body of evidence, that is, is it H1: µ1 > µ2 > µ3 or

Hc: not H1. They want to obtain decisive evidence BFthresh =

10 with a high probability η = 0.90. The researchers use the

following call to SSDANOVA:

library(SSDbain)
SSDANOVA(hyp1="mu1>mu2>mu3," hyp2="Hc," type=‘‘unequal

,’’ f1=c(7.33,6.13,5.00),
f2=c(5.00,7.33,6.13), var=c(2.330^2,2.875^2,2.059^2),

BFthresh=10, eta=0.9,
T = 10000, seed=10)

The results are as follows:

using N = 38 and b = 0.017
P(BF1c>3|H1)=0.903
P(BFc1>3|Hc)=0.988

Therefore the researchers should obtain 38 males for each

hair color.

Example 3: A team of economists would like to conduct

a study to compare the average salary of three age groups in the

US. The typical salary distribution in an age group population

usually shows positive skewness. Three age groups that include

25-34, 35-44, and 45-54 years old are considered, and the mean

salaries for these three groups are denoted as µ1, µ2, and µ3,

respectively. Based on prior research, experts’ opinion or a pilot

study, they assume the effect size is f = 0.25, the variances

are 1.5, 0.75, and 0.75, the skewnesses are 2, 2.5, and 1.75,

and the kurtosis is 6, 10, and 6, respectively. The researchers

are only interested in a decision for or against one of the two

hypotheses involved. Therefore they use BFthresh = 1 and use

η = 0.90 to have a high probability that the observed Bayes

factor correctly identifies the best hypothesis. Two hypotheses

are involved: H1 :µ2 > µ3 > µ1 and H2 :µ3 > µ2 > µ1. The

following call is used:

library(SSDbain)
SSDANOVA_robust(hyp1="mu2>mu3>mu1," hyp2="mu3>mu2>mu1,

" f1=0.25,f2=0.25,skews=
c(2,2.5,1.75),kurts=c(6,10,6),var=c(1.5,0.75,0.75),

BFthresh=1,eta=0.9,
T = 10000, seed=10)

using N = 50 and b = 0.013
P(BF23>1|H2)=0.976
P(BF32>1|H3)=0.904

The results show that if the researchers survey 50 persons per

group, they have a probability that the Bayes factor is larger than

1 of 0.976 if H1 is true or get a probability that the Bayes factor

is larger than 1 of 0.904 if H2 is true.

6. Conclusion

In this paper we introduced sample size determination for

the evaluation of the classical null and alternative hypotheses

and informative hypotheses (and their complement) in the one

way ANOVA context, using the AAFBF as is implemented

in the R package bain. Our SSD approach is implemented

in the functions SSDANOVA (which covers regular ANOVA

and Welch’s ANOVA) and SSDANOVA_robust (which covers

robust ANOVA) which are part of the R package SSDbain.

Besides the one-way ANOVA, SSDbain also contains the

function SSDttest (Fu et al., 2020). In the near future

another function, SSDregression, will be added to evaluate

(informative) hypotheses using the Bayes factor in the context

of multiple regression models. We believe that the R package

SSDbain is a welcome addition to the applied researcher’s

toolbox, and may help the researcher to get an idea about the

required sample sizes while planning a research project. The

novelty of this research can be concluded as follows:

1. A new sample size determination principle is proposed.

Different from traditional unilateral principle, we give a

principle, which can be described as the probability that the

Bayes factor is larger than a threshold value is at least? when

either of the hypotheses under consideration is true.

2. A sample size determination method based on dichotomy

is proposed, which can effectively reduce the computation

effort. In the traditional sample size determination method,

the sample size is increase by 1 until the termination

conditions are satisfied. This method is simple and easy to

be implemented. However, it might be very time-consuming

especially when the sample size is very large. The dichotomy-

based sample size determination method only requires a

small number of iterations, which is more convenient to the

practical application.

3. The sample size determination method proposed in this

paper has wider applicability. The software developed in this

paper is available for Bayesian ANOVA, Bayesian Welch’s

ANOVA, and Bayesian robust ANOVA.

The usage of informative hypothesis results in a reduction

in the number of sample size required, which further saves

the resources. However, Given the sample size requirement

for informative hypotheses is usually lower, the researchers

may choose to plan their studies with an informative

hypothesis even when there is no strong evidence for the

specified direction of the means, just so that they can

justify their small sample size. This may further exacerbate

the replicability crisis problems in the literature. Therefore,

the user should be careful if the informative hypothesis

is introduced.
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