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White LEDs, which have been widely used in the urban street lighting, are 

increasingly applied to replace traditional HPS lamps with a lower CCT 

(correlated color temperature). Generally, studies on the CCT of street lighting 

focus on providing safe functional lighting for vehicle drivers. However, it is 

still unknown how the street light color can affect pedestrians’ perception and 

preferences with respect to lighting levels and ambient temperature. In this 

study, a wide range of CCTs (1,600–5,400 K) was measured for urban street 

lighting in Beijing, China, for example. And the transition from traditional HPS 

lamps to LEDs lacks a reference street lighting standard for CCT. The study 

aims to conduct a cross-sensory test to evaluate urban street lighting with 

multiple combinations of CCT values and illuminance levels according to 

pedestrians’ visual perception and psychological preferences. A total of 18 

night street lighting scenes with six CCT values and three illuminance levels 

were first selected in Beijing city, and then HDR videos of these scenes were 

taken from the view of pedestrians to conduct psychological experiments in an 

indoor environment with three ambient temperatures. A total of 77 university 

students (24 males) were invited to assess videos of the 18 lighting scenes 

in terms of seven factors, such as lighting brightness, color temperature 

sensation, light color preference, sense of safety, recognition, comfort, and 

overall preference. Several key findings were achieved as follows. (1) The CCT 

of urban street lighting can have significant effects on the visual psychological 

perceptions of participants. (2) There was a significant interaction between 

CCT, illuminance, and ambient temperature on the visual psychological 

performances of participants. (3) The higher ambient temperature will deliver 

the higher level of overall preference for the street lighting with medium and 

high CCT, and the perception of warmer light color. (4) There was a strong 

correlation found between participants’ light color preference, comfort, and 

overall preferences.
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Introduction

With the innovation of LED technology, white LEDs have 
been widely used in urban street lighting and are gradually 
replacing traditional low CCT HPS lamps due to their high 
luminous efficiency and visual acuity (Nardelli et  al., 2017). 
However, at the same time, the widespread use of white LEDs has 
also brought a series of problems, including uncomfortable visual 
and psychological perceptions and nighttime rhythmic effects 
caused by a high proportion of short-wave radiation. As an 
important carrier for the night life of citizens, the street nightscape 
should not only provide lighting to guarantee function and safety, 
but also create a good atmosphere to support the all-weather 
function of streets in the city (Rong and Zhou, 2021). In recent 
years, research on street lighting has focused on the design of LED 
light sources and luminaires to respond to the needs of street 
lighting at different times and with different characteristics 
(Curran and Keeney, 2006; Zou, 2010).

In earlier LED street lighting applications, the luminous 
efficiency of 5,500–6,500 K CCT light sources was much higher 
than that of neutral light sources around 3,500 K, and thus it was 
widely adopted. However, with the improvement of LED 
technology, the difference in luminous efficiency of white LEDs in 
different CCT zones is gradually being reduced, and the difference 
in luminous efficiency between warm white light sources of 3,000–
3,500 K and cool white light sources of 6,000–6,500 K is less than 
6% (Feng and Lu, 2016). The contradiction between luminous 
efficacy and CCT is no longer the main issue, and the harmony 
between CCT and the street environment becomes the focus of 
attention (Feng and Lu, 2016). One of the most recent research 
hotspots is determining what CCT range is appropriate for urban 
street lighting.

Established studies have shown that using participants’ 
preferred lighting can generate positive emotions, increase 
satisfaction or have a healing effect (Newsham and Veitch, 2001; 
Newsham et  al., 2004; Veitch et  al., 2008). Low CCT and low 
illuminance lighting are more emotionally demanding, making 
people feel emotionally relaxed and at ease (Hao et al., 2017), while 
high CCT and high illuminance lighting make participants feel 
awake and focused, and are conducive to increasing the excitability 
and attention level of the brain when performing visual tasks 
(Katsuura et al., 2005; Kim et al., 2017). However, high CCT can 
also increase visual fatigue and brain fatigue. These findings are 
from laboratory and office conditions, and studies relevant to real-
life situations are still needed to determine how CCT influences 
people’s psychological perceptions in urban street scenarios.

Spectral power distribution (SPD) and lighting levels of street 
lighting affect drivers (He et al., 1997; Bullough and Rea, 2000; 
Akashi et al., 2007; Fotios et al., 2017) and pedestrians (Fotios and 
Cheal, 2009, 2012; Uttley et  al., 2016) in terms of visual 
performance. Street lighting is in the mesopic visual range, where 
the spectral luminous efficiency function of the human eye 
changes, and using visual efficacy to assess light efficiency while 
driving is more directly practical than optical concepts such as 

visual brightness (Hurden, 2002). It has been found that when the 
background luminance is reduced, the human eye’s sensitivity to 
the spectrum is shifted toward the short-wave direction, and the 
detection of long-wave visual targets is relatively poor (Lin et al., 
2006). In hazy weather with poor penetration of high CCT 
lighting, it is recommended that the street lighting CCT be in the 
range of 2,800–4,200 K (Feng and Lu, 2016). The best visual 
efficacy of 3,500 K CCT can be  obtained through actual 
measurements and surveys (Zhang et  al., 2013). Using a light 
source with a larger color gamut can enhance the color contrast 
between the target and the background, thus improving the visual 
efficacy under street lighting conditions (Yang and Wei, 2020). 
From the pedestrian perspective, identification and intention 
recognition are important night visual tasks (Fotios and Yang, 
2013). Field studies have concluded that MH streetlights (2,726 K) 
are more likely to achieve better facial recognition than LED 
streetlights (5,298 K) and HPS lamps (1,930 K; Lin and Fotios, 
2013). It was found that for pedestrian paths on campus, lighting 
CCT of approximately 3,000 K had higher recognition (Yuan et al., 
2021b). However, studies on the visual efficacy of street lighting 
are oriented towards the driver’s perspective, and studies on 
sidewalk lighting are conducted on stand-alone pedestrian 
systems with dedicated luminaires. Studies on sidewalk lighting in 
common Chinese situations, which is indirectly provided by 
functional street lighting, are lacking.

CCT of light affects the subjective feelings of safety and 
psychological preferences of motorways and sideways. For 
example, CCTs that are psychologically considered most suitable 
for motorway lighting include 4,000 K (Beccali et al., 2019), 4,100–
4,300 K (Beckwith et al., 2010), while street lights with too high a 
CCT (Luo et al., 2013) or 5,500–6,000 K (Beckwith et al., 2010) are 
uncomfortable. Lighting is strongly correlated with the perception 
of safety on walking paths (Fotios and Goodman, 2012; Fotios and 
Unwin, 2013; Fotios et  al., 2015), and the CCTs that are 
psychologically considered most suitable for walking paths 
include 3,000 K (Jin et al., 2015; Davidovic et al., 2018; Yuan et al., 
2021b), 3,000 K/5 lx or 3,500 K/50 lx (Petrulis et al., 2017), and 
3,800 K (Yuan et al., 2021a). Although the above studies did not 
form a unified conclusion, it can still be summarized that the 
appropriate CCT of motorways is higher than that of sideways, 
and the difference between the two should be paid attention to due 
to the large number of cases in China where sideway lighting is 
provided indirectly by motorway lighting.

The current Chinese Urban Road Lighting Design Standard 
(Ministry of Housing and Urban-Rural Development of the 
People’s of China, 2015) for street lighting states that the CCT 
should not be higher than 5,000 K and that it is advisable to give 
preference to medium/low CCT light sources, otherwise comfort 
will be  affected. The current white LED CCT range has been 
widened to between 1,700 and 18,000 K (Kokka et al., 2018). In 
Beijing, for example, the typical CCT intervals of street lighting 
measured randomly include 1,600–2,200 K, 2200–2,700 K, 2700–
3,200 K, 3,600–4,300 K, 4,300–4,900 K, and 4,900–5,400 K. Usually, 
research on the CCT of street lighting focuses on functional 
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lighting based on the driver’s perspective, while the preferences of 
pedestrians and whether the preferences are related to illuminance 
and ambient temperature need to be  further explored, as a 
supplement to the driver’s perspective research. Also, since most 
streets have functional lighting that also serves as sidewalk lighting, 
it can help to better understand pedestrian preferences for urban 
functional lighting and provide data support for sidewalk lighting.

Current white LED technology already enables reliable CCT 
adjustment. If the psychological preference of pedestrians or 
passengers for street lighting is dynamic, e.g., related to outdoor 
temperature and noise, the setting can be adjusted according to 
seasonal climate, outdoor environment, and roadway type 
characteristics. This study conducts experiments across sensory 
channels to focus on the way ambient temperature affects CCT 
preferences of street lighting.

When it is difficult to meet the requirement of conducting 
evaluation studies in real scenarios, the method of image 
evaluation can be used to present real situations through pictures 
or dynamic videos. Subjective quantitative evaluation is performed 
by participants in the laboratory under the premise of ensuring 
the consistency of the optical properties. Studies have shown that 
image reproduction of real scenes can be used instead of field 
evaluation (Manav, 2013), and dynamic video has also been used 
as a research tool for image evaluation in studies of environmental 
psychology and urban landscapes, capable of reflecting the 
dynamic properties of urban environmental horizons (Ode et al., 
2008). High dynamic range (HDR) image technology is able to 
perform image simulation of original scenes based on multi-
exposure dynamic range (Inanici, 2006; Wang, 2011), which has 
some advantages in subjective evaluation and has great potential 
for street lighting measurement with high luminance contrast. 
Therefore, this study uses HDR video evaluation to study street 

lighting to solve the problems of many disturbing factors and the 
uncontrollable temperature of field experiments, and also to 
achieve a greater degree of restoration of real scenes.

This study investigated typical streets in Beijing, measured 
CCT and illuminance, categorized 18 lighting combinations with 
six CCT values and three illuminance zones, and captured HDR 
videos of pedestrian view. Under three indoor temperatures 
(19°C, 24°C, and 29°C), 77 participants were invited to view the 
18 videos indoors and complete a Likert scale to obtain their 
preference evaluation of different street lighting combinations 
under different ambient temperatures. Starting from the 
psychological preference of pedestrians, we provide human factors 
data support for the improvement of street lighting standards 
beyond the perspective of driving safety, and provide suggestions 
for the design and dynamic regulation of street lighting in different 
climate zones through the exploration of cross-sensory channels.

Materials and Methods

Experimental site and equipment

A classroom was used as the evaluation laboratory, with a 
length of 12 m, a width of 6.3 m, and a net height of 3.8 m 
(Figure 1). The length of the LED display screen supporting 4 K 
resolution was 1.9 m, and the top and bottom edges were 2 m and 
0.9 m from the floor, respectively. A total of 10 participants were 
seated in two rows, five in each row, with 0.3 m between their 
shoulders, and the front row participants were 2.5 m away from 
the screen, so that their sight lines were not blocked and the 
difference in viewpoint was small. All lights inside and outside the 
classroom were turned off during the experiment. The curtains of 

FIGURE 1

Experimental scene of street lighting evaluation (indoor lighting turned off during the experiment).
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the south window were drawn. The room was slightly illuminated 
by the light transmitted from the adjacent building on the south 
side, and no reflections were formed on the ceiling and walls when 
the display screened videos. The room temperature was adjusted 
to 19°C, 24°C, and 29°C using air conditioners, representing cool, 
neutral, and hot ambient temperatures, respectively. Room 
temperature was measured using a thermo-hygrometer, and there 
was no significant temperature difference between the areas where 
the participants were located. The relative humidity in the room 
was all controlled at about 35–40%.

Pre-experiment

In order to verify the effectiveness of image evaluation and video 
evaluation, a pre-experiment was conducted with the street lighting 
scene in Tsinghua University campus as an example (Figure  2). 
Photographs and videos of 14 locations were captured at 20–21 PM 
using a motion camera (DJI OSMO POCKET), and evaluation 
questionnaires were completed by 20 participants in the lab, and the 
same participants were invited to the field for evaluation at the same 
time the next night. The evaluation factors included lighting 
brightness, color temperature sensation, light color preference, and 
overall preference. Paired-samples T-tests were conducted for these 
four factors, and statistically significant differences were obtained for 
both photo and field evaluations (p < 0.05), while the differences 
between video and field evaluations were not statistically significant 
(p > 0.05). That is, the video evaluation was closer to the on-site 
evaluation results than the photo, so the video was selected as the 
experimental evaluation material.

Lighting scenes for evaluation

Field study on different streets in Beijing, measuring CCT and 
illuminance, categorized into six CCT values and three illuminance 

levels, for a total of 18 combinations of actual street sections 
(Figure 3). In the 18 typical road lighting sections, after holding a 
motion camera (DJI OSMO POCKET) to human eye height and 
adjusting the white balance on site until there was no difference 
between human eye perception and the camera display, 4 K HDR 
videos were taken at an angle of 30 degrees from the sidewalk near 
the motorway to the opposite side of the field of view, moving at an 
even pace to simulate the street scenes seen on foot.

All videos were adjusted to the view of walking on the right 
side of the street, and clips with a walking range of approximately 
the distance between streetlights were taken in each video, using 
the clips with less obscured vehicles and street signs in the image 
as samples. Each video’s length was about 15–30 s, as was the 
experimental evaluation material.

Participants

From May 24 to 29, 2021, from 19:30 to 22:00 every night, 77 
students (24 men and 53 women, 20–22 years old) in their third year 
of undergraduate studies at the School of Architecture, Tsinghua 
University, participated in the experiment. The participants had a 
relatively in-depth understanding of the concepts of the built 
environment and lighting. Each participant evaluated 18 videos of 
street scenes at three room temperatures. Prior to each experiment, 
participants were informed of the room temperature for the day and 
dressed accordingly with appropriate clothing. They were divided 
into groups of 10, with myopic students wearing glasses with 
normal corrected vision and no participants with color vision 
weakness or color vision abnormalities.

Experimental procedure

The videos were tuned by image processing software and 
measured using a spectral illuminance meter to ensure that the 

FIGURE 2

Part of the street scenes of the campus pre-experiment.
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illuminance and CCT of the eyes of the participants would 
be  approximately the same as the lighting at the pedestrian 
location in the real situation corresponding to the video presented. 
The processed videos were randomly sorted and stored in groups, 
and five sets of experiments at the same room temperature were 
conducted each night. A total of 10 sets of experiments were 
completed at each room temperature, all with different 
random sorting.

The laboratory was prearranged, and the air conditioning 
temperature was adjusted until the participant area reached the 
preset value, and the indoor humidity was recorded. Each group 
of 10 subjects entered the classroom and underwent a 5-min dark 
adaptation and temperature adaptation while the experimenter 
explained the experiment content and rules. The display screen 
looped the first video, and participants could fill in the 
questionnaire at any time during the viewing process. The 
questionnaire used a 7-level Likert scale to evaluate lighting 
brightness, color temperature sensation, light color preference, 
recognition, sense of safety, comfort, and overall preference. After 
everyone filled out the evaluation of the first video, they moved on 
to the second one, thus completing the 18 videos and the 
evaluation. The participants were given sufficient observation and 
feeling time (the observation time of each video clip in the actual 
experiment is about 2 min), and the length of the experiment was 
about 40 min for each group. The participants submitted the 
questionnaire and made sure that it was filled out correctly before 
leaving. The next group entered the classroom for the second set 
of experiments, and they completed the five sets of experiments 
each night in turn.

Data analysis

The study used a repeated-measures experimental design, and 
the independent variables included three within-subjects factors 
(CCT, illuminance, and experimental temperature). The 
dependent variables included 7 semantic difference scales: lighting 

brightness (insufficient/sufficient), color temperature sensation 
(cold/warm), light color preference (dislike/like), recognition 
(cannot be accurately recognized/can be accurately recognized), 
sense of safety (danger/safety), comfort (discomfort/comfort), and 
overall preference (dislike/preference). Each factor was evaluated 
using a 7-point Likert scale.

IBM SPSS Statistics was used for data analysis. Firstly, 
descriptive statistics were performed on the seven evaluation 
factors to obtain the basic information of the evaluation results. 
Then correlation analysis and factor analysis were performed on 
the evaluation factors to explore the correlation between them and 
extract the principal components. Next, a three-factor repeated-
measures ANOVA was conducted on CCT, illuminance, and 
experimental temperature to explore whether there was an 
interaction between the three and whether there was an effect on 
the seven evaluation factors. The conditions to be satisfied were 
(1) the data in each group basically conformed to normal 
distribution by the Q-Q plot test; (2) there were no extreme 
outliers in each group judged by box plots; and (3) the variance 
covariance matrix of the dependent variables was equal (p > 0.05) 
for the interaction term CCT* illuminance* experimental 
temperature by Mauchly’s spherical hypothesis test; and (4) if they 
were not equal (p < 0.05), the Grennhouse-Geisser or Huynh-Feldt 
coefficients were selected for epsilon correction. If there was an 
interaction between the three factors, then (1) continue to test 
whether there was a simple two-factor interaction; (2) if there was 
a simple two-factor interaction, continue to test whether there was 
a simple effect; and (3) if so, continue to test whether a simple 
two-by-two comparison was significant.

Results

Factor analysis of dependent variables

Before factor analysis, correlations between dependent 
variables were first studied. The Likert scale results used in this 

FIGURE 3

Images of streets with different CCT and illuminance combinations (shot in April to May 2021, 19–21 PM).
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study were ordered categorical variables, all of which were analyzed 
using Kendall’s tau-b correlations, with correlation coefficients less 
than 0.4 being weak correlations, 0.4–0.7 being moderately strong 
correlations, and greater than 0.7 being strong correlations.

A two-by-two correlation analysis was performed on the 
seven evaluation factors at all experimental temperatures to 
establish a correlation coefficient matrix (Figure 4). The results 
were as follows. (1) All independent variables are positively 
correlated. (2) A weak correlation between lighting brightness and 
color temperature sensation, light color preference; between color 
temperature sensation and light color preference, recognition, 
safety, comfort, and overall preference. (2) A moderately strong 
correlation between brightness and comfort, overall preference; 
between light color preference and recognition, safety, comfort, 
and overall preference; between recognition and comfort, overall 
preference; and between safety and comfort, overall preference. 
(3) A strong correlation between brightness and recognition, 
safety; between recognition and safety; and between comfort and 
overall preference. Among them, the factors with the highest 
degree of correlation with light color preference and overall 
preference are all comfort, and there is also a strong correlation 
between light color preference and overall preference.

For the six dependent variables of lighting brightness, color 
temperature sensation, light color preference, recognition, safety, 
and comfort, the principal components were extracted (Table 1). 
The data structure is reasonable (KMO test coefficient is 0.820, 
and p < 0.001 for Bartlett’s test results), and factor analysis can 
be performed.

The results of factor analysis suggest that the eigenvalues of 
the top 2 principal components are greater than or equal to 1, 
explaining 64.382, and 16.664% of the total data variance, 

respectively, and the correlation between the two factors is low 
(correlation coefficient less than 0.1). Therefore, the top 2 principal 
components were finally extracted, and the extracted principal 
components explained 81.046% of the data variance cumulatively. 
From the rotated component matrix (Table 1), it can be obtained 
that principal component 1 has a high correlation with lighting 
brightness, light color preference, recognition, safety, and comfort, 
which can be  referred to as the participant’s psychological 
perception; principal component 2 has a high correlation with 
color temperature sensation, which can be  referred to as the 
participant’s warm and cold perception.

Effects of lighting and temperature on 
overall preference

A three-factor repeated-measures ANOVA was used to 
determine the effects of CCT, illuminance, and experimental 
temperature on the evaluation of overall preference (Figure 5).

The interaction between CCT, illuminance, and experimental 
temperature had a statistically significant effect on the overall 
preference score, F = 2.203, p = 0.003 < 0.05. Therefore, a simple 
two-factor interaction test was performed.

The interaction of CCT and illuminance was chosen to 
be verified at different levels of experimental temperature. When 
the experimental temperature was 19°C, F = 47.709, 
p = 0.000 < 0.05; when the experimental temperature was 24°C, 
F = 45.592, p = 0.000 < 0.05; when the experimental temperature 
was 29°C, F = 51.966, p = 0.000 < 0.05. To sum up, the interaction 
of CCT and illuminance was statistically significant at all three 
experimental temperatures.

FIGURE 4

Heat map of the correlation coefficient matrix between dependent variables.
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The effect of CCT on overall preference scores was statistically 
significant for all nine combinations of levels with experimental 
temperatures of 19, 24, and 29°C and illuminance levels of 10–30, 
30–50, and 50–100 lx, respectively, and all had a simple effect, 
p = 0.000 < 0.001. Pairwise comparisons revealed that most of the 
differences between two of the six CCT levels in the nine cases 
were statistically significant (p < 0.001).

The ranking of the ratings for overall preference at different 
temperatures was obtained after participants watched the videos 
of 18 CCT and illuminance combinations at three experimental 
temperatures. At the neutral temperature of 24°C, the top three 
for overall lighting preferences were all 2,700–3,200 K: CCT3E2 
(30–50 lx), CCT3E3 (50–100 lx), and CCT3E1 (10–30 lx). At a 
cooler temperature of 19°C, the top three for overall preferences 
were still 2,700–3,200 K, respectively: CCT3E2 (30–50 lx), 
CCT3E1 (10–30 lx), and CCT3E3 (50–100 lx), and the overall 
preference score for low and medium CCT lighting was higher 
than 24°C. At a warmer temperature of 29°C, the top three for 
overall preferences were: CCT3E2 (2,700–3,200 K, 30–50 lx), 
CCT5E2 (4,300–4,900 K, 30–50 lx), and CCT3E1 (2,700–3,200 K, 
10–30 lx), and participants’ overall preference ratings for medium 
and high CCT lighting were higher than at 24°C. The participants’ 
overall preference scores for roadway lighting were identical in the 
last three: CCT1E1 (1,600–2,200 K, 10–30 lx), CCT1E2 (1,600–
2,200 K, 30–50 lx), and CCT6E1 (4,900–5,400 K, 10–30 lx). That is 
lighting conditions with low CCT and low illuminance, or high 
CCT and low illuminance.

Effects of lighting and temperature on 
psychological perception

The interaction between CCT, illuminance, and experimental 
temperature had a statistically significant effect on recognition and 
safety ratings. For recognition, F = 2.799, p = 0.000 < 0.05. For 
safety, F = 2.535, p = 0.001 < 0.05. Therefore, a simple two-factor 
interaction test was conducted to obtain a statistically significant 
effect of the interaction between CCT and illuminance on both 
recognition and safety for all three temperatures.

The effects of CCT on recognition and safety scores were 
statistically significant at nine combinations of levels with 
experimental temperatures of 19, 24, and 29°C and illuminance 
levels of 10–30, 30–50, and 50–100 lx, respectively, all with simple 
effects, p = 0.000 < 0.001. Pairwise comparisons revealed that most 
of the differences between two of the six CCT levels in the nine 
cases were statistically significant (p < 0.001).

When the illuminance is 10–30 lx, the optimal CCT for both 
pedestrian recognition and safety is 2,700–3,200 K. When the 
illuminance is 30–50 lx, the optimal CCT for pedestrian 
recognition is 4,300–4,900 K, and for pedestrian safety is 2,700–
3,200 K. When the illuminance is 50–100 lx, the optimal CCT for 
both pedestrian recognition and safety is 1,600–2,200 K. The 
results show that the optimal CCT for both pedestrian recognition 
and safety is 2,700–3,200 K overall (Table 2), which is lower than 
the applicable lighting for motorway safety and visual efficacy 
compared with the existing studies, but basically in line with the 
pedestrian sideway lighting safety perception and recognition  
requirements.

Effects of lighting and temperature on 
cold and warm perception

The interaction between CCT, illuminance, and experimental 
temperature on color temperature sensation had a statistically 
significant effect on the ratings of color temperature sensation 

TABLE 1 Rotated component matrix.

Component 1 Component 2

Safety 0.939

Recognition 0.909

Lighting brightness 0.895

Comfort 0.894

Light color preference 0.743

Color temperature sensation 0.999

FIGURE 5

Interaction trend of CCT, illuminance, and experimental temperature on the overall preference score.
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FIGURE 6

Interaction trend of CCT, illuminance, and experimental temperature on the color temperature sensation score.

(Figure  6), F = 38.264, p = 0.005 < 0.05. Therefore, a simple 
two-factor interaction test was performed.

The interaction between CCT and illuminance was chosen to 
be verified at different levels of the experimental temperature. 
When the experimental temperature was 19°C, F = 17.139, 
p = 0.000 < 0.05; when the experimental temperature was 24°C, 
F = 21.507, p = 0.000 < 0.05; when the experimental temperature 
was 29°C, F = 14.903, p = 0.000 < 0.05. That is, the interaction 
between CCT and illuminance was statistically significant at all 
three experimental temperatures. At the same temperature, low 
illuminance of 10–30 lx made for a cooler overall feeling, and the 
opposite was true for medium illuminance of 30–50 lx. This effect 
was more pronounced at a temperature of 24°C. At the same CCT, 
higher illuminance conditions made the participants perceive the 
CCT warmer. For example, at CCT levels of 1,600–2,200 K, 2,700–
3,200 K, and 4,300–4,900 K, the participants perceived the CCT 
warmer at 50–100 lx than at 10–30 lx. Interestingly, at 50–100 lx, 
the participants all thought that the CCT of 3,600–4,300 K felt 
cooler than 4,300–4,900 K.

By comparing the group differences between the three 
temperatures at the six CCT levels, it was determined that the 
experimental temperature was able to influence the participants’ 
perception of coldness and warmth. At the experimental 
temperature of 19°C, the participants perceived the CCT as colder, 

and this effect was especially seen in the CCT levels of 3,600–
4,300 K and 4,300–4,900 K. At the experimental temperature of 
29°C, the participants perceived the CCT as warmer, especially in 
the CCT levels of 1,600–2,200 K, 3,600–4,300 K, 4,300–4,900 K, 
and 4,900–5,400 K.

Conclusion

Participants viewed videos of 18 CCT and illuminance 
combinations at three experimental temperatures to obtain 
different evaluation factor scores for each scene at 
different temperatures.

The overall preference scores and the recognition, safety, 
comfort, and light color preference scores showed similar trends 
at different temperatures (Figure 7). According to the Chinese 
road lighting standard (2015), most of the motorway lighting is 
below 30 lx, i.e., for the 10–30 lx interval in this study, the optimal 
CCT range is 2,700–3,200 K, with large differences in preference 
between different CCT levels. For 30–50 lx, the best CCT range is 
2,700–3,200 K, followed by 4,300–4,900 K. For the high 
illuminance range of 50–100 lx, the best CCT range is 2,700–
3,200 K, with little difference in preference between different CCT 
levels (Figure 8).

TABLE 2 The optimal CCT and mean values of participants’ scores correspond to recognition and safety at different temperatures.

Psychological
perception E/lx

19°C 24°C 29°C

Optimal
CCT/K Mean Optimal

CCT/K Mean Optimal
CCT/K Mean

Recognition 10–30 2,700–3,200 4.74 2,700–3,200 4.66 2,700–3,200 4.88

30–50 4,300–4,900 6.32 4,300–4,900 6.21 2,700–3,200 6.14

50–100 1,600–2,200 6.00 1,600–2,200 6.17 1,600–2,200 5.84

Safety 10–30 2,700–3,200 4.84 2,700–3,200 4.64 2,700–3,200 5.08

30–50 4,300–4,900 6.16 2,700–3,200 6.05 2,700–3,200 6.09

50–100 1,600–2,200 5.84 1,600–2,200 5.95 1,600–2,200 5.77
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Pedestrians’ psychological perception of CCT is not only 
related to the illuminance level of the street but also to the ambient 
temperature they are exposed to. The subjective evaluation of 
participants for different CCT and illuminance level combinations 
differed under different experimental temperatures. There is a 
three-factor interaction between temperature, CCT, and 
illuminance. Specifically, the interaction of CCT and illuminance 
existed at different experimental temperatures. And on different 
combinations of experimental temperature and illuminance, CCT 
had a significant effect on the ratings of lighting perception.

By observing the statistical plots of ratings, it was found that 
temperature affects participants’ overall preference for street lighting 
and the warm and cold perceptions of CCT. The higher the 
temperature, the better the participants’ overall preference for 
medium and high CCT levels. The higher the temperature, the 
warmer the participants’ perception of CCT. In the interval of 

10–30 lx, which reflects the level of street lighting in China, the overall 
preference for lighting at 29°C was higher than that of 19°C and 24°C.

Discussion

According to the model proposed by Rea et al. (2011), for 
outdoor scene brightness perception, the brightness sensitivity of 
the human eye increases relatively to the short wavelength 
spectrum. The overall brightness under 20 lx illuminance 
conditions (measured 17 lx) for CMH 4,200 K (measured 3,750 K) 
and MV (measured 4,052 K) is judged to be higher than for CMH 
2,800 K (measured 2,583 K). Under the 10–30 lx conditions in this 
study, the 2,700–4,300 K lighting was overall higher than the 
1,600–2,700 K traditional lighting in terms of brightness 
perception and safety ratings. However, the mean measured 

FIGURE 7

Evaluation scatter plots of different street lighting at three experimental temperatures.
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FIGURE 8

Evaluation rankings of different street lighting under three experimental temperatures.

illuminance of 2,700–4,300 K lighting was 13.5 lx, which was lower 
than the mean measured illuminance of 1,600–2,700 K lighting of 
19 lx. The model of Rea et  al. (2011) helps to understand the 
results of this study. Combined with the findings of existing 
studies (Boyce et  al., 2000; Rea et  al., 2009) that suggest the 
brightness perception in outdoor environments is related to the 
sense of safety, it has practical utility for lighting standards.

In the common street lighting situation in the mesopic visual 
range, the results of this study are low compared with the CCT 
obtained from the existing studies based on the motorway safety 
perspective, but are generally consistent with the CCT obtained 
from the sidewalk safety perspective. The results of this study are 
lower than those obtained from the existing studies based on the 
motorway identification degree, but basically consistent with the 
CCT obtained from the pedestrian recognition degree.

Priority should be given to the visual requirements of drivers, 
such as identification from a safety standpoint, in the design of 
urban street lighting. The findings of this study prove that LED 
motorway lighting is usually high in CCT for the sidewalks that 
borrow its lighting, which is not the best preference. Lower CCT 
lighting of 2,700–3,200 K should be appropriately supplemented 
in the pedestrian area, taking into account the visual preference of 
pedestrians. Because individual physiological and psychological 
characteristics may affect light color preference, this study is only 
valid for people with characteristics such as region and age 
represented by the test sample.

In addition to the CCT itself, other non-optical factors may 
affect the overall preference, such as temperature and other 

environmental physical parameters. In the planning and design of 
street lighting, cross-sensory factors should also be  taken into 
account, such as the dynamic adjustment of CCT according to the 
ambient temperature.

With the establishment of the evaluation system for color 
gamut and color saturation, and the innovation of the convenience 
of wearable spectral measurement devices, the physiological-
psychological effects of spectral power distribution and color 
rendering performance should be  explored more carefully in 
street lighting research, in addition to the CCT. In this study, a 
video evaluation method was used to obtain subjective data from 
the participants. If supplemented with physiological data 
monitoring methods such as electroencephalogram (EEG), 
galvanic skin response (GSR), eye tracking, and heart rate, it will 
improve the assessment of light color preference.
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