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As the population ages, the number of older adults experiencingmild cognitive

impairment (MCI), Alzheimer’s disease, and other forms of dementia will

increase dramatically over the next few decades. Unfortunately, cognitive

changes associated with these conditions threaten independence and quality

of life. To address this, researchers have developed promising cognitive training

interventions to help prevent or reverse cognitive decline and cognitive

impairment. However, the promise of these interventions will not be realized

unless older adults regularly engage with them over the long term, and like

many health behaviors, adherence to cognitive training interventions can often

be poor. To maximize training benefits, it would be useful to be able to predict

when adherence lapses for each individual, so that support systems can be

personalized to bolster adherence and intervention engagement at optimal

time points. The current research uses data from a technology-based cognitive

intervention study to recognize patterns in participants’ adherence levels and

predict their future adherence to the training program. We leveraged the

feature learning capabilities of deep neural networks to predict patterns of

adherence for a given participant, based on their past behavior. A separate,

personalized model was trained for each participant to capture individualistic

features of adherence. We posed the adherence prediction as a binary

classification problem and exploited multivariate time series analysis using

an adaptive window size for model training. Further, data augmentation

techniques were used to overcome the challenge of limited training data and

enhance the size of the dataset. To the best of our knowledge, this is the

first research e�ort to use advanced machine learning techniques to predict

older adults’ daily adherence to cognitive training programs. Experimental

evaluations corroborated the promise and potential of deep learning models
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for adherence prediction, which furnished highest mean F-scores of 75.5,

75.5, and 74.6% for the Convolution Neural Network (CNN), Long Short-Term

Memory (LSTM) network, and CNN-LSTM models respectively.

KEYWORDS

artificial intelligence, deep learning, adherence prediction, cognitive training, early

detection of cognitive decline

1. Introduction

The US adult population over the age of 65 is growing

rapidly and is projected to nearly double in the next 40 years

(Mather et al., 2015). As people age, they experience cognitive

decline, which can affect their functional independence and

the ability to process information to make daily decisions.

Such cognitive decline can range from that anticipated in

normal aging to the more serious decline of dementia or

other related diseases (e.g., Alzheimer’s). Finding ways to

address this problem can significantly improve the lives of

older adults, their families, and reduce care burden and

cost of care. A growing body of pharmacological and non-

pharmacological intervention studies (Rebok et al., 2014; Rafii

and Aisen, 2015; Kramer and Colcombe, 2018) have shown the

potential to counteract the effects of age-associated cognitive

decline. Cognitive training is one of the most common

forms of non-pharmacological interventions. This approach

commonly uses guided technology-based exercises, focused

on improving specific cognitive functions such as memory,

attention, or problem-solving. Although these brain-training

interventions are widely used, research on the effectiveness of

such interventions has resulted in both positive and neutral

outcomes (Bahar-Fuchs et al., 2013; Simons et al., 2016; Chiu

et al., 2017; Kallio et al., 2017; Ge et al., 2018; Nguyen et al., 2019;

Sala et al., 2019; Turunen et al., 2019; Zhang et al., 2019; Basak

et al., 2020; Harrell et al., 2021; Kuo et al., 2021). Adherence is

the key to maximize the potential benefits of cognitive training

interventions. The WHO defines adherence as “the extent to

which a person’s behavior agrees with the recommendations

of a healthcare provider” (Sabaté and Organization, 2001).

While various studies suggest that adherence is influenced by

cognition, functional ability, and the intervention approach

(Sabaté, 2003; Munro et al., 2007; Picorelli et al., 2014; Room

et al., 2017; Rivera-Torres et al., 2019; Turunen et al., 2019),

it is not yet fully understood why some participants are

more adherent to cognitive training programs than others. To

improve the potential effects of cognitive training, it may be

beneficial to study participants’ adherence patterns and identify

those who are least likely to adhere to the training process.

Our ongoing Adherence Promotion with Person-Centered

Technology (APPT) project aims at understanding long-term

adherence barriers, developing algorithms to predict and

prevent adherence failures, and ultimately facilitating early

detection of age-related cognitive decline and its treatment.

Accurate adherence prediction can help in the development of

a just-in-time AI based reminder system that will send tailored

messages at optimal time points to encourage participants

to follow the training schedule and improve their adherence

to the training program. The project also seeks to examine

older adults’ motivation to participate in cognitive training

and investigate the effectiveness of optimally-timed tailored

messaging to facilitate cognitive training.

This study uses data from a previous technology-based

cognitive intervention study, which was conducted to investigate

methods to improve adherence to a technology-based cognitive

intervention (Harrell et al., 2021). The investigation enrolled 118

participants and was divided into structured and unstructured

phases. In the structured phase of 12 weeks, participants were

prescribed a training schedule involving gamified cognitive

training tasks administered via a tablet. During the 6 week

unstructured phase, participants were allowed to play as often

as they liked. Results of the study showed that during the

structured phase, message manipulations did not encourage

adherence (Harrell et al., 2021). This motivates the need to

study individual adherence patterns to determine older adults’

upcoming compliance with real-time interventions and to

evaluate how such an approach may improve their adherence to

cognitive training programs.

The goal of the current study was to predict the participants’

daily adherence to the training program based on their previous

adherence patterns. We exploited deep learning models for

this problem, as they automatically learn an informative set

of features for a given dataset and have shown commendable

performance in a variety of applications. A cursory examination

of the data revealed that each participant exhibited a unique

pattern of adherence. In order to capture the individual

adherence characteristics, we decided to train a separate

adherence prediction model for each participant, rather than

the “one-size-fits-all” approach of training a single model for all

participants. The optimal training window size was computed

for each participant, and data augmentationwas used to generate

synthetic data and address the challenge of insufficient training

data. The deep neural networks were trained to predict whether
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a given participant will meet the minimal adherence criterion on

a given day (play for less than or greater than 10 min), based

on previous playing pattern of the participant. This information

will enable us to effectively identify participants who are most

likely to be non-compliant to the training program. This, in turn,

will help in designing an AI-based reminder system that can

promote adherence by sending just-in-time tailored messages.

To our knowledge, this research is the first of its kind to use

advanced AI algorithms to predict older adults’ daily adherence

to cognitive training programs.

Academic research on the effectiveness of cognitive training

programs aimed at combating cognitive decline has sparked

a surge of interest in the past decade (Wolinsky et al., 2006;

Jaeggi et al., 2008; Rebok et al., 2014; Simons et al., 2016; Zhang

et al., 2019). While some studies have expressed doubt about

the viability of such training programs (Talassi et al., 2007;

Redick et al., 2013; Gray et al., 2021), others have shown that

cognitive training is beneficial (Wolinsky et al., 2006; Talassi

et al., 2007; Rebok et al., 2014). For example, the ACTIVE

project’s randomized study found that advanced cognitive

training improved instrumental activities of daily living (IADL),

resulting in the prevention and reduction of functional decline

in older adults (Wolinsky et al., 2006; Rebok et al., 2014).

Apart from the debate over whether cognitive training works,

another crucial concern is whether older adults are willing to

engage in such cognitive training. However, there is a scarcity

of research that have examined how well people adhere to

cognitive training and the elements that influence participants’

adherence to the cognitive training programs (Sabaté, 2003;

Turunen et al., 2019). Turunen et al. explored the effects of

computer-based cognitive training (CCT) with older adults who

had a higher risk of dementia. They discovered that prior

computer use was the only factor linked with adherence in

terms of the number of completed training sessions (Turunen

et al., 2019). Harrell et al. explored the impact of positive

and negative messages about brain health on adherence to

home-based cognitive training interventions and discovered

that positively-framed messages promoted greater adherence

over negatively-framed messages (Harrell et al., 2021). They also

investigated the factors that may correlate with participants’

willingness to participate in cognitive training, such as age,

belief in the efficacy of cognitive training, prior computer uses

and technology proficiency. A better understanding of these

factors can facilitate the prediction of adherence, allowing for

more effective technology-based cognitive training. Machine

learning algorithms have been previously used to predict

adherence to medications (Koesmahargyo et al., 2020; Gu

et al., 2021) and medical therapy procedures (Scioscia et al.,

2021) with promising empirical results. Deep neural networks

automatically learn informative feature representations and have

depicted commendable performance in a variety of applications.

In this research, we study the performance of deep learning

techniques to predict adherence. These predictions can then

be used to deliver tailored messages at optimal times to

promote greater adherence to cognitive training. To the best

of our knowledge, this is the first study to predict daily

adherence to cognitive training programs in older adults using

advanced machine learning techniques such as deep learning,

data augmentation and adaptive window size estimation.

2. Materials

2.1. The mind frontiers program and
gameplay

This project used the Mind Frontiers (Aptima Inc.)

cognitive training software package, a Wild West-style Android

video game application. The Mind Frontier cognitive training

suite consists primarily of seven mini-video games modeled

after measures of memory, attention, spatial processing, task-

switching, reasoning ability, and problem-solving. Each of

the games is supported by successfully implemented cognitive

training programs in the psychology literature (Klingberg et al.,

2002; Dahlin et al., 2008; Jaeggi et al., 2008; Karbach and Kray,

2009; Mackey et al., 2011; Harrell et al., 2021). Participants were

instructed to play the games in a 12-week structured phase and

in a 6-week unstructured phase following instructions detailed

in the section below. After each game, participants received

feedback and the difficulty of the game was adjusted based on

their previous performance. The games were played on a Lenovo

10 tablet, and participants in the study were trained on both how

to use the tablet and how to play each game.

2.2. Dataset

The dataset used in this study involves two phases (Harrell

et al., 2021). Phase 1 was 12 weeks long and participants were

asked to follow a prescribed schedule i.e., playing for 5 days out

of 7, at 45 min a day. Phase 2 was unstructured and lasted 6

weeks, where participants were asked to play as frequently as

they were willing to. In this study, we only analyzed the data

collected during the structured phase, as adherence cannot be

defined without the proposed game-playing instructions given

in Phase 1. The study had 118 participants with an overall mean

age of 72.6 years and a standard deviation of 5.5 years. Sixty-

six percent of the participants were female with a mean age of

71.5, and thirty-two percent weremale with themean age of 75.0.

There was no gender specific data for 2% of the participants.

Multiple cognitive assessments were recorded in the dataset,

consisting of, but not limited to, technical competence, self-

efficacy, subjective cognition, perceived benefits, and objective

cognition (i.e., processing speed and memory). Training

interaction details include information about interaction

engagement, such as game duration, tasks performed, task levels,
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TABLE 1 Data obtained through gamified cognitive training interactions.

Category Details

Sessions Sessions initiated by participants

Tasks 7 Tasks (WorkingMemory-Updating, Switching, Dual N Back, TowerOfLondon, PipeMania, FigureWeights VisualSpatial)

Task levels Levels for tasks with maximum levels ranging from 16 to 58 for different tasks

Task outcomes Outcome of each game. Total 5 possible outcomes (Defeat, Stalemate, Victory, Abort, Not Yet Finished)

Play/Interaction time Duration of play time in number of seconds

FIGURE 1

Research question: If the values p1,p2. . .,pn of the time series at time stamp t1, t2, ..., tn are given, can we predict the value at tn+1?.

sessions, and the outcome of each task completed, as shown

in Table 1. The cognitive training program contains 7 different

tasks with 5 possible outcomes (i.e., defeat, stalemate, victory,

abandonment, not yet completed).

To characterize participants’ technology proficiency,

participants were administered the Mobile Device Proficiency

Questionnaire (MDPQ) (Roque and Boot, 2018). Proficiency

varied widely with respect to the use of tablet computers (the

technology platform for the current intervention). Scores for

this measure range from a minimum score of 8 (indicating

no experience or proficiency) to a max of 40 (indicating

high proficiency using mobile devices such as tablets and

smartphones). The average score for this sample was 27.10

(SD = 9.73). As expected, this average score was variable and

substantially lower compared to college-aged samples (e.g., M

= 38.4, SD = 1.7; from Roque and Boot 2018). To help reduce

proficiency-related barriers to the adherence of the intervention,

participants were given 1–2 h of training on how to use the

tablet and the intervention software prior to the start of the

intervention period. Participants were also given a custom user

manual for how to operate the tablet and play each game within

the intervention and were provided information on how to

access to a technical support phone number.

We employed four time-dependent variables as predictors

in our input data: (i) the length of time the participant played,

(ii) the number of sessions, (iii) the highest level attained, and

(iv) the number of tasks completed. Given the values of these

predictors for a given participant for a specific number of days,

our goal is to predict the play time of the participant for the

following day.

2.3. Research question

The main purpose of this study was to use multivariate time

series data acquired from neuropsychological game training

data to determine whether participants will meet the minimum

adherence criteria on day (N + 1), given the participants’

N-day continuous play pattern, as depicted in Figure 1. For

each participant, we split the data equally into training and

testing, by taking the first 30 days of data for training and

the next 30 days (31–60) of data for testing. This split was

selected to strike a balance between the training and testing

samples. Further, there is evidence in the psychology literature

showing that the median time to develop different health-

related habits asymptotes around 30 days (Lally et al., 2010).

The proposed split can thus be useful to assess long-term

adherence. The prediction of a particular day was made using

the play information of prior N number of days where N is

the window size. We used 4 time-dependent variables obtained

through game interface interactions as our predictors, namely:

(i) duration for which a participant played, (ii) number of

sessions, (iii) max level reached and (iv) the number of tasks

performed. The participants were said to be satisfying the

minimal adherence criterion if they played for at least 10 min

on a given day. This minimal adherence criterion was selected
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FIGURE 2

Distribution of play time of all the participants, (A) (top figure) in the first 30 days (training set) and (B) (bottom figure) the next 30 days (test set).

The x-axis denotes the index of the day, and the y-axis denotes the number of participants. Best viewed in color.

to ensure that the participants spent a reasonable amount of

time playing the game, and to avoid cases where they may

have accidentally opened the app and then backed out. Hence,

this was considered as the threshold to define the two classes

(adherent and non-adherent) in our study. Development of

the predictive modeling system was particularly challenging

because: (i) the amount of training data was limited (only 30 days

of training data per participant), and (ii) we were attempting to

predict the playtime for a particular day rather than the average

over a period of time (1 or 2 weeks) where the margin of error

can be comparatively lower due to averaging.

Figures 2A,B show the distribution of play time of all the

participants in the first 30 days (training set) and the next 30

days (test set). The length of the blue bar denotes the number

of participants (out of 118) who played for less than 10 min

on that day; the length of the gray bar denotes the number

of participants who played for more than 10 min (i.e., those

who met the minimal adherence criterion). We note that in

days 31 to 60, the length of the blue bar is higher in many

days, compared to that in the first 30 days. This means that

participants tended to move from adherent to non-adherent

in the later part of the study (that is, in the test phase).

This demonstrates the necessity of our proposed approach

in accurately identifying when a participant will fall off the

training schedule, so that appropriate reminders can be issued

accordingly.
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3. Methods

Our proposed methodology consists of three main

components (detailed below): (i) estimation of the optimal

window size for each participant; (ii) data augmentation to

address the challenge of limited training data per participant;

and (iii) deep neural networks to learn patterns of adherence

from the multivariate time series data. A separate deep model

was trained for each participant, considering the individual

differences in their play patterns; the final prediction accuracy

was computed as the average accuracy over all the 118

participants.

3.1. Data processing and optimal window
size estimation

Given a time series dataset, we can formulate a supervised

learning problem using the sliding window method. In this

method, relevant data from the recent past are passed as inputs

to a predictive model, which is trained to predict the value

of the response variable at the next time step. Since the play

pattern of each participant is unique, we explored a method

to determine the optimal window size for each participant

and used it for that participant throughout the modeling

process.

3.1.1. Sliding window method

The sliding/rolling window algorithm is a well-known

technique for extracting subsequences from a long time series

(Yu et al., 2014; Hota et al., 2017). The idea is to predict the

value of the response variable at time t in a given time series,

by feeding into the model values at time points (t-1), (t-2), (t-3)

etc. as illustrated in Figure 3.

Before using a sliding window, we need to define two

parameters: window size and sliding step. In this study, we

exploited a technique to adaptively compute the optimal window

size for each participant (based on their playing patterns), rather

than use an arbitrary window size for all participants. This can

potentially result in a better prediction model, as it captures

the unique playing patterns of each participant. To this end, we

used the seasonal decomposition of time series data to determine

whether any cyclic variations or recurrence patterns can be

obtained. The time difference, at which the most prominent

cycle was observed, was used as the window size with a sliding

step of 1. This is detailed below.

3.1.2. Adaptive window size estimation

Time series data can show different patterns, and it is often

convenient to divide the time series into multiple components.

Each component represents a basic category of patterns such as

trend (general increase or decrease in average) and seasonality (a

recurring cycle) (De Livera et al., 2011).We used the Fast Fourier

Transform (FFT) to detect the presence of any seasonality in our

time series data. The FFT allows us to transform a function of

time and signal into a function of frequency and power (Musbah

et al., 2019). This depicts the frequencies that make up the data

in the original domain (time) and their relative strengths, as

illustrated in Figure 4.

We first applied the FFT on play length attribute to

transform the time series training data into the frequency

domain and derive the corresponding amplitude and frequency.

The highest amplitude frequencies represent seasonal patterns

and the lowest amplitude frequencies represent noise. The

inverse Fast Fourier Transform (IFFT) was then applied to the

frequency with maximum amplitude to get the time interval

for the most prominent cycle (periodic pattern). This cyclic

period was used as the window size for the corresponding

participant.

One of the challenges we faced in this research was

the insufficient amount of training data per participant. We

used the data we had and computed the FFT; our empirical

results (shown in Tables 2–4) demonstrated the usefulness of

optimal window size estimation through FFT computation.

More training data per participant are likely to produce better

results.

3.2. Data augmentation for time series
data

One of the fundamental challenges of this study was the

scarcity of training data as only 30 days of training data

were available for each participant. Deep neural networks

are data-hungry and require a large amount of training

data to attain good generalization performance. We exploited

data augmentation techniques, which generate synthetic data

samples to augment a given training set, to address the challenge

of insufficient training data in this research. Data augmentation

has been used in conjunction with time series data with

promising empirical results (Um et al., 2017; Wen et al., 2020).

Suppose our time series data is in the format x = x1, x2, ...xT
where the timestamp is t ∈ [1, 2. . .T]. We studied the

performance of multiple data augmentation techniques, which

are detailed below. We used a previous study to determine the

values of the hyperparameters for data augmentation (Um et al.,

2017).

3.2.1. Jittering

A primitive but one of the most effective methods of

transform-based data augmentation is injecting a small amount

of noise/outliers in time series without changing the label,

which makes it unique every time it is revealed to the model

Frontiers in Psychology 06 frontiersin.org

https://doi.org/10.3389/fpsyg.2022.980778
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Singh et al. 10.3389/fpsyg.2022.980778

FIGURE 3

The figure illustrates structuring of time series data to fixed size windows (window size = 3 in this example).

FIGURE 4

Illustration of Fast Fourier Transformation to convert data in time domain to frequency domain. In the time domain, the original signal is a

superposition of signals with distinct frequencies. After applying FFT, we see corresponding strong frequencies in the spectrum.

(Um et al., 2017; Iwana and Uchida, 2021). Jittering can be

defined as:

x′ = x1 + ǫ1, x2 + ǫ2, . . .xT + ǫT (1)

where ǫ is usually Gaussian noise added to the values

at each time step t with ǫ ∼ N(0, σ 2). We used the

hyperparameter σ as 0.01 in our studies. Since the produced

patterns are distinct from the original by only a factor of

noise, jittering has the potential to improve generalization and

avoid overfitting.

3.2.2. Scaling

Scaling resizes the time series by multiplying it by a scalar

value which is usually generated from a Gaussian distribution

(Um et al., 2017; Iwana and Uchida, 2021). It multiplies the

entire time series by a parameter α, and can be represented as:

x′ = α1x1,α2x2, ...αTxT (2)

where the scaling parameter α is determined from a Gaussian

distribution α ∼ N(1, σ 2). We used σ as 0.1 in our studies.

3.2.3. Time warping

Data augmentation using time warping techniques deform a

pattern in the temporal dimension using a smooth warping path

(Um et al., 2017; Iwana and Uchida, 2021). The augmented time

series is represented as:

x′ = x
τ (1), xτ (2), ...xτ (T) (3)

where τ (.) is a warping function that perturbs the time steps

based on a smooth curve. This curve is described by a cubic
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spline which is formed by using a cubic polynomial in an interval

between two successive knots (Li et al., 2014). The knot height is

derived from a Gaussian distribution N(1, σ 2). We used σ as 0.2

in our experiments.

3.2.4. Stacking scaling/jittering with time
warping

The aforementioned data augmentation techniques can

be combined to devise new augmentation techniques (Um

et al., 2017). Depending on the application in question,

the combination of two or more of these techniques can

potentially improve the generalization performance. In

our experiments, applying time warping in addition to

scaling/jittering significantly improved the results.

We increased the training data by 5 folds using each of the

above mentioned data augmentation techniques and compared

their performance in the empirical studies detailed below.

3.3. Deep neural networks for time series
data classification

Deep neural networks have been successfully employed to

address the problem of time series data classification. It has

proven to be an efficient solution because it can automatically

assess the temporal dependencies that occur in time series data

and learn a discriminating set of features accordingly. We used

three deep model architectures that have depicted commendable

performance in time series classification namely, Convolution

Neural Network (CNN), Long Short-Term Memory Network

(LSTM), and a combination of CNN and LSTM.

3.3.1. Convolution neural network

Convolutional Neural Networks have depicted impressive

performance in a variety of time series data classification

applications (Chen et al., 2016; Kim, 2017; Zhao et al., 2017;

Liu et al., 2018; Ismail Fawaz et al., 2019). The model uses the

convolution operation to extract meaningful features from the

raw data. In 1D convolution, the kernel moves in one direction

from the beginning of a time series toward its end. If we have

input vector f of length n and a kernel g of length m, the

convolution f ∗ g of f and g is defined as follows:

(f ∗ g)(i) =
m∑

(j=1)

g(j).f (i− j+
m

2
) (4)

We used two convolution blocks consisting of a convolution

layer and a maximum pooling layer. Maximum pooling layer

moves a pool of predetermined size across the input and

calculates the maximum of the region. These blocks are followed

by a dense and an output layer. Figure 5 shows the architecture

of the CNN used in this research.

3.3.2. Long short-term memory network

Previous studies have shown the effectiveness of recurrent

neural networks (RNNs), in particular, long short-term memory

networks (LSTMs) for time-series prediction, due to their

capability for learning from long observation sequences (Siami-

Namini and Namin, 2018; Pham, 2021). Instead of neurons,

LSTM networks have layered blocks of memory. Each block

contains a set of gates that manage the state and output of the

block. The first is a forget gate ft that lets the model choose

whether to remember the previous timestamp information or if

it is irrelevant and can be forgotten. Second is the input gate it
that allows the cell to gather new data from the input. Finally,

the output gate ot , provides the updated information from the

current timestamp to the following one. The equations for the

forward propagation of a LSTM cell are shown in Equations (5)

and (6) (Hochreiter and Schmidhuber, 1997):

ft = σ (wf [ht−1, xt]+ bf )

it = σ (wi[h(t−1), xt]+ bi)

ot = σ (wo[h(t−1), xt]+ bo) (5)

where σ is the sigmoid function wf ,wi,wo, bf , bi, bo are the

weights and biases for the respective gates, ht−1 is output of the

previous LSTMblock at timestamp t−1 and xt is input at current

timestamp. Further, the cell state ct , candidate cell state c̃t and

output ht of LSTM are calculated as shown in Equation (6). At

any timestamp, the cell state evaluates what to forget from the

previous state (i.e., ft ∗ ct−1) and what it needs to consider from

the current timestamp (i.e., it ∗ c̃t)

c̃t = tanh(wc[ht−1, xt]+ bc

ct = ft ∗ ct−1 + it ∗ c̃t

ht = ot ∗ tanh(ct) (6)

Figure 6 shows the general architecture of the LSTM model

used in this study.

3.3.3. CNN-LSTM hybrid network

CNN models can be used with LSTM backends. The CNN

is first used to interpret the subsequences of the inputs, that

are then provided together as a sequence to the LSTM model

for interpretation. This hybrid model is called CNN-LSTM.

The CNN-LSTM model has been studied to analyze 1-D time

series data, with promising empirical results (Liu et al., 2017; Lu
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FIGURE 5

Convolution Neural Network architecture. Conv 1 is the first 1-D Convolution layer with 64 filters of size 2, followed by a Max-Pool layer

(Max-Pool1) with a pool size of 2, stacked with a second block of 1-D Convolutional layer (Conv 2) and Max-Pool layer (Max-Pool2), followed by

a flatten layer, a fully connected layers with 32 neuron units and the output layer with sigmoid activation function.

FIGURE 6

Convolution Neural Network architecture. Conv 1 is the first 1-D Convolution layer with 64 filters of size 2, followed by a Max-Pool layer

(Max-Pool1) with a pool size of 2, stacked with a second block of 1-D Convolutional layer (Conv 2) and Max-Pool layer (Max-Pool2), followed by

a flatten layer, a fully connected layers with 32 neuron units and the output layer with sigmoid activation function.

et al., 2020; Mutegeki and Han, 2020). We therefore included

this model in our empirical study. To use such a deep model

architecture, the first step is to divide the input sequence into

subsequences that can be processed by the CNN model. This

subsequence interpretation is then provided as an input to the

LSTM model for processing. Figure 7 shows the architecture of

the CNN-LSTMmodel used in our study.

3.4. Experimental setup

For each of the 118 participants, the data for the first 30

days constituted the training data and the data for the next 30

days constituted the test data. The optimal window size was

determined for each participant using the method described in

Section 3.1. Depending on the size of the window, the training
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FIGURE 7

CNN-LSTM hybrid architecture with 32 CNN filters and 32 LSTM units and the output layer with sigmoid activation function.

FIGURE 8

Distribution of window sizes for 118 participants. The x-axis

denotes the window size and y-axis denotes the number of

participants with the corresponding window size.

sample size varies for each participant. For instance, if the

window size for a participant is 3, then 3 days of data (day 1

through day 3) constitutes one training sample and the label

is given by the play time on day 4. By moving the window

by one, the subsequent training sample constitutes data from

day 2 through day 4 whose label is given by the play time on

day 5, and so forth. This will give us a total of 30 samples

for training for this participant (since we are using the first

30 days of data for training). The test data is prepared in a

similar manner. For the given example, the first testing sample

will begin on day 31 and continue through day 33 and our

goal will be to predict the play time on day 34, and so forth.

Figure 8 shows the distribution of window size across all the 118

participants. Data augmentation techniques were then applied

to increase the training data by 5 folds from the original time

series, making the total data size 6 times the original number.

The deep learningmodels were trained using the original, as well

as augmented data. The label was acquired by the playtime of the

participant on the following day, and a 10-min threshold was

used on the time of play to binarize the classes (adherent and

non-adherent). The goal was to train deep models to predict the

adherence class on a particular day for a given participant, by

using his/her playing data from the recent past, as determined

by the sliding window method. A separate, personalized deep

neural network was trained for each participant to capture the

individual playing patterns, rather than attempting to fit a single

model for all participants. The final accuracy was computed as

the average accuracy over all the participants. Figure 9 shows the

entire modeling process.

3.5. Evaluation metrics

Since we are attempting to solve a binary classification

problem, we used five evaluation metrics in this research:

precision, recall, F-score, area under curve and accuracy. These

are detailed below:

• Precision: Precision is the ratio of the number of true

positive predictions to the total number of positive

predictions (Goutte and Gaussier, 2005). High precision

Frontiers in Psychology 10 frontiersin.org

https://doi.org/10.3389/fpsyg.2022.980778
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Singh et al. 10.3389/fpsyg.2022.980778

FIGURE 9

Experimental framework for multi-variate time series classification.

implies low false positive rate.

Precision =
TruePositives

TruePositives+ FalsePositives
(7)

• Recall (Sensitivity): Recall is the ratio of the number of true

positive predictions to the number of samples that actually

belong to the positive class (Goutte and Gaussier, 2005).

High recall relates to low false negatives.

Recall =
TruePositives

TruePositives+ FalseNegatives
(8)

• F1-score: F1 Score is the harmonic mean of precision

and recall. For this measure to achieve a high value, both

precision and recall need to be high (Sokolova et al., 2006).

It is computed as:

F1Score =
2 ∗ (Recall ∗ Precision)

Recall+ Precision
(9)

• Area Under Curve (AUC): A receiver operating

characteristic (ROC) curve is a graph that shows the

performance of a threshold-based classifier at different

classification thresholds (Bradley, 1997). This curve plots

the false positive rate (on the x-axis) against the true

positive rate (on the y-axis). AUC computes the entire

two-dimensional area under the ROC curve. A higher

value of the AUC implies a better model at differentiating

between the positive and negative classes.

• Accuracy: Accuracy is the ratio of the number of correct

predictions to the total number of predictions. It is

computed as:

Accuracy = (10)
TruePositives+ TrueNegatives

TruePositives+ TrueNegatives+ FalsePositives+ FalseNegatives

4. Results

Tables 2–4 show the performance of convolutional neural

networks, long-term memory recurrent neural networks, and

hybrid CNN-LSTM networks, respectively. We explored five

data augmentation techniques (jitter, scaling, timewarping, jitter

+ time warping, scaling + time warping) and compared their

performances using the five evaluation metrics.

We note that the data augmentation techniques improved

the generalization performance consistently for all the three

deep model architectures studied. The best performance

achieved for all the experiments was using some form of data

augmentation. The combination of jitter + time warping and

scaling + time warping depicts the most promising performance

among all the data augmentation techniques and achieved

approximately 75% accuracy, AUC and F-score. Particularly, for

the CNN model (Table 2), the highest F-score of 75.5% and the

highest accuracy of 75.4% were both obtained using jitter with

time warping as the data augmentation technique. Scaling with

time warping also achieved the same F-score. The LSTM model

(Table 3) also furnished the highest F-score of 75.5% and the

highest accuracy of 74.8% using jitter and time warping. For

the CNN-LSTM hybrid model, the highest F-score (74.6%) and

the highest accuracy (73.5%) were both obtained using scaling

with time warping. Jitter with time warping also produced the

same F-score. These results corroborate the potential of deep

neural networks and advanced machine learning techniques like

data augmentation and adaptive window size estimation to learn

informative feature representations from time series data, for

the challenging task of predicting daily adherence to cognitive

training programs in older adults.
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TABLE 2 Results using the CNNmodel.

CNN

Data augmentation technique Precision Recall F score AUC Accuracy

None 0.695 0.697 0.699 0.704 0.710

Jitter 0.696 0.713 0.731 0.724 0.713

Scaling 0.699 0.699 0.699 0.703 0.699

Time Warp 0.717 0.717 0.715 0.729 0.717

Jitter + Time Warp 0.758 0.758 0.755 0.739 0.754

Scaling + Time Warp 0.749 0.742 0.755 0.731 0.730

Values in bold indicate best performance.

TABLE 3 Results using the LSTMmodel.

LSTM

Data augmentation technique Precision Recall F score AUC Accuracy

None 0.706 0.714 0.704 0.708 0.706

Jitter 0.731 0.729 0.729 0.731 0.729

Scaling 0.706 0.703 0.703 0.728 0.703

Time warp 0.734 0.714 0.734 0.745 0.734

Jitter + Time Warp 0.748 0.755 0.755 0.739 0.748

Scaling + Time Warp 0.749 0.747 0.747 0.748 0.740

Values in bold indicate best performance.

TABLE 4 Results using the CNN-LSTMmodel.

CNN-LSTM

Data augmentation technique Precision Recall F score AUC Accuracy

None 0.722 0.719 0.714 0.713 0.718

Jitter 0.721 0.721 0.722 0.725 0.713

Scaling 0.713 0.713 0.713 0.720 0.717

Time warp 0.734 0.734 0.717 0.731 0.729

Jitter + Time Warp 0.735 0.726 0.746 0.739 0.724

Scaling + Time Warp 0.750 0.752 0.746 0.735 0.735

Values in bold indicate best performance.

5. Discussion and conclusions

The goal of our ongoing project Adherence Promotion

with Person-Centered Technology (APPT) is to develop an

adaptive reminder system to increase adherence to mobile-

based cognitive training in older adults, with the ultimate

goal of promoting early detection and prevention of age-

related cognitive decline. Instead of sending generic reminder

messages, our objective is to send tailored messages to each

participant based on their individual preferences and routine,

to better motivate them to adhere to the training schedule.

Further, we are interested in identifying the optimal time points

when the reminder messages will have maximal impact for

each participant based on their daily schedules, rather than

sending them at arbitrary time points during the day. Designing

such a just-in-time reminder system necessitates an accurate

understanding of the training patterns of each participant, and

a mechanism to accurately predict when they are most likely

to fall off their training schedules. The research presented in

this paper summarizes our findings of using state-of-the-art

artificial intelligence (AI) algorithms for predicting adherence to

a cognitive training program.We used game data from theMind
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FIGURE 10

Plot of adherence prediction accuracy for each of the 118 participants in our study.

Frontier Program to predict whether a particular participant

would play for a particular period on a given day, based on

their past playing behavior. To the best of our knowledge, this

is the first research effort to use advanced machine learning

and deep learning techniques to predict daily adherence to

cognitive training programs in older adults. Our significant

findings in this research can be summarized as follows: (i) deep

neural networks are effective in learning informative feature

representations from time series data to predict daily adherence.

Our empirical studies demonstrated more than 75% F-score

using deep learning models. Koesmahargyo et al. (2020) and

Scioscia et al. (2021) studied the performance of boosting and

SVM models for adherence prediction. Gu et al. (2021) also

studied the performance of several machine learning models

and a deep learning MLP model for predicting adherence.

In contrast, we studied the performance of advanced deep

learning models (CNN, LSTM and CNN-LSTM) for predicting

daily adherence to cognitive training. Note that predicting the

adherence for a particular day is much more challenging than

predicting the average adherence over a period of time (1 week

or 2 weeks), where the margin of error can be much lower due

to averaging. (ii) Each participant has a unique playing pattern;

further, only 30 days of data were available for training for

each participant. Thus, computing the window size adaptively

for each participant and using data augmentation techniques

to generate synthetic training data, are crucial in training

reliable deep neural networks for daily adherence prediction.We

conducted an experiment, where we used a constant window size

of 3 for all the participants and no data augmentation. Using the

same deep learning models, the highest accuracy achieved was

approximately 70%, showing the usefulness of optimal window

size computation and data augmentation techniques. To the best

of our knowledge, this is the first research effort to use such

advanced machine learning and signal processing techniques to

predict daily adherence to cognitive training programs in older

adults.

The deep neural networks learn informative feature

representations; data augmentation techniques augment the

training data in order to train robust deep models with good

generalization capabilities; optimal window size estimation

computes the appropriate window size for each participant,

which helps us in determining how much data we should

observe to make a prediction for that participant. Thus, the

principles of feature learning, optimal window size estimation

and data augmentation are strongly inter-related and work

in tandem toward the common goal of accurately predicting

daily adherence to medication reminders for older adults. The

proposed methodologies can be used to determine when a

participant’s adherence is going to drop during the course of

the training program. We hope this research will be a step

toward the development of a novel AI-based reminder system

to encourage participants to adhere to their schedules in any

mobile-based cognitive training program and can provide a

useful approach for enhancing adherence to other health-related

behaviors (e.g., exercise, medication consumption).

As mentioned earlier, one of the challenges we faced

in this research was the limited amount of training data

per participant. While data augmentation techniques have

demonstrated tremendous promise in addressing this challenge,

a larger amount of training data can potentially improve the

generalization performance of the deep models, particularly the

more complicated architectures like hybrid CNN-LSTM, which

has a much larger number of parameters to be trained compared

to a CNN or LSTM.

We used 4 predictors for each participant (duration of play,

number of sessions, max level reached and number of tasks)

in our experiments. The dataset also contains demographic

information of the participants; however, since the training and

test data for each model come from the same participant, the

demographic information remains constant and hence, could

not be used as predictors.

5.1. Future work

As part of future work, we plan to explore strategies to

further improve the prediction accuracy of the deep learning

models. Figure 10 shows a detailed plot of the adherence
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prediction accuracy for each of the 118 participants in our study.

We note that some participants’ gameplay behaviors were easy

to predict (almost perfect or near-perfect prediction accuracy)

while others were much more difficult. We plan to explore

two strategies to boost the performance of the deep models

corresponding to the latter group of participants: (i) generate

more synthetic data using data augmentation to increase the

number of training samples; (ii) use advanced variants of

LSTMs, such as GRUs and attention-based LSTMs, which

have depicted impressive empirical performance. The attention-

based LSTMs focus on specific or interconnected sub-problems

(Li et al., 2019), which is achieved by shifting the weights within

the network. Furthermore, there has been an increase in the use

of hybrid models such as Adaboost-LSTM (Sun et al., 2018) that

often perform superior to the corresponding single predictive

model for predicting time series data. We plan to explore these

in our research.

Further, domain adaptation or transfer learning techniques

are instrumental in developing a model for a target domain

of interest, where training data is scarce, by leveraging ample

labeled training data in a source domain, under the constraint

of a probability distribution difference between the two domains

(Pan and Yang, 2009; Ganin and Lempitsky, 2015). Multi-source

domain adaptation, which contains multiple source domains,

and a single target domain has also attracted significant research

attention (Chattopadhyay et al., 2012; Sun et al., 2015). As

part of future research, we plan to study these techniques

to address the challenge of insufficient training data. In our

application, a given participant of interest constitutes the

target domain, while each of the other participants constitute

a source domain. There is an inherent disparity among

the different domains, as each participant has his/her own

unique pattern of training. Domain adaptation algorithms can

address this domain disparity, so that training data from

other participants can be used to develop a prediction model

for the given target participant. This can potentially improve

the prediction accuracy due to the additional training data

per participant.
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