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Introduction

A common way to build scores for statistical analysis from psychological or

educational scales (e.g., knowledge or intelligence tests, attitude or motivation

questionnaires,) is to sum up participants’ scores across all items. For example, in a

questionnaire assessing knowledge about a specific topic, participants might have to

answer different questions probing their content knowledge. The correct answers on

all items are then summed up to build a score for analysis that is meant to represent

participants’ knowledge (Edelsbrunner et al., 2018). Similarly, on an intelligence test,

correctly solved items might be summed to yield an overall score that is transformed

into IQ estimates (Raven et al., 1962). On a questionnaire measuring need for cognition,

participants might indicate their agreement with different self-descriptions on a Likert

scale and their agreement is summed up (or a mean is built, which is equivalent for the

arguments brought up here) across all items (Beißert et al., 2014).

Reasons to follow this practice and using sum (or mean) scores include the statistical

and conceptual simplicity of building such a score: building a sum score does not require

setting up an elaborate statistical model, and it might appear easily defensible to just

follow this common practice without further notice.

Recent literature argues that building a sum score is, statistically and conceptually,

not as innocent as it seems (Kuhfeld and Soland, 2020; McNeish and Wolf, 2020).

Specifically, McNeish and Wolf (2020) argued that a sum score, although not involving

any explicit statistical model in its computation, implicitly assumes a very specific

and very stringent statistical model. The authors argue that whenever researchers use

a sum score, they implicitly assume that a variant of factor analysis fits their data

that imposes equal factor loadings and error variances across all items (the parallel

factor model). They note that although seeming like a simple arithmetic operation,

sum scoring actually is a simple transformation of this model. They further argue that

actual factor-analytic methods have been shown to provide more accurate estimates.

Consequently, they infer that using sum scores obliges researchers to engage with and

test the model constraints implied by sum scores, because as in physical or social

sciences, no conclusions would be endorsed without evidence (McNeish andWolf, 2020).
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I provide three counter-arguments against these views,

arguing that (1) factor analysis makes meta-theoretical

assumptions that are extremely stringent and seldom justified

although they might not fit many constructs, (2) sum scores do

not imply a factor model, because there are many other known

models that imply the same data patterns as factor analysis, and

(3) there is an infinite number of further models that imply the

same data. Overall, this will bring me to the point that sum

scores, as well as any other way to build scores, only imply the

models that are theoretically defensible, not empirically.

Meta-theoretical assumptions of
factor analysis

With meta-theoretical assumptions, I describe theoretical

assumptions implicit to the defining parameter structure of

a class of statistical model. Factor analysis implies the meta-

theoretical assumption that the latent construct that we aim at

measuring is reflective (MacKenzie et al., 2005). This means

that whatever the latent variable (i.e., the factor representing the

latent construct; for a discussion see Maraun and Halpin, 2008)

represents causally influences its indicator variables (i.e., items),

and that all variance in the indicators that they do not share

is measurement error. It is well-known that these assumptions

do not appear appropriate for many constructs in education

and psychology, theoretically (van der Maas et al., 2006) and

empirically (van der Maas and Kan, 2016; van Bork et al., 2021).

Whether these assumptions are theoretically defensible can

be answered by two simple questions. First, does it make sense to

assume that the latent construct influences its indicators causally

(e.g., if I am more motivated, this will affect me to agree more

strongly with all items on a motivation-questionnaire)? If other

causal pathways appear more reasonable, than the reflectivity-

assumption might not be a useful representation of data. For

example, instead of the construct influencing its indicators, for

some constructs it might be more reasonable to assume the

other causal pathway, that it, the construct being influenced

by its indicators. The indicators educational background and

salary raise my socio-economic status, instead of my socio-

economic status raising my education and salary (Schuberth,

in press). Another possibility is that there is no unifying latent

construct; instead, the indicators might directly influence one

another. For example, being sleepless might cause anhedonia

directly, rather than both being explained by a latent construct

of depression (van de Leemput et al., 2014). If any of these

alternative assumptions about the relation between a construct

and its indicators appears more reasonable, then factor analysis

might not be a very informative model of the data-generating

mechanism underlying a sum score.

A second question that might be posed to evaluate whether

a factor analytic model is an appropriate representation of a

construct is whether the items that were developed to capture

the construct are replaceable with one another. In factor analysis,

exchanging or using only a subset of indicators is supposed not

to alter the meaning of the construct (White et al., 2022). If this

is not the case, for example because sleeplessness and anhedonia

each provide important information about depression beyond

each other, than a model representing one of the outlined

alternative kinds of constructs might be more appropriate than

factor analysis.

Alternative models producing the
same data

The assumption that a sum score is “a simple linear

transformation of a heavily constrained parallel factor model”

(McNeish and Wolf, 2020) is questionable, given that a row of

other statistical models have been shown to imply very similar

data patterns as factor analysis. From a logical perspective, this is

a converse error (“affirming the consequent”; see e.g., Martinsen,

2022): given that a constrained version of factor analysis implies

a sum score, McNeish and Wolf assume that a sum score must

imply factor analysis, overlooking that other models could also

imply sum scores. Specifically, it can be shown mathematically

that data patterns implied by factor analysis are also implied

by multiple other kinds of models (e.g., Schuberth, in press).

For example, a latent class analysis, modeling two classes of

individuals through a categorical rather than a continuous latent

variable, will generally imply the same means and variance-

covariance matrix as a unidimensional factor analysis applied

to the same data (Molenaar and von Eye, 1994). In addition, it

has been shown that psychometric network models can produce

data that are in accordance with factor analysis (van der Maas

et al., 2006). Another kind of model implying equivalent data

is a composite, which conceptualizes a formative rather than

a reflective construct (Schuberth, in press). It stands to debate

why exactly factor analysis should be applied to data to see

whether it fits data and to extract factor sores, given that these

alternative models, particularly if they are in better accordance

with theoretical assumptions, might better capture the data-

generating process.

An infinite number of other models
will fit the same data

Beyond models that are already known to mankind, we

can be quite sure that many further psychometric models will

be developed in the time to come. It has been shown that

in principle, for any model an infinite number of alternative

models exist that can fit an observed variance-covariance matrix

equally well (e.g., Raykov and Marcoulides, 2001). I therefore

suggest not considering any model that might be the prevalent

“best practice” at one point in time as the data-generating
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model behind a sum score, or any other kinds of scores. As

long as methodological research continues, it will develop many

new informative models that will provide reasonable accounts

of data just as well as, or even better than, factor analysis.

This is especially noteworthy given that factor analysis was

established more than 100 years ago (Spearman, 1904), and by

now we already have a number of alternative models to choose

from. Perhaps, factor analysis is commonly assumed to underlie

data mostly because it has been around for so long and is a

comparably well-developed approach.

Alternative justifications of sum
scores

Do I believe that these arguments free researchers from

any justifications for their uses of sum scores? No. To the

contrary, I would like to bring up alternative justifications. First,

a sum score can be built if researchers have conceptualized the

construct that they intend to represent in the score such that all

indicators represent approximately equal shares of the construct.

This might for example be the case if researchers aim at building

an index of a construct of different skills (Van der Maas et al.,

2014) or beliefs (e.g., Merk and Rosman, 2019; Schiefer et al.,

2022). In this case, however, it should not be overlooked that

equal weighting of indicators in an index should also be based

on justification. One such justification might be that different

aspects of a construct have been defined as equally important

components of a theoretical model, or that they are assumed

to play similarly important roles in determining an educational

or psychological outcome. In such cases, a sum score provides

good construct representation, that is, match between the meta-

theoretical assumptions of a statistical model and the theoretical

construct that it is meant to represent.

A common case probably is that researchers think about the

different aspects that the construct they are intending tomeasure

consists of, and then they develop indicators such as items in a

balanced manner, such that each of these aspects is represented

by the same number of items. It stands to debate why in such

cases, any item(s) should be weighted more strongly than others.

Another reason to use sum scores is the aim to use scores

that are as comparable across studies as possible in their

constituents. If factor analysis is applied to data, factor loadings

are usually estimated in a data-driven manner, such that items

are put into the score with weights that have little theoretical

justification. This will usually induce variation in scores that

are extracted based on factor analysis across studies: if in

one study, an indicator has received a strong factor weight

but in another study, its weight is lower, then it is difficult

to compare the meaning of these derived scores across these

studies conceptually (Widaman and Revelle, in press). This

might also be described as a classical issue of a bias-variance

tradeoff (Yarkoni and Westfall, 2017). If scores are built in

an equal manner across studies, for example by always using

sum scores, then they might be biased if factor analysis might

have been an unbiased model of the data-generating process.

At the same time, the variance in the composition of the

scores will be lower if they are always built alike. Consider

however, perhaps speaking against this argument, the point

that if a factor analytic model fits data well, the meaning

of the latent variable does not change when indicators are

replaced with one another. Consequently, also if factor loadings

differ between studies, this might not change the meaning of

the latent variable. This assumption might be valid as long

as at least some indicators have consistent loadings across

studies, implying partial measurement invariance (although

measurement invariance does not imply equality of latent

variables; Maraun and Heene, 2016).

Even if researchers use sum scores with theoretical but

without statistical justification, this might be defensible.

Educational and psychological science generally follow the

maxim of an empirical science grounded in modernism (Holtz,

2020); data should inform theories. This does not, however, have

to mean that all uses of data have to be empirically justified in all

cases. Education and psychology are not just empirical but also

socio-constructivist sciences (Guyon and Nôus, 2021). Within

such a science, instead of justifying use of data exclusively

empirically, researchers should be free to justify whether their

use of data should be based on empirical fit, or on theoretical fit,

or on both.

Finally, if researchers decide to base their use of data

on empirical fit, some approaches have been developed to

differentiate between data patterns that the discussed kinds

of models typically produce. For example, throughout the

last decades, various statistical approaches for distinguishing

between factor analytic and latent class models have been

introduced (De Boeck et al., 2005), as well as for distinguishing

between network models and latent factors (van Bork et al.,

2021).

Take-home message

Overall, I agree with McNeish and Wolf (2020) in asking

researchers for justifications for their uses of scores. I am,

however, going a step back (or further, depending on the eye

of the beholder) and asking researchers to first justify which of

their procedures they want to justify theoretically, and which

empirically, and why. Theoretical justification can be achieved

through conceptualization and definition. If a construct is

defined in a way such that the building of a sum score maps

on this definition well (Lundberg et al., 2021), then its use

is appropriate.

What will happen if in a 100 years, factor analysis is not

used anymore but has been superseded by a new class of models

that takes very different conceptual and statistical perspectives?
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And, if some variant of these new models also implies a sum

score, does this then mean that sum scores will represent

that new future model? Probably not. Sum scores represent

only the model that has been used to create them for good

theoretical reasons.
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