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Introduction: The UK Biobank cognitive assessment data has been a significant 
resource for researchers looking to investigate predictors and modifiers of cognitive 
abilities and associated health outcomes in the general population. Given the diverse 
nature of this data, researchers use different approaches – from the use of a single 
test to composing the general intelligence score, g, across the tests. We argue that 
both approaches are suboptimal - one being too specific and the other one too 
general – and suggest a novel multifactorial solution to represent cognitive abilities.

Methods: Using a combined Exploratory Factor (EFA) and Exploratory Structural 
Equation Modeling Analyses (ESEM) we developed a three-factor model to 
characterize an underlying structure of nine cognitive tests selected from the UK 
Biobank using a Cattell-Horn-Carroll framework. We first estimated a series of 
probable factor solutions using the maximum likelihood method of extraction. The 
best solution for the EFA-defined factor structure was then tested using the ESEM 
approach with the aim of confirming or disconfirming the decisions made.

Results: We determined that a three-factor model fits the UK Biobank cognitive 
assessment data best. Two of the three factors can be assigned to fluid reasoning 
(Gf) with a clear distinction between visuospatial reasoning and verbal-analytical 
reasoning. The third factor was identified as a processing speed (Gs) factor.

Discussion: This study characterizes cognitive assessment data in the UK Biobank 
and delivers an alternative view on its underlying structure, suggesting that the three 
factor model provides a more granular solution than g that can further be applied to 
study different facets of cognitive functioning in relation to health outcomes and to 
further progress examination of its biological underpinnings.
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1. Introduction

The UK Biobank is a large-scale biomedical database and research 
resource, containing extensive genotyping and phenotypic information 
from half a million UK participants.1 It is a major contributor to the 
advancement of modern medicine and treatment and has enabled 
several scientific discoveries that improve human health (Sudlow et al., 
2015). Cognitive assessment data in the UK Biobank has been a 
significant resource for researchers looking to investigate predictors and 
modifiers of cognitive abilities and associated health outcomes in the 
general population. While being one of the largest data sources available, 
its cognitive assessment component is not without limitations: it is brief 
and bespoke (non-standard) and is administered without supervision 
on a touch screen computer. Furthermore, not all participants completed 
the same number of tests and those who completed the same number of 
tests did not necessarily complete the same combination of tests. 
However, despite these challenges, some of the tests used have 
substantial concurrent validity and test–retest reliability (Fawns-Ritchie 
and Deary, 2020), yet with varying levels of stability of the scores over 
time (Lyall et  al., 2016). While this evidence suggests acceptable 
psychometric properties of the UK Biobank cognitive assessment, 
spareness remains a concern. To maximize the sample size and, 
therefore, increase the statistical power of studies using the UK Biobank 
data, researchers employ different strategies. Some have used a single 
test, such as a Verbal Numerical Reasoning (Fluid Intelligence, FI) score 
or a reaction time (RT) score (Davies et al., 2016; Sniekers et al., 2017; 
Kievit et al., 2018; Lee et al., 2018; Savage et al., 2018). Others have 
extracted a ‘g-factor’ of general cognitive ability by aggregating several 
variables using Principal Component Analysis (PCA) or Confirmatory 
Factor Analysis (CFA; Lyall et al., 2016; Navrady et al., 2017; Cox et al., 
2019; de la Fuente et al., 2021; Hepsomali and Groeger, 2021). However, 
this inconsistency in the definition of cognitive domains across different 
studies is a potential threat to replicability of the findings. Furthermore, 
most studies have used test scores that were neither adjusted for age nor 
standardized relative to a representative sample of the general 
population, despite the acknowledged lack of representativeness of the 
UK Biobank sample (Fry et al., 2017).

In an attempt to harmonize future studies of cognitive functioning 
using the UK Biobank data, Williams et  al. (2022) developed a 
standardized measure of general intelligence, g, for most UK Biobank 
participants. While this is important for some applications, particularly 
for using general intelligence as a covariate, this measure does not 
capture adequately the multitude of cognitive test data in the 
UK Biobank.

We argue that neither a single test nor an aggregated g score – 
optimally capture the richness of cognitive testing data in the UK 
Biobank. The use of a single test is often too specific to be generalized to 
broader cognitive abilities, while g is too general to be used in practice 
where more targeted assessment of cognitive abilities is required. 
We suggest that an alternative multifactorial model of cognitive abilities 
developed through factor analysis and structural equation modeling, 
and use of these latent variables as an outcome measure is a better 
approach to capture the multitude of cognitive abilities in the 
UK Biobank.

1 https://www.ukbiobank.ac.uk/

We used framework provided by the Cattell-Horn-Carroll (CHC) 
theory of intelligence (Schneider and McGrew, 2018) to select nine UK 
Biobank cognitive measures for inclusion in the analyses. This allowed us 
to exclude some of the cognitive tests that have poor psychometric 
properties, too small N, and are used to assess specific clinical symptoms. 
Williams et al. (2022) provide detailed account of the reasons for excluding 
some cognitive measures, and for including eight of our selected tests in 
studies of cognitive abilities based on UK Biobank data. Second, it allowed 
us to classify the chosen cognitive variables into the broad dimensions/
factors of the CHC theory – fluid intelligence (Gf), short-term working 
memory (Gwm), and processing speed (Gs).2 We hypothesized that these 
three factors may be able to be extracted from the UK Biobank cognitive 
testing data. In the next section we list the nine chosen tests and indicate 
what broad CHC factors we presumed they contribute to.

2. Methods

2.1. Study design and participants

UK Biobank (UKB) is a large prospective cohort of more than half 
a million participants aged 37–73 years, during recruitment between 
2006 and 2010. Participants were recruited from a range of backgrounds 
and demographics and attended one of the 22 assessment centers where 
they completed baseline touchscreen questionnaires on 
sociodemographic factors (age, gender, ethnicity, and postcode of 
residence), behavior, and lifestyle (including smoking behavior and 
alcohol consumption), mental health, and cognitive function tests. The 
UK Biobank study was approved by the National Information 
Governance Board for Health and Social Care and Northwest 
Multicentre Research Ethics Committee (11/NW/0382). Participants 
provide electronic consent to use their anonymized data and samples for 
health-related research, to be re-contacted for further sub-studies, and 
for the UK Biobank to access their health-related records (Sudlow et al., 
2015). This research has been conducted using the UK Biobank 
Resource under Application Number 71131.

2.2. Cognitive function assessments

At baseline, several cognitive tests were included in the UK Biobank, 
all of which were administered via a computerized touchscreen 
interface. In addition to the data collected from assessment center visits, 
the UK Biobank collected enhancement data using web-based 
questionnaires. The baseline cognitive function tests along with two 
additional tests were administered as an online questionnaire. A 
sub-sample of around 20,000 participants subsequently underwent a 
repeat assessment. During the repeated assessment, all participants 
completed physical, medical, sociodemographic, and cognitive 
assessments. Some cognitive tests were added/removed at different 
stages of baseline assessment, the number of participants with complete 
data varies across tests (Fawns-Ritchie and Deary, 2020). Cognitive tests 

2 Another important CHC factor, crystallized intelligence (Gc) which refers to 

the ability to comprehend and communicate culturally valued knowledge 

developed through learning and acculturation, is not sufficiently assessed by the 

available UK Biobank cognitive tests.
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included in the current analyses and CHC factors they were 
hypothesized to measure:

 (a) Fluid intelligence (Gf): (1) Matrix Pattern Recognition (MPR); (2) 
Tower Rearrangement (TR); (3) Fluid Intelligence (FI); also labeled 
verbal-numerical reasoning by Lyall et al. (2016); (4) Paired-associate 
learning (PAL).

 (b) Short-term working memory (Gwm): (5) Numeric Memory (NM); 
(6) Symbol-digit Substitution (SDS); (7) Pairs Matching (PM).

 (c) Processing speed (Gs): (8) Reaction Time (RT); (9) Trail Making (TM).

A list and description of each cognitive measure used in the UK 
Biobank is available at https://biobank.ctsu.ox.ac.uk/crystal/label.
cgi?id=100026.

To characterize the population with different cognitive tests an 
approach should be applied that allows for the analysis of data containing 
several groups of variables of different nature compiled within the same 
group of observations (individuals; Izquierdo et al., 2014). To this end, 
we  applied an Exploratory Factor Analysis (EFA), and Exploratory 
Structural Equation Modeling (ESEM) on 3,425 study participants with 
completed data on nine cognitive tests at baseline and repeated 
assessments after excluding participants who were diagnosed with 
psychiatric and neurological disorders. The flow diagram for the cohort 
definition and the list of diseases excluded from the current analysis is 
in Supplementary Figure S1.

2.3. Statistical analysis

The baseline characteristics of participants are presented as means 
(SD) or median (interquartile range) for continuous variables and 
frequency (percentage) for categorical variables. The Kaiser-Meyer-
Olkin (KMO) statistic for factor adequacy (Kaiser, 1974) and Bartlett’s 
test of sphericity (Bartlett, 1954) were applied to test the factorability of 
the data. After confirming that the correlation matrix was factorable, 
we carried out a series of exploratory factor analyses (EFA) using the 
maximum likelihood (ML) method of extraction followed by the 
“Promax” method of oblique rotation. Oblique factor rotations are 
commonly used in psychometric studies since they provide simple 
structure solutions that are easier to interpret than unrotated principal 
components (or factors). Promax rotation is a widely accepted efficient 
method of rotation (Finch, 2006). The results from the alternative 
“oblimin” rotation are included in the Supplementary Tables S9–S11 
(Supplementary material, p. 18–20).

To determine the appropriate number of factors to retain, 
we analyzed the correlation matrix to examine the scree plot of the 
successive eigenvalues. Eigenvalues are a measure of the amount of 
variance accounted for by a factor, and so they can be  useful in 
determining the number of factors that we need to extract. We generated 
a scree plot of eigenvalues for all factors and then looked to see where 
they drop off sharply. We also ran a “Parallel” analysis by comparing the 
solution (observed eigenvalues of a correlation matrix) with those from 
a random data matrix of the same size as the original (Horn, 1965). The 
number of simulated analyses [number of iterations] to perform in the 
parallel analysis was set to 10,000 against the default value of 20. The 
three-factor EFA solution was examined further.

The dataset was then analyzed using the exploratory structural 
equation modeling (ESEM) approach with the aim of confirming or 
disconfirming the decisions made with EFA (Beran and Violato, 2010). 

This analysis requires identifying the model, collecting, and screening data 
appropriate for the analyses, estimating the parameters of the model, 
assessing the fit of the model to the data, interpreting the model’s 
parameters, and evaluating the plausibility of competing models. We set 
the model by identifying anchor variables from EFA as an a priori 
hypothesis. We  also performed several additional sensitivity analyses. 
Further details of these analyses can be found in the Supplementary material. 
All analyses were conducted using R Version 4.0.5 (R Foundation for 
Statistical Computing) using psych and lavaan packages.

3. Results

3.1. Baseline characteristics

Data from a total of 3,425 participants were used in the current 
analysis. Of the 3,425 participants, almost 49.8% of the overall sample 
were women, and the mean ± SD age of participants was 55 ± 7.5 years 
(range 37–73 years). Nearly 44.6% of them had completed a college 
education. The highest proportion of participants (97.8%) were of white 
ethnic background (more details in Supplementary Table S1). The 
schematic presentation of how study participants are enrolled in the 
UKB and included in this analysis is shown in Supplementary Figure S1.

3.2. Descriptive statistics

Table  1 presents means, standard deviations and correlations 
between nine cognitive variables. The highest means are on two measures 
– Reaction Time and Trails Making - that are scored in terms of time 
needed to carry out the task. For these tests, shorter time indicates better 
performance. This is the reason for the presence of negative correlations 
they have with accuracy scores of most other variables in the battery. 
Another test that has negative correlations is Pairs Matching which, 
although capturing an aspect of speed due to its time limit is primarily 
characterized by the nature of scoring. Its total score is the Number of 
incorrect matches in a given round. Although it is typically claimed that 
cognitive tests tend to show positive correlations, it is apparent that the 
nature of scoring affects the sign of their correlations.

It is also necessary to point out to the size of correlation coefficients 
in Table 1 – their (absolute) values vary from close to zero to 0.38 and 
the average is around 0.20s. This means that the tests have less in 
common than the average correlation of 0.29 reported by Carroll (2009) 
after re-analyzing a large number of studies of intelligence. Lower 
average correlation leads to a reduced strength of the general factor 
(Stankov, 2002). However, Bartlett’s test of sphericity produced a 
statistically significant value (χ2 = 4181.22, p-value <0.00, df = 36), 
implying that factor analysis may be carried out with our data. This test 
evaluates whether the variables intercorrelate at all, by comparing the 
observed correlation matrix with an “identity matrix” (a matrix in which 
all diagonal elements are 1 and all off-diagonal elements are 0). The 
overall KMO statistic was 0.84, also implying that factor analysis can 
be carried out.

3.3. Exploratory factor analysis

We employed several criteria to decide how many factors to 
extract. Figure 1 presents the “scree plots” for two sets of 9 eigenvalues. 
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The solid blue line in the top part is based on the extraction of 
principal components (PCA) and solid line in the bottom part is 
based on factor analysis (FA, diagonal values in the matrix of 
correlations are replaced by the communalities). One criterion is the 
number of eigenvalues form PCA that are greater than 1 (horizontal 
line) in the top panel. This suggests the extraction of two factors. 
Another criterion is based on parallel analysis. Dotted red lines in 
Figure 1 represent the plot of the eigenvalues based on simulated data. 
The number of factors to be extracted is indicated by the crossover of 
the two (solid and dotted) lines. Each point on the solid blue line that 
lies above the corresponding simulated data line is a factor or 
component to extract. According to this criterion, 2 components in 
the PCA analysis lie above the corresponding simulated data line and 
3 factors in the FA analysis lie above the corresponding simulated 
data line.

We ran three EFA analyses that extracted 1, 2, and 3 factors 
using the maximum likelihood procedure. This method of extraction 
provides a test of the hypothesis that the obtained factors are 
sufficient. For the two-factors solution the chi-square statistic is 
38.37 (df = 19) and the value of p is borderline 0.005. For the three-
factors solution presented in Table 2 chi-square statistics is 15.14 
(df = 12) and the value of p is acceptable  0.234. Therefore, three 
factors are indicated by both the scree plot based on FA and by the 
maximum likelihood’s chi-square statistics. The outcomes of the 
one-and three-factors solutions will be discussed below. Most of the 
relevant aspects of the two-factors solution are captured by the 
three-factors solution.

3.4. Exploratory factor analysis: One factor 
solution

The left-hand side of Table 2 presents the 1-factor solution. We feel 
that it is important to present this solution since much of the published 
work based on UK Biobank has been focused on the general intelligence 
or g-factor that is often understood as the first factor from a battery of 
cognitive tests.

Two points are worth noting. First, the proportion of variance 
accounted for by the first factor is smaller than typically found with tests 
of intelligence. Stankov (2002) reported that proportion of the total 
variance captured by the first principal component in Carroll (2009) 
analyses is about 0.350. The first eigenvalue for the principal component 
solution in the present study with 9 variables is 2.863, indicating that the 
proportion of total variance accounted for by the first component is 
0.318. As can be seen in Table 2, the first FA factor accounts for 0.238 
proportion of total variance.

Second, the columns in Table 2 present tests’ loadings (i.e., variables’ 
weights) on a given factor. The columns labeled “Uniqueness” shows that 
much of the variance is unaccounted for by the factor(s). It is noticeable 
that elements in both columns vary in size and there are even negative 
loadings of the three variables that have negative raw correlations in 
Table 1. Particularly high are the uniqueness’ of the Pairs Matching 
(0.901) and Reaction Time (0.919). These tests are poor measures of the 
general factor in the present study, and it can be argued that processing 
speed is not an important aspect of intelligence in the UK 
Biobank dataset.

Both findings – low proportion of variance and low communality of 
the processing speed measures – suggest that it would be useful to focus 
on additional factor(s).T
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3.5. Exploratory factor analysis: Three 
factors solution

The factor pattern matrix for the three-factors solution is shown on 
the right-hand side of Table  2. It is based on maximum likelihood 
extraction and Promax rotation. Factor loadings higher than 0.20 for a 
given factor, uniqueness’, and correlations between the factors are 

displayed. Together, three factors capture 0.358 proportion of the total 
variance. For this solution, the Chi-square goodness-of-fit 
statistics = 15.14, df = 12 (p = 0.234) indicates that we fitted an appropriate 
model to capture the full dimensionality of the data.

Factor 1 is defined by six variables, with Symbol Digit Substitution 
having the highest (0.663) and Paired Associate Learning having the 
lowest (0.229) loadings. Factor 2 has the highest loading on Fluid 

FIGURE 1

Scree plots for PCA and FA runs.

TABLE 2 One-factor and three-factors solutions for cognitive tests in the UK Biobank.

Cognitive tests One-factor solution Three-factors solution

Factor 1 Uniqueness Factor 1 Factor 2 Factor 3 Uniqueness

Symbol digit substitution 0.558 0.689 0.663 0.598

Fluid intelligence 0.572 0.673 0.746 0.476

Trail making −0.474 0.776 0.973 0.005

Numeric memory 0.406 0.835 0.492 0.770

Pairs matching −0.314 0.901 −0.343 0.887

Reaction time −0.285 0.919 −0.469 0.854

Matrix pattern completion 0.622 0.613 0.412 0.265 0.623

Tower rearranging 0.574 0.671 0.500 0.657

Paired associate learning 0.467 0.782 0.229 0.308 0.776

Proportion of variance 0.238 0.140 0.113 0.106

Cumulative variance 0.238 0.140 0.252 0.358

Factor Correlations: Factor 1 Factor 1 Factor 2 Factor 3

Factor 1 1.00 Factor 1 1.00

Factor 2 −0.34 1.00

Factor 3 0.20 0.20 1.00

https://doi.org/10.3389/fpsyg.2023.1054707
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Ciobanu et al. 10.3389/fpsyg.2023.1054707

Frontiers in Psychology 06 frontiersin.org

TABLE 3 Goodness-of-fit indices for three-factor solutions in Tables 2, 4.

Three-factors solution χ2 df BIC RMSEA SRMR CFI TLI

EFA-based model (right-hand side of Table 2) 1499.3 33 84951.72 0.11 0.13 0.65 0.62

Modified solution (Table 4) 389.08 33 83841.43 0.056 0.054 0.914 0.906

χ2, chi-square statistic; df, degree of freedom; RMSEA, root mean squared error of approximation; SRMR, standardized root mean square residual; CFI, comparative fit index; TLI, Tucker-Lewis 
index; BIC, Bayesian information criteria (Dai et al., 2020).

Intelligence (0.746) and the lowest on Matrix Pattern Completion 
(0.265). Importantly, Factor 3 is a singlet, having a noteworthy loading 
from the Trail Making (0.973) test only. Substantive interpretations of 
the factors will be  provided in a latter section of this paper. It can 
be noted, however, that two tests that were hypothesized to define short-
term working memory (Gwm) in CHC theory - Numeric Memory and 
Symbol Digit Substitution-load on different factors and therefore the 
existence of Gwm is not supported by the EFA analyses.

However, it is necessary to make further comments about the 
nature of the Trail Making test. Our hypothesis was that this test, 
together with Reaction Time and Pairs Matching will define the 
processing speed (Gs) broad factor from the CHC theory of 
intelligence. Thus, although our expectation was that all three will 
define the same factor, Reaction Time and Pairs Matching retained 
their loadings on Factor 1. This outcome led us to consider postulating 
that these three tests may load on the same factor by using 
confirmatory approach as the next step in the analysis.

Promax is the oblique rotation, and therefore it is expected that 
factors will be correlated. As can be seen in the factor correlation matrix 
at the bottom part of Table 2, the correlations are small to moderate in 
size. Factors 1 and 2 have negative correlation (−0.34), reflecting again 
reverse scoring of two tests that load on Factor 1 and factor 3 has the 
same size correlation (0.20) with both Factors 1 and 2. It is highly 
unlikely that this pattern of correlations would lead to the emergence of 
a strong second-order factor.

3.6. Exploratory structural equation 
modeling: Modifying the EFA solution

Statistical procedures of ESEM were developed by Asparouhov and 
Muthén (2009). As pointed out by Marsh et  al. (2014) one of its 
applications is in the area usually addressed by the confirmatory factor 
analysis (CFA) – i.e., testing if a particular structural model holds within 
a given dataset. We report the outcomes of two ESEM analyses carried 
out with the UK Biobank data.

First, we test the model based on the three-factors EFA solution 
presented in the right-hand side of Table 2. The input (i.e., anchors) were 
factor coefficients (loadings) for each factor from that solution. ESEM 
program uses maximum likelihood method in an iterative way to 
estimate the extent to which the model predicts the values of the sample 
covariance/correlation matrix.

The first line in Table 3 presents goodness-of-fit indices for this 
model. All these indices indicate poor fit. Thus, significant Chi-square 
test (p-value <0.001), suggests that the model is too simple to properly 
represent the data structure. Also, the acceptable RMSEA and SRMR 
values should be lower than 0.06, and CFI and TLI need to be above 
0.90. This suggests that the model can be improved if modifications are 
made by introducing additional path coefficients or covariances (Kang 
and Ahn, 2021).

Second, we tested a modified model in the next run. The following 
modifications were introduced: (a) Pairs Matching, and Reaction Time 
tests were removed from Factor 1 and were given new loadings (0.300 
each) on Factor 3; (b) The loading of the Trail Making test on factor 3 
was set to 0.700; (c) The loading of the Paired Associate learning test on 
Factor 1 was removed; and (d) The loading of Matrix Pattern Completion 
on Factor 2 was set to 0.300. All input data for this modified run are 
presented in the left-hand side “Estimates” section of Table 4.

Testing the model with the proposed modifications resulted in a 
greatly improved fit indices listed in the second row of Table  3. In 
comparison to the EFA-based model, Chi-square has been reduced 
although still significant, but all other goodness-of-fit indices have 
reached acceptable levels. Therefore, the structure displayed on the 
right-hand side of Table 4 under the heading “Completely standardized 
solution” represents the three latent dimensions underlying cognitive 
tests in the UK Biobank dataset. Figure 2 is a graphical display of this 
final model.

Correlations among the factors are also shown in the lower part of 
Table 4. These can be compared with the three-factors EFA solution in 
Table 2. Two features stand out. First, factor intercorrelations produced 
by the ESEM are much higher than those from EFA and it can 
be expected that they will lead to an identification of the second-order 
factor, which corresponds to fluid reasoning, Gf. Second, correlation 
between Factor 1 and Factor 2 was negative in the EFA solution but 
moving Pairs Matching and Reaction Time tests to load on Factor 3 led 
to its negative correlation with the other two factors. While higher 
correlations may be  important for the interpretation of the results, 
changes in negative correlations are simply a consequence of reverse 
scoring of the tests that load on Factor 3.

4. Discussion

Being a valuable source of a population level cognitive functioning 
data for research purposes, the bespoke format of the UK Biobank 
cognitive assessment provides challenges to realizing its scientific 
potential. While using a single test or an extraction of the general 
intelligence score, g, are common ways of dealing with the data 
limitations, these approaches themselves are limiting. We propose an 
alternative multifactorial approach that uses a CHC framework to 
analyze selected tests to capture different facets of the UK Biobank 
cognitive assessment without being too specific, as in a case with one 
single test, or too general, as in a case of using g.

4.1. Factor interpretation

Using factor analysis and structural equation modeling we show that 
the three-factor model that is based on nine cognitive tests available in 
the UK Biobank provides a more refined solution for capturing various 
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facets of cognitive abilities. Due to the lack of appropriate tests in the UK 
Biobank, all three factors are of a fluid intelligence type that was initially 
defined by Cattell (1941) and further elaborated by Horn and Cattell 
(1966) and Reynolds et al. (2022). In our model, two out of the three 
factors can be assigned to fluid reasoning (Gf) described in Cattell–
Horn–Carroll (CHC) theory as a broad ability to reason, form concepts, 
and solve problems using unfamiliar information or novel procedures, 
and one factor  - to processing speed (Gs)  - the ability to perform 
automatic cognitive tasks, particularly when measured under pressure 
to maintain focused attention (Flanagan et al., 2007).

The following discussion is primarily building upon the three-factor 
structural equation model as the most mature model of the UK Biobank 
cognitive assessment developed in this study (Figure 2).

The first factor (F1) was defined by Symbol Digit Substitution (SDS, 
0.65 F1 loading), Tower Rearranging (TR, 0.51 F1 loading) and Matrix 
Pattern Completion (MPC, 0.4 F1 loading) tests. These tasks are well 
known measures of a fluid reasoning, however, given a dominating role 
of a visuospatial processing in these tests, F1 can be seen as a visuospatial 
Gf factor. The second factor (F2), comprising of Fluid Intelligence or 
‘verbal-numerical reasoning’ (FI, 0.73 F2 loading), Numeric Memory 
(NM, 0.49 F2 loading), Paired Associate Learning (PAL, 0.32 F2 loading) 
and Matrix Pattern Completion (MPC, 0.29 F2 loading) tests (Figure 2). 
While F2 tests, like the F1 tests, are known to measure broad Gf ability, 
FI, NM, and PAL are based on verbal-auditory processing, thus, F2 can 
be viewed as verbal-analytic Gf factor. An interesting question arises 
about the MPC test that is shared between F1 (0.4 loading) and F2 (0.29 
loading): Why being a classical visuospatial test [MPC is a part of the 
Wechsler Adult Intelligence Scale (WAIS)] does it also appear in a 
so-called verbal-analytic Gf factor? The answer may lay in the 
relationship between language and thought, which is an intriguing and 
challenging area of inquiry for scientists across many disciplines. In 
neuropsychology, researchers have investigated the inter-dependence of 
language and thought by testing individuals with compromised language 
abilities and observing whether performance in other cognitive domains 
is diminished. They found that individuals with severe comprehension 
deficits such as those with Wernicke’s aphasia appear to be especially 
impaired non-verbal reasoning tasks (Kertesz and McCabe, 1975; 
Hjelmquist, 1989; Baldo et al., 2005, 2015). Together, these findings 

suggest that language supports complex reasoning, possibly due to the 
facilitative role of verbal working memory and inner speech in higher 
mental processes.

The CHC theory distinguishes auditory (Ga) and visual (Gv) 
cognitive processing (Schneider and McGrew, 2018) as separate broad 
abilities, however, it appears that the UK Biobank cognitive assessment 
tasks measure these processes in conjunction with reasoning. The 
distinction of the two different types of reasoning in Gf observed in our 
model is also supported by converging evidence from imaging studies 
of brain functional connectivity. Thus, Jung and Haier (2007) have 
proposed the empirical-based parieto-frontal integration theory (P-FIT) 
of intelligence, which has been proposed as one the most promising 
theories to guide research on the biology underpinning human 
intelligence (Deary et al., 2010). The P-FIT states that large scale brain 
networks that connect brain regions, including regions within frontal, 
parietal, temporal, and cingulate cortices, underlie the biological basis 
of human intelligence. Several studies have provided further support for 
this theory, identifying grey matter correlates of fluid, crystallized, and 
spatial intelligence (Colom et  al., 2009), separable networks for 
top-down attention to auditory non-spatial and visuospatial modalities 
(Braga et al., 2013), and separate but interacting neural networks in 
specific brain regions for visuospatial and verbal-analytic visuospatial 
reasoning (Chen et  al., 2017). Together, these findings provide an 
empirical biology-based account for the first two factors in our model 
of the UK Biobank cognitive assessments.

The third factor (F3) was composed of Trail Making (TM, 0.6 F3 
loading), Reaction Time (RT, 0.3 F3 loading) and Pairs Matching (PM, 
0.3 F3 loading) tests (a single-test factor with a 0.97 TM loading in the 
exploratory factor analysis, Table 3). As can be  seen (Figure 2), the 
largest loading on F3 was from the TM - a neuropsychological test of 
visual attention and task switching that can provide information about 
visual search speed, scanning, speed of processing, mental flexibility, as 
well as executive functioning (Arnett and Labovitz, 1995). Given that 
the TM has been shown to be  both phenotypically and genetically 
strongly associated with processing speed (Edwards et al., 2017), it can 
be advised that F3 is predominantly a processing speed (Gs) factor. It is 
worth noting that all three tests are of a visual processing nature, and the 
correlation of F3 with the visuospatial reasoning, F1, factor (r = 0.85) is 

TABLE 4 A three-factors model of cognitive tests based on ESEM analysis.

Cognitive tests Estimates Completely standardized solution

Factor 1 Factor 2 Factor 3 Factor 1 Factor 2 Factor 3

Symbol digit substitution 0.663 0.651

Fluid intelligence 0.746 0.734

Trail making 0.700 0.660

Numeric memory 0.492 0.488

Pairs matching 0.300 0.301

Reaction time 0.300 0.300

Matrix pattern completion 0.412 0.300 0.404 0.294

Tower rearranging 0.500 0.514

Paired associate learning 0.308 0.319

Correlations

Factor 1 1.000

Factor 2 0.660 1.000

Factor 3 −0.855 −0.645 1.000
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higher than with the verbal-analytic, F2, factor (r = 0.64), which suggests 
that visual perception, as an integral component of these tasks, plays an 
important role in this factor.

It is well established that slowed processing speed contributes to 
cognitive deficits in amnestic and non-amnestic mild cognitive 
impairment (Edwards et  al., 2017; Daugherty et  al., 2020). Tests 
measuring processing speed can be used as a cognitive marker in the 
differential diagnosis of mild neurocognitive disorders (NCD; Lu et al., 
2017). As F3 is comprised of the three components – a basic measure 
of processing speed (RP test), visual memory (PM test) and a classic 
test for cognitive impairment (TM test; Cahn et  al., 1995), it can 
be suggested that a UK Biobank latent variable of processing speed 
composed of TM, RT, and PM could be more sensitive in detecting 
cognitive impairment than each of the tests alone. However, more 
empirical evidence is required to support this observation.

4.2. Limitations

In this study, we used data from a total of 3,425 participants of white 
ethnicity – only those who had a complete set of cognitive assessment 
scores across all nine tests. While this has reduced our sample size 
considerably, it did not significantly affect the statistical power for our 
analyses; but to some extent limits the generalisability of the results. Our 
model structure may not hold true for a larger subset of the UK Biobank 

cognitive data, where there is systematic missing data from incomplete 
assessment, as well as missing random and not at random 
(nonignorable) data.

4.3. Conclusion and future directions

Cognitive assessment data in the UK Biobank has been a significant 
resource for researchers looking to investigate predictors and modifiers 
of cognitive abilities and associated health outcomes in the general 
population. However, these data are not without limitations. Extracting g 
from different cognitive tests is a common way to overcome these 
limitations. In this study, use a CHC framework to characterize the 
cognitive assessment data for nine cognitive tests in the UK Biobank and 
deliver an alternative view of its underlying structure, suggesting that the 
three-factor model provides a more granular solution than g. Using this 
multifactorial model in conjunction with genetic and brain imaging data 
from the UK biobank could provide novel insights into the biological 
mechanisms of processing speed, visuospatial and verbal-analytic 
visuospatial reasoning. These findings would add to the established genetic 
(Davies et  al., 2018) and structural brain imaging (Cox et  al., 2019) 
correlates of general intelligence, g already derived in the UK Biobank. 
The model can also be applied to study the relationships between risk 
factors, health outcomes and the specified cognitive dimensions to further 
progress in understanding of their biological underpinnings.

FIGURE 2

ESEM-reconstructed factorial structure of the cognitive test variables from the UK Biobank. Circles represent factors. The double-sided arrows indicate 
covariances.
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