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Age-dependent branching processes for surveillance of 
vaccine-preventable diseases with incubation period
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The purpose of this paper is to review the recent results of the authors in the area of infectious 
disease modeling by means of branching stochastic processes. This is a new approach involving 
age-dependent branching models, which turned out to be more appropriate and flexible for 
describing the spread of an infection in a given population, than discrete time ones. Concretely, 
Bellman–Harris and Sevast’yanov’s branching processes are investigated. It is justified that 
the proposed models are proper candidates as models of infectious diseases with incubation 
period like measles, mumps, avian flu, etc. It is worth to notice that in general the developed 
methodology is applicable to the diseases that follow the so-called SIR (susceptible–infected–
removed) scheme in terms of epidemiological models. Two policies of extra-vaccination level 
are proposed and compared on the ground of simulation examples.
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The study of the spread of an infectious disease following the SIR 
model and depending on a vaccination level has been developed by 
De Serres et al. (2000) using branching processes in discrete time. 
However, these models are not efficient enough when trying to 
consider time to extinction in real time. This led us to the idea of 
our original paper (see González et al., 2010a) to suggest a more 
accurate approach to this problem by modeling the spread of the 
disease by continuous-time branching processes. Specifically, we 
have proposed to model the number of infectious individuals in 
the population depending on the vaccination level by means of 
Bellman–Harris branching processes (BHBP). To further elucidate 
the method of our modeling and to make the model more realistic, 
later on we have considered Sevast’yanov’s branching processes 
(SBP; see González et al., 2010b), which actually generalize BHBP. 
Both kinds of branching processes are particular cases of the general 
branching process (see Jagers, 1975), also called Crump–Mode–
Jagers branching process, which is the most adequate model to fit 
infectious diseases following SIR scheme (see Ball and Donnelly, 
1995). However, the advantage of SBP is that it gives us a more 
simplified framework being especially suitable to model the evolu-
tion of infectious diseases with incubation period (and a negligible 
contact period in comparison with it) for which the virulence of 
the disease could be a function of the length of this period.

For such kind of diseases, our main target was to determine 
the optimal proportion of susceptible individuals, which might be 
extra vaccinated to guarantee the extinction of the disease within 
a given period of time. To this end, firstly we established stochas-
tic monotonicity and continuity properties of the distribution of 
the time that the infection survives, depending on the vaccination 
coverage rate, based on both BHBP and SBP (see González et al., 
2009; González et al., 2010a). In this paper we review the main 

IntroductIon
One of the main purposes of public health institutions is the sur-
veillance and control of vaccine-preventable diseases. Common 
practice for such diseases is to observe and monitor the basic 
reproduction number, R

0
, and keeping it “well” below unity by 

means of additional vaccination of susceptible individuals into the 
population. How to determine this vaccination level is an impor-
tant problem which depends on multiple factors. A significant 
factor for public authorities to assess the vaccination efficiency, is 
the time that the infectious disease should be allowed to survive 
after vaccination.

The research under survey in this paper deals with the problem 
of developing probabilistic methods to establish optimal vacci-
nation levels based on controlling the time to extinction of the 
disease. Our aim is not only to keep R

0
 less than 1, but also that 

extinction of outbreaks occurs within a given period of time. To 
this end we model the spread of the infectious disease by way of 
branching processes.

Branching stochastic processes have been applied widely 
to model epidemic spread (see for example the monographs 
Daley and Gani, 1999; Andersson and Britton, 2000; Mode and 
Sleemam, 2000; Pakes, 2003). In terms of epidemic spreading 
we have drawn our attention to the SIR (susceptible–infective–
removed) scheme. Measles, mumps or avian flu are examples 
of infectious diseases that follow this spreading scheme model. 
Let us notice that branching processes approach is appropri-
ate for homogeneously mixing population, when the number 
of infected individuals is small in relation to the total popula-
tion size (see Isham, 2005). For that reason, we assume this 
scenario, which would clearly correspond to the early stages of 
an epidemic.
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“individual’s life”. Diseases such as avian flu, measles, mumps 
fit to these characteristics. Therefore, the BHBP and SBP are 
appropriate to model the behavior of infectious diseases with 
incubation period and negligible contagious time.

Furthermore, the virus may have different levels of severity dur-
ing its survival period (due to the multiplication process of the 
virus in the body), for example at the early ages its contact intensity 
may increase quickly and then tends to a certain constant rate or 
may increase with the time with a constant rate or, perhaps, may 
decrease with an exponential rate. So, it would be a mistake to model 
a survival time of a virus and the number of contacts as mutually 
independent, such as it happens in BHBP. We have concluded that 
the above motivation is appealing for the use of the SBP. Moreover 
we applied this process to model outbreaks of the avian influenza 
virus in Vietnam showing that such treatment of the data may be 
adequate (see González et al., 2010b).

In what follows we are going to introduce some notations for 
the ease of presentation of our methodology. Let us denote by 
p

k
(u) the probability that one infected individual with survival 

time u > 0 contacts k healthy individuals, k ≥ 0. Actually, {p
k
(u)}

k≥0
 

is the offspring distribution of the SBP before extra-vaccination 
is applied. Let us notice that when p

k
(u) = p

k
, k ≥ 0, we obtain 

BHBP. If we vaccinate a proportion α of susceptible individuals, 
with 0 ≤ α ≤ 1, then we have a proportion α of immune individu-
als. We assume that the population size is fixed and large enough 
so that α and the family of contact distribution laws, {p

k
(u)}

k≥0
, 

u > 0, can be considered stable along time. Then, the probability 
that an infected individual with survival time u > 0 transmits the 
disease to k susceptible individuals when the vaccination coverage 
rate is α, is given by

p u
j

k
p uk

j k k
j

j k
α α α, ( ) ( ) ( ).=







−−

=

∞

∑ 1

 
(1)

We have investigated the distribution of the extinction time of 
SBP depending on the vaccination level α. To this end, for each α 
such that 0 ≤ α ≤ 1, we denote by Tα the time to extinction of SBP 
initiated at time 0 with a single infected individual, with family of 
infection distribution laws {pα,k(u)}

k≥0
, u > 0, and with distribution 

function (d.f.) of the survival time G(·). Intuitively, Tα is the maxi-
mal time that the infection survives into the population when the 
proportion of immune individuals is α. Let us denote by

vα(t) = P(Tα ≤ t),

its distribution function. Let m(u) be the mean of contacts of an 
infected individual with survival time u and mα(u) be the mean 
of susceptible individuals which are infected by a contagious indi-
vidual with survival time u, given that the proportion of immune 
individuals in the population is α. Let also

m m u dG u= < ∞
∞

∫ ( ) ( )
0

and

m m u dG uα α α= < ∞ ≤ ≤
∞

∫ ( ) ( ) , .
0

0 1

Then, from Eq. 1 it is easy to calculate that mα = (1 − α)m.

results obtained on this topic. Specifically, in Section “Branching 
Model of Epidemic Spread”, we introduce the BHBP and SBP in 
the epidemic context and provide their main properties. In Section 
“Vaccination Policies”, we develop two methods of obtaining opti-
mal coverage rate of susceptible individuals after the vaccination 
process ended, one based on the mean of the time to extinction 
and another one on the quantiles of its distribution. A compari-
son of these vaccination policies based on simulated examples is 
given in Section “Comparison of Vaccination Policies Based on 
Simulations”. The paper finishes with some concluding remarks 
and ways of future research.

BranchIng model of epIdemIc spread
In this section we are going to formulate the epidemiological 
problem in terms of the branching processes under consideration. 
Mathematically, we have studied the behavior of time to extinc-
tion of these processes, when the offspring distribution depends 
on an additional parameter α – the vaccination coverage rate or 
the proportion of immune individuals in the population. In what 
follows we will explain the problem in terms of SBP. In fact our 
first considerations were for BHBP and later on we were able to 
generalize the theoretical approach for SBP. In any case both mod-
els share two important features: the continuity of the life time 
distributions of individuals constituting the population and the 
fact that each individual splits into a random offspring number at 
“death” (adopting the nomenclature of population dynamics). On 
the other hand, while in a BHBP, for each individual, this random 
offspring number is independent of the individual’s life length, in 
SBP could depend on it.

We would like to precise that in epidemic sense our modeling 
is applicable to the SIR epidemic scheme, where three types of 
individuals may exist in the population: infected, susceptible 
to catch the infection and removed individuals. The disease is 
spreading when an infected individual is in contact with a sus-
ceptible one and any contact between infectious and suscepti-
ble individual results in new infection. The survival time of the 
virus in an infected individual was treated as the “age” of this 
individual in the branching model. Furthermore, it is essential 
for the epidemic we are trying to model, that the survival time 
of the virus consists of two periods: an incubation period and a 
comparatively very short contact period. During the incubation 
period, the infected individual by that time neither shows any 
symptoms of the disease, nor passes the disease to any suscep-
tible individual. Moreover, when the symptoms of the infec-
tious disease become observable, this individual is either isolated 
(for example in the case of human populations) or culled (for 
example in the case of very contagious animal diseases like clas-
sical swine fever, foot-and-mouth disease or avian influenza), 
so that this individual ceases being infective. But, exactly after 
the incubation period and before isolation or culling, there is a 
very short period (in comparison to the incubation one) during 
which the infected individual may contact, and then infect, other 
susceptible individuals. Actually, every contact during this period 
produces new infection (when there are no immune individuals 
in the population). From branching standpoint that gives us an 
argumentation to admit that the offspring (meaning in epidemic 
setting the number of contacts) is generated once at the end of 
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ues are attained due to the monotonicity and continuity prop-
erties of vα(·) and μα,z

 exposed in Section “Branching Model of 
Epidemic Spread”.

comparIson of vaccInatIon polIcIes Based on 
sImulatIons
In the previous section we have proposed two vaccination poli-
cies. That gives rise to the natural question which one and when is 
reasonably to use? That is why, in what follows we compare the two 
approaches by way of simulation examples, modeling the spread of 
the disease by means of SBP with the distributions of the incuba-
tion period and of the number of contacts (remain, every contact 
produces infection when there are no immune individuals in the 
population) belonging to probability distributions commonly used 
in epidemic modeling for such situations.

Namely, we consider as incubation period distribution (plus 
the negligible short contact period) a gamma distribution and for 
the contact distribution a Poisson distribution with parameter λu, 
being λ,u > 0. These types of distributions turned out to be appro-
priate for the incubation period and the number of contacts (or 
infected individuals generated by one infected individual), respec-
tively (see for example Daley and Gani, 1999; Farrington and Grant, 
1999; Mode and Sleemam, 2000; Farrington et al., 2003). Intuitively, 
λ represents the power of the virus and u the length of the incuba-
tion period. Hence, the average number of infected individuals by 
one infected individual is considered proportional to its incuba-
tion period, i.e., the larger incubation period is, the larger will be 
the number of infected individuals. With respect to incubation 
distribution, we have chosen gamma distribution with mean 15 
and shape 30, which guarantee that the survival period in more 
than 95% of individuals is between 10 and 21 days. Moreover, with 
respect to contact distribution we have selected λ = 1/3. A similar 
model was used to fit H5N1 Vietnam data (see OIE, 2007; González 
et al., 2010b). For the last selected parameters, we deduce that m, 
the average number of individuals which are infected by one infec-
tious individual, is 5 (when there are no immune individuals in the 
population). Moreover, we deduce that α

inf
 = 0.8. This means that 

to get the disease under control, i.e., to guarantee that it will disap-
pear, we must vaccinate at least 80% of the susceptible individuals. 
But we want to guarantee not only the extinction, but also that it 
happens in a given period of time.

To this aim, from now on, we consider that z = 1. Intuitively, 
this could mean that new outbreaks, after vaccination, start with 
only one infectious individual. Therefore, in this case, to determine 
both vaccination policies, we obtain the empirical approximation 
to the distribution vα(·), for 0.8 ≤ α ≤ 1, using the Monte-Carlo 
method. To this end, for each α in a grid of step 0.01, 10000 proc-
esses have been simulated and their duration have been obtained. 
As an example, in left graphic of Figure 1 we show the histogram 
of simulated times to extinction for α = 0.89.

As an illustration of both vaccination policies we take τ = 30, 
which is actually twice the mean incubation period. In right graphic 
of Figure 1, the behavior of the mean time to extinction, μα,1

, depend-
ing on α is shown. Then, we derive that the optimal vaccination policy 
based on the mean of the time to extinction is α

μ
(30,1) = 0.89. From 

the simulated extinction times for α = 0.89 we estimate v
0.89

(30) by 
0.682. This means that if 89% of the population is immunized, then 

Moreover, let qα be the extinction probability of a SBP with family 
of reproduction laws {pα,k

(u)}
k≥0

, u > 0. It is clear that qα = P(Tα < ∞) 
and is also well-known that qα = 1 if mα ≤ 1 (see Sevast’yanov, 1971). 
Notice that mα is the critical threshold parameter of our model, 
that is the basic reproduction number, R

0
 (or R

0,α).
We denote by α

inf
 = max{0,1 − m−1} the smallest proportion of 

immune individuals, so that the infectious disease becomes extinct 
almost surely.

To develop the vaccination policies for determining the optimal 
vaccination rate, we have studied (see González et al., 2010b) the 
stochastic continuity and monotony properties of the distribu-
tion function vα(·). We have proved that vα(·) is monotonically 
non-decreasing with α, which intuitively means that the greater 
the proportion of immune individuals, the more probable that 
the infectious disease will disappear faster. Also we have obtained 
that the d.f. vα(·) is continuous depending on α, for any α in 
α

inf
 ≤ α ≤ 1. Continuity and monotonicity properties of the mean 

time to extinction and of the quantiles of the distribution of the 
infection extinction time, depending on the vaccination rate α have 
been derived from that.

vaccInatIon polIcIes
Based on the mean of the tIme to extInctIon
For fixed τ > 0, we are interested in vaccination rates, which guar-
antee that the average time to extinction of an infection after vac-
cination period (ended at time, namely, t

1
) is less than or equal to τ. 

We determine these vaccination policies as follows. Let us suppose 
that we have vaccinated a proportion α of susceptible individuals 
and that at time t

1
 there were z infected individuals. If we denote by 

μα,z
 the mean of the time to extinction of an infectious disease initi-

ated with z infected individuals when the proportion of immune 
individuals in the population is α, then any vaccination level α such 
that μα,z

 ≤ τ could be followed. The optimal vaccination policy is 
that one which corresponds to the smallest α of all of them, i.e.,

α
μ
 = α

μ
(τ,z) = inf{α:α

inf
 ≤ α ≤ 1,μα,z

 ≤ τ}.

Based on the quantIles of the tIme to extInctIon
For fixed p and τ, with 0 < p < 1 and τ > 0, we look for αs, which 
guarantee that the infectious disease becomes extinct, with prob-
ability greater than or equal to p, not later than time τ after the 
vaccination process ended. If there are z infected individuals at 
time t

1
, then the probability that the disease becomes extinct no 

later than time t
1
 + τ is equal to vα,z

(τ) = (vα(τ))z, with vα,z
(·) denot-

ing the distribution function of the time to extinction when the 
process starts with z infected individuals and α is the proportion 
of immune individuals in the population.

We define the optimal vaccination policy by

α α τ α α α τ

α α α τ
α

α

q q zp z v p

v

= = ≤ ≤ ≥

= ≤ ≤

( , , ) { : , ( ) }

{ : , (

,inf

inf

inf

inf

1

1 )) }./≥ p z1

For both methods, a deep discussion on how to estimate z and 
other questions related with this can be found in González et al. 
(2010a). Moreover, in order to determine optimal α, we approxi-
mate vα(·) by means of Monte-Carlo method (see Martìnez and 
Slavtchova-Bojkova, 2005). Finally, notice that these optimal val-
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the probability that the disease disappears in less than 30 days is, 0.682. 
Comparing that to the optimal vaccination policy based on the quan-
tiles, what we are telling is that α

q
(0.682,30,1) = 0.89. We notice that 

p = 0.682 is greater than 0.5, because of the skewness of the distribu-
tion of the time to extinction (see left graphic of Figure 1). Therefore, 
vaccinating 89% of susceptible individuals, it is guaranteed that at 
least 68.2% of new outbreaks take no more than 30 days to disappear. 
Finally, we notice that this probability is not very high. The larger 
that probability is, the larger will be the optimal vaccination cover-
age based on the quantiles. Indeed, in Figure 2, the behavior of t 0 9.

α , a 
value such that v tα

α( ) ..0 9 0 9= , depending on α is shown. t 0 9.
α  is a such 

value which allows us to establish that 90% of outbreaks, when the 
proportion of immune individuals in the population is α, will last less 
than time t 0 9.

α . From Figure 2, we derive that the optimal vaccination 
policy based on the quantiles of the time to extinction when p = 0.9 
is α

q
(0.9,30,1) = 0.97, greater than 0.89. Therefore, if we want to guar-

antee with probability 0.9 that the disease disappears before 30 days, 
then we have to vaccinate 97% of the susceptible population.

From the previous study, we suggest that if the infectious dis-
ease is not extremely detrimental for the population and we want 
to control it in a reasonable time, then the policies based on the 
mean could be adequate, guaranteeing with probability higher than 
0.5, the disease becomes extinct in the desired period of time and 
therefore it is under control. On the other hand, when the infectious 
disease is highly detrimental, we would like to eliminate it in the 
predefined time with high probability. In this case, vaccination poli-
cies based on the quantiles are preferable, although this will imply 
an optimal vaccination rate greater than that based on the mean.

dIscussIon
In this review paper we have surveyed two methods for defining 
an optimal vaccination rate of a population, where a detrimen-
tal disease starts to spread. We have tackled this problem using 
 continuous-time branching models, in terms of which then, we 

0 50 100 150 200

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

0.80 0.85 0.90 0.95 1.00

50
10
0

15
0

20
0

α

µ α
Figure 1 | Left: Histogram of simulated extinction times for α = 0.89. Right: Behavior of μα,1 depending on α.

0.80 0.85 0.90 0.95 1.00

50
10

0
15

0
20

0
25

0
30

0

α

t 0
.9α

Figure 2 | Behavior of t0 9.
α  depending on α.

have supposed that the age and reproduction of an individual are 
not necessarily independent. The latter in terms of epidemic takes 
into account that the number of contacts of an infected individual 
can depend on the incubation period of the infection. The nov-
elty of our approach is in the use of models allowing us to work 
in continuous time, as it is in fact in most real world situations. 
The methods are rather different from the well-established dis-
crete settings, widely used for modeling the early stages of epi-
demic spread. Concretely, we have used the Bellman–Harris and 
Sevast’yanov branching processes. These are particular cases of 
the general branching process which is the model that best fits an 
epidemic process as it was proved by Ball and Donnelly (1995). 
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Nevertheless, this process is more complicated than both models 
we have considered, involving more unknown parameters, and our 
processes are appropriate enough at least to model infectious dis-
eases with incubation period and negligible short contact period. 
In any case, generalizations of our results in the framework of the 
general branching processes seem to be an interesting direction for 
further investigations.


