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addition, the frontal lobes also inhibit impulsivity, making predic-
tions that adjust behavior to current rewards when environment 
changes (Schoenbaum and Shaham, 2008). Thus, a key element of 
the behavioral pathology of addiction and substance dependence 
centers on the loss of frontal–cortical executive behavioral control, 
increased impulsivity, reduced behavioral flexibility, and a mount-
ing limbic anxiety and urgency.

Adolescent brAin development And Addiction
Adolescence: A unique period of development
Adolescence is a critical developmental period that encompasses the 
transition from childhood to adulthood. It is best defined by char-
acteristic behaviors that include high levels of risk-taking, increased 
exploration, novelty and sensation seeking, social interaction, high 
activity, and play behaviors that likely promote the acquisition of 
skills necessary for maturation and independence (Spear, 2000; 
Ernst et al., 2009). These behaviors are suggested to facilitate the 
adolescents’ development of social skills necessary to gain independ-
ence from their family or become senior adults in their group. In 
rodents, increased social interactions help guide their food choices 
(Galef, 1977) and other adult actions, such as sexual and aggressive 
behaviors (see e.g., Fagen, 1976; Smith, 1982). Unfortunately, the 
increased incidence of novelty/sensation-seeking behaviors dur-
ing adolescence are also strong predictors of drug and alcohol use 
(Baumrind, 1987; Andrucci et al., 1989; Wills et al., 1994; Faden, 
2006). Indeed, the adolescent brain is in a unique state of transition 
as it undergoes both progressive and regressive changes providing a 
biological basis for unique adolescent behaviors and the associated 
changes in these behaviors during maturation to adulthood. Human 
magnetic resonance imaging (MRI) studies have  demonstrated an 

introduction
Chronic use of alcohol, stimulants, and/or opiates leads to progres-
sive changes in brain and behavior. Addiction is the continued use 
of a drug despite harm, e.g., a loss of behavioral control over drug 
use. The frontal cortex regulates decision making and other execu-
tive functions, such as motivation, planning, goal setting, and inhi-
bition of impulses. In contrast, the amygdala, hippocampus, and 
other limbic structures contribute to emotion, emotional learning, 
and mood. Persistent use of alcohol and other drugs of abuse result 
in changes to neurobiology that culminate in a loss of attention, 
poor decision making, increased impulsivity, and anxious urgency 
that promotes the progressive loss of behavioral control over drug 
use. Although it is well accepted that drug intoxication changes 
neurochemistry ultimately leading to altered behavior, the impor-
tance of persistent drug-induced changes in the brain that underlie 
persistent harmful behaviors has only recently been appreciated. 
Indeed, drug dependence and addiction involves a disruption of the 
normal balance between self-control mechanisms and emotional 
needs. Across drugs of addiction, the progression from abuse to 
addiction involves increased drug wanting, negative emotional 
urgency, and diminished behavioral control (Jentsch and Taylor, 
1999; Robinson and Berridge, 2003). Frontal lobe executive func-
tion involves the ability to recognize future consequences, choose 
between good and bad actions (or better and best), override and 
suppress unacceptable social responses, and determine similarities 
and differences between things or events. This cortical region also 
plays an important role in retaining long-term memories associ-
ated with emotions derived from the brain’s limbic system. These 
emotions are then modified via the frontal cortex to generally fit 
societal norms important for individual integration into society. In 
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than adolescence, and greater activation during adolescence than 
adults with the adults showing the lowest dorsolateral, but equal 
orbitofrontal activation and greater inhibitory control performance 
(Casey et al., 1997; Tamm et al., 2002). These studies support the 
concept that the immature brain, with excess synapses, possesses 
more extensive, and less efficient frontal activation and lower per-
formance than adults that have a more efficient frontal cortex that 
results in more focused, lower overall activation and faster reaction 
times and better performance (Blakemore and Choudhury, 2006). 
Taken together, these studies suggest that remodeling of the cortex 
during the developmental transition from youth to adolescence to 
adulthood has functional implications for the adult stages of life.

neurogenic processes in the Adolescent brAin
Although neurogenesis is primarily an early developmental proc-
ess with most neurons generated during the prenatal and early 
postnatal periods, it continues throughout adulthood in discrete 
brain regions, including the forebrain subventricular zone and 
subgranular zone of the hippocampal dentate gyrus. The genera-
tion and functional integration of nascent neurons into preexist-
ing adult neural circuits is believed to enable the hippocampus to 
adapt to novel and more complex situations (Kempermann, 2002). 
Indeed, the contribution of hippocampal neurogenesis to learning 
and memory (Shors et al., 2001) as well as mood and affective state 
(Malberg et al., 2000) is supported by many studies. Adolescent neu-
rogenesis, and its role in brain remodeling and unique adolescent 
behaviors, has to date not been investigated. Studies indicate that 
adolescent animals have higher levels of hippocampal neurogen-
esis (He and Crews, 2007), but that neurogenesis in the adolescent 
brain is very sensitive to alcohol-induced degeneration (Crews et al., 
2006a). Thus, disruption of the neurogenic process by drugs and 
alcohol use during adolescence might produce long-lasting changes 
that persist into adulthood.

binge drinking during criticAl periods in corticAl 
development might leAd to lifelong chAnges in 
executive function
The effect of alcohol on the adolescent brain is different from 
those observed in adulthood. Adolescents are less sensitive to the 
sedative effects of alcohol (Silveri and Spear, 1998), which allows 
them to binge drink. However, they are more vulnerable to alcohol-
induced neurotoxicity (Monti et al., 2005; Crews et al., 2007). The 
increased sensitivity of the adolescent brain to alcohol-induced 
toxicity (Peleg-Oren et al., 2009), coupled with the dynamic syn-
aptic remodeling that characterizes this stage, might strengthen 
the learning components of heavy drinking behaviors and per-
petuate the loss of important self-control and goal setting com-
ponents of the maturing brain’s executive centers. Indeed, studies 
of adolescent individuals with alcohol use disorder have demon-
strated smaller prefrontal gray and white matter volumes than 
age-matched controls. These lower PFC volumes, in turn, correlate 
with a higher maximum number of drinks per drinking episode 
(De Bellis et al., 2005). Furthermore, binge ethanol exposure dur-
ing adolescence reduces D1 and D2 receptors in the frontal cortex 
while simultaneously increased histone acetylation in the frontal 
cortex and limbic system (Pascual et al., 2009). Thus, it is likely 
that both genetics and environment (heavy drinking) contribute 

inverted U-shape change in gray matter volume during the adoles-
cent period, with pre-adolescent increases followed by post-ado-
lescent reductions (Giedd et al., 1999; Giedd, 2004). At the cellular 
level, these changes correspond with a marked overproduction of 
axons and synapses during early puberty, but rapid pruning in later 
adolescence (Giedd et al., 1999; Andersen et al., 2000; Andersen 
and Teicher, 2004). Although the exact mechanisms underlying 
such synaptic changes are not well understood, it is speculated that 
such remodeling is the biological basis of developmental plasticity 
wherein the neurological circuits are effectively shaped to adapt 
to environmental needs leading to mature adult behavior. Such a 
period of remodeling could also make the adolescent brain more 
vulnerable to external insults and other psychiatric disorders.

The prefrontal cortex (PFC) and the limbic system, which 
includes the hippocampus, amygdala, nucleus accumbens (NAcc), 
and the hypothalamus, undergo prominent reorganization during 
adolescence. Indeed, absolute PFC gray matter volumes decline 
in humans (Sowell et al., 1999, 2001) as well as in rats (van Eden 
et al., 1990) during adolescence. Similarly, a substantial loss of 
synapses, especially excitatory glutamatergic inputs to the PFC, 
occur during the adolescent period in humans and non-human 
primates (Huttenlocher, 1984; Zecevic et al., 1989). In contrast to 
such adolescent-associated pruning, dopaminergic, and seroton-
ergic inputs to the PFC increase to peak levels well above those 
observed earlier or later in life (Kalsbeek et al., 1988; Rosenberg and 
Lewis, 1994). In a similar fashion, cholinergic innervation of the 
PFC also increases at this time point, ultimately reaching mature 
levels in rats (Gould et al., 1991) and humans (Kostovic, 1990). 
Within the hippocampus, the exuberant outgrowth of excitatory 
axon collaterals and synapses during youth are morphologically 
remodeled, and branches within dendritic arbors are pruned dur-
ing this period of maturation (Swann et al., 1999 #3027). Similarly, 
significant dendritic pruning and synaptic regression also occurs 
in the medial amygdala (Zehr et al., 2006), NAcc (Teicher et al., 
1995; Tarazi et al., 1998b), and hypothalamus (Choi and Kellogg, 
1992; Choi et al., 1997). Although most synaptic pruning is likely 
glutamatergic, dopaminergic receptor expression peaks in early 
adolescence at postnatal day (P) 28 followed by a one-third reduc-
tion of receptors between P35 and P60 (Tarazi et al., 1998a). In 
terms of hypothalamic function, adolescent rats often exhibit more 
prolonged stress-induced increases in cortisol than adults (Walker 
et al., 2001). In addition, rats at P28 evidence less stress-induced 
Fos-like immunoreactivity in cortical and amygdaloid nuclei than 
adult rats (Kellogg et al., 1998), but higher novelty-induced Fos 
activation in the hippocampus during this period (Waters et al., 
1997). Thus, significant maturation of the cortical and limbic sys-
tems characterizes the adolescent period of development.

Behavioral studies have demonstrated that performance on tasks 
involving inhibitory control, decision making, and processing speed 
continues to develop during adolescence. During this developmen-
tal stage, selective attention, working memory, and problem solv-
ing skills consistently improve as frontal–cortical synaptic pruning 
and myelination progress (Blakemore and Choudhury, 2006). 
Similarly, executive inhibitory control improves from adolescence 
through to adulthood. Studies measuring behavioral inhibition on 
a Go–No-Go task and functional MRI data reveal greater activa-
tion of dorsolateral frontal and orbitofrontal cortices in children 
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as sensory and hormonal signals activate the oxidation sensitive 
transcription factor NF-κB that is highly expressed in microglia 
(see Figure 1).

The transcription factor NF-κB is involved in the induction 
of innate immune genes in microglia and other monocyte-like 
cells in the periphery. Stimuli such as stress, cytokines, oxida-
tive free radicals, ultraviolet irradiation, bacterial or viral anti-
gens, and many other signaling molecules increase NF-κB-DNA 
binding and transcription of many genes, particularly chem-
okines, cytokines, oxidases, and proteases. Our laboratory has 
previously demonstrated that ethanol increases NF-κB–DNA 
binding in the brain in vivo (Crews et al., 2006b) and in vitro in 
hippocampal–entorhinal cortex slice cultures (Zou and Crews, 
2006). Furthermore, work from our laboratory and others indi-
cate that ethanol also increases the transcription of NF-κB target 

to the development of an alcohol use disorder and lower PFC vol-
umes in adolescents. Studies of social drinkers have found that the 
heaviest binge drinkers have more negative moods and performed 
worse on executive function tasks (Townshend and Duka, 2003; 
Weissenborn and Duka, 2003). Furthermore, alcoholics report 
more fear in facial expressions and animal studies have suggested 
these alterations in fear response are the result of alcohol-induced 
deficits in associative learning (Duka et al., 2004). Additional stud-
ies have demonstrated perseverative relearning deficits following a 
rat model of binge drinking that relates to damage of the associa-
tion cortex (Obernier et al., 2002). However, none of these studies 
directly reveal a critical period during adolescence when executive 
function is liable to disruption by ethanol. In contrast, other work 
on the deleterious effects of ethanol on critical periods involv-
ing of visual cortical development, coupled with ethanol-induced 
cortical neurotoxicity and ethanol-induced alterations in execu-
tive function, support the theory that disruption of frontal–cor-
tical development and executive function maturation occurs in 
adolescent alcohol abusers. It is plausible that adolescent alcohol 
abuse might disrupt impulse inhibition, attention, and motiva-
tion thereby promoting adult alcohol dependence and underlie 
the high risk of lifetime alcohol dependence found among those 
who begin drinking as adolescents. In total, the evidence does 
support a link between adolescent alcohol abuse during a critical 
period of executive function maturation and an increased risk of 
lifetime alcohol dependence and perhaps other psychopathologies.

drugs And stress induce innAte immune genes 
through ActivAtion of nf-κb trAnscription
Neuroimmune signaling contributes to enteric, sensory, and endo-
crine hypothalamic–pituitary–adrenal (HPA) responses to external 
and internal environmental factors. Monocytes and tissue specific 
monocytes, such as brain microglia, are key cells involved in neu-
roimmune signaling. These cells are regularly generated from bone 
marrow stem cells where they migrate to blood, and under normal 
states, replenish tissue resident macrophages and dendritic cells, 
including brain microglia. Monocytes have multiple stages of acti-
vation that represent a progressive cascade of innate immune gene 
activation (Graeber, 2010). Monocyte responses regulate cellular 
movement to sites of tissue damage, secretion of chemokine signals 
to other cells, secretion of proinflammatory cytokines, proteases, 
and “danger” signaling molecules, and increased expression of 
Toll-like receptors (TLRs), oxidases [nicotinamide adenine dinu-
cleotide phosphate (NADPH) oxidase, cyclooxygenase (COX), 
and inducible nitric oxide synthases (iNOS)], and other innate 
immune molecules that increase across a spectrum of activation 
states that range from proinflammatory to trophic. Microglia 
have a low threshold of activation with initial states of activa-
tion secreting signaling molecules, slight morphological changes, 
upregulation of major histocompatibility complex (MHC) and 
TLR proteins, and activation of synaptic stripping. In contrast, 
highly activated microglia progress to mitosis, proliferation, and 
phagocytic oxidative bursts that oxidize and engulf waste (Graeber, 
2010). Under healthy conditions, microglia as well as monocytes 
in the peripheral sensory nerves and endocrine organs contrib-
utes to the integration of sensory systems aimed at maintaining 
health. However, stress, alcohol, and other addictive drugs as well 

Figure 1 | Nuclear factor kappa-light-chain-enhancer of activated B cells 
transcription increases the expression of chemokines, cytokines, 
oxidases, and proteases. The transcription factor NF-κB is involved in the 
induction of innate immune genes (Ghosh and Hayden, 2008). Stimuli such as 
stress, drugs of abuse, peptides, chemokines, cytokines, reactive oxygen 
species (ROS), ultraviolet irradiation, bacteria, viruses, trauma, and other factors 
all increase NF-κB-DNA binding and transcription. Reactive oxygen species 
resulting from oxidases such as NADPH-oxidase or ethanol metabolism by 
CYP2E1 increase NF-κB transcription of NOX2phox, a key NOX catalytic subunit 
(Cao et al., 2005) that produces ROS (Qin et al., 2008). Loops of activation also 
occur through induction of genes that stimulate further NF-κB activation leading 
to autocrine and paracrine amplification and persistent signals. Cytokines and 
chemokines, such as TNFα, IL1β, IL6, and MCP-1 as well as their receptors 
(TNFR in figure), are also induced resulting in amplification loops. Toll-like 
receptors are increased by ethanol (Dolganiuc et al., 2006; Alfonso-Loeches 
et al., 2010) as are other damage-associated molecular pattern receptors and 
there agonists resulting in the formation of positive activation loops (Garg et al., 
2010). Toll-like receptors and HMGB1 interact to create another activation-
amplification loop. Persistent and repeated activation occurs through positive 
cycles of activation. These loops spread innate immune signaling across the 
brain causing altered neurocircuitry and neurobiology. Figure abbreviations: 
CYP2E1, cytochrome P450 2E1; ECM, extracellular matrix; EtOH, ethanol; 
gp91, NADPH-oxidase flavocytochrome b components; HMGB1, high-mobility 
group box 1; IL-1β, interleukin-1 beta; IL1, interleukin-1; LPS, lipopolysaccharide; 
MMP, matrix metalloproteinase; MCP-1, monocyte chemoattractant protein-1; 
NOX, nicotinamide adenine dinucleotide phosphate (NADPH) oxidases; NF-κB, 
nuclear factor kappa-light-chain-enhancer of activated B cells; TACE, TNFα 
converting enzyme; TLR, toll-like receptor; TNFα, tissue necrosis factor-alpha; 
tPA, tissue plasminogen activator.
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as well as stress promoting vicious cycles of NF-κB induction of 
innate immune genes that culminate in changes to neurocircuitry 
and neurobiology.

In addition to alcohol, opiates are known to be addicting drugs, 
and endogenous opioid receptors and agonists clearly contribute to 
the neurobiology of addiction (Koob and Volkow, 2010). In con-
trast, opiate antagonists are used to treat both alcohol and opiate 
addiction. Interestingly, a potential mechanism of opiate antago-
nists appears to involve blockade of innate immune gene activation. 
Indeed, studies have found that opiate antagonists blunt LPS inher-
ent immune responses (Liu et al., 2000b) and protect dopaminergic 
neurons via inhibition of microglial activation and reduced NOX 
formation of reactive oxygen species (Liu et al., 2000a; Qin et al., 
2005). Other studies have demonstrated that opiate antagonists 
block TLR4 activation of innate immune transcription, which is 
a site of action in innate immune loops (Hutchinson et al., 2008, 
2010). Thus, opiate antagonist therapy might exert some of its ben-
eficial effects through blockade of innate immune gene induction. 
However, the progressive nature of innate immune gene induction 
and addictive behaviors suggest that therapeutic treatments aimed 
at reducing the induction of these genes would be more advanta-
geous at preventing than reversing addiction.

innAte immune ActivAtion is involved in ethAnol 
drinking, depression-like behAvior, And Addiction
Numerous studies have investigated the neurobiological conse-
quences of addiction. Our laboratory demonstrated that MCP-1 
(CCL2), a key chemokine induced by chronic ethanol treatment in 
mice known to regulate ethanol consumptive behavior, is upreg-
ulated in post-mortem human alcoholic brains (see Figure 2). 
Neuroanatomical assessment of MCP-1 protein levels as well as 

genes, including chemokine monocyte chemoattractant protein-1 
(MCP-1, CCL2; He and Crews, 2008), proinflammatory cytokines 
[tumor necrosis factor-α (TNFα), Interleukin (IL)-1β, and 
IL-6], proinflammatory oxidases [iNOS (Zou and Crews, 2010), 
cyclooxygenase (COX; Knapp and Crews, 1999), and NOX (Qin 
et al., 2008)], and proteases (TACE and tPA; Zou and Crews, 2010). 
Similarly, stress increases the expression of NF-κB (Madrigal et al., 
2001), cytokines, prostaglandin E2, and COX-2 levels (Madrigal 
et al., 2003) in the brain. In addition, chronic stress causes the 
reversal of acute glucocorticoid anti-inflammatory responses to 
proinflammatory NF-κB activation in the cortex (Munhoz et al., 
2010). Similarly, all addictive drugs cause chronic elevations of 
basal glucocorticoids (Armario, 2010) that likely contribute to 
activation of brain NF-κB. Thus, activation of NF-κB by stress 
and drugs of abuse is a common molecular mechanism involving 
innate immune gene induction that is consistent with a stress-
drug synergy culminating in progressive increases in loss of behav-
ioral control and addiction.

Astrocytes and microglia show morphological changes in 
response to exposure to drugs of abuse. Using both in vitro and 
in vivo models through a series of elegant studies, Guerri and col-
leagues have established that chronic ethanol treatment induces 
astroglial activation and astrogliosis in the brain as indicated by 
marked upregulation of glial fibrillary acidic protein immunore-
activity along with hypertrophic astrocytes (Alfonso-Loeches et al., 
2010). In addition to the altered astrocyte morphology, microglia 
also evidence increased expression of TLRs, which are both NF-κB 
target genes and activators of NF-κB transcription. Recently, TLR4 
was discovered to contribute to persistent innate immune gene 
induction following ethanol exposure. Indeed, chronic ethanol 
exposure produces upregulation and activation of TLR4-glial 
NF-κB signaling that contributes to alcohol-induced neurode-
generation (Alfonso-Loeches et al., 2010). Similarly, acute ethanol 
exposure disrupts membrane lipid rafts thereby activating TLR4 
signaling to NF-κB as well as increased expression of TLR4 (Blanco 
et al., 2008). Indomethacin, an anti-inflammatory drug, reduces 
chronic intermittent ethanol induction of brain innate immune 
genes (iNOS and COX-2) in astrocytes and reduces markers of 
cell death and behavioral dysfunction (Pascual et al., 2007). Innate 
immune activation resulting from oxidized phospholipids (Yang 
et al., 2010), and/or release of damage-associated molecular pat-
tern danger sensing molecules such as high-mobility group box 1 
(Garg et al., 2010), activate TLR and other signals that contribute 
to innate immune gene induction (Huang et al., 2010). Loops of 
NF-κB activation likely vary across individuals and exposure to spe-
cific addictive drugs. However, all addictive drugs activate NF-κB 
transcription across the development of addiction (Russo et al., 
2009; Loftis et al., 2010). In an extensive series of studies, repeated 
bouts of moderate ethanol consumption and/or stress or innate 
immune activator exposure increased negative affect and anxiety 
in rats. The finding that the effects of ethanol and stress on brain 
function can be mimicked by injection of the chemokine MCP-1, 
the cytokine TNFα, or lipopolysaccharide (LPS), is consistent with 
the notion that stress and ethanol act through induction of innate 
immune genes to progressively increase negative affect (Breese et al., 
2008). Thus, NF-κB transcription of innate immune genes in the 
brain occurs during exposure to ethanol and other addictive drugs 

Figure 2 | Comparisons of increased levels of CCL2 in post-mortem 
human alcoholic brain and mouse brain following chronic ethanol 
treatment. Shown is data from different studies within our laboratory 
illustrating increased levels of the chemokine MCP-1 (CCL2) in humans and 
mice following ethanol exposure. (A) MCP-1 protein levels from human 
hippocampal homogenate measured using ELISA. Increased MCP-1 levels 
were also found in ventral tegmental area, substantia nigra, and amygdala (see 
He and Crews, 2008). (B) Levels of MCP-1 in mouse brain increased following 
chronic ethanol treatment. Mice (C57Bl/6) treated with 10 daily doses of 
ethanol (5.0 g/kg. i.g.) and brain MCP-1 levels were determined 24 h after the 
last ethanol administration (see Qin et al., 2008 for details). These studies 
indicate that ethanol upregulates the innate immune chemokine MCP-1 in 
post-mortem human alcoholic and mouse brain samples, which is consistent 
with ethanol activation of innate immune genes.
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markers, and anti-depressant therapy is associated with a reduc-
tion of these markers. In addition to increased innate immune 
gene expression, human depression involves structural changes 
in the hippocampus as multiple studies have demonstrated 
decreased hippocampal volume in patients with depression (see 
e.g., Videbech and Ravnkilde, 2004). These findings are consist-
ent with depression-associated diminution of hippocampal neu-
rogenesis and anti-depressant-induced increases in neurogenesis, 
hippocampal volume in humans, and reversal of depressive symp-
tomology (Dranovsky and Hen, 2006). The reductions of adult 
hippocampal neurogenesis may underlie depression and provide 
an index of mood and negative affect that allow for molecular 
studies. Indeed, both alcoholism and depression may be medi-
ated by changes in adult hippocampal neurogenesis (Crews and 
Nixon, 2003; Koo et al., 2011). Similarly, stress, multiple addictive 
drugs, and other factors that precipitate depression also reduce 
neurogenesis (Tanapat et al., 2001; Malberg and Duman, 2003; 
Gregus et al., 2005). Many of the factors that reduce neurogenesis 
also increase depression-like behaviors (Johnson et al., 2006; see 
Figure 3). Recent research has revealed that activation of NF-κB is 
necessary for stress-induced inhibition of neurogenesis and induc-
tion of depression-like behaviors (Koo and Duman, 2008), such 
as the social defeat model of depression (Christoffel et al., 2011). 
In addition, anti-depressant efficacy in rodent behavioral models 
is dependent upon hippocampal neurogenesis (Santarelli et al., 
2003). In animal studies, endotoxin-induced increases in innate 
immune genes reduce neurogenesis and increase depression-like 
behavior (Kelley and Dantzer, 2011). Immune activation includes 
induction of microglial tryptophan metabolism that could reduce 
serotonin thereby contributing to depression (Kelley and Dantzer, 
2011). TLRs are necessary components of both ethanol neurotox-
icity (Alfonso-Loeches et al., 2010) and innate immune-induced 
depressive behavior and reduction of neurogenesis (Kelley and 
Dantzer, 2011). We have found that chronic ethanol increases brain 
innate immune genes, reduces brain neurogenesis, and increases 
depression-like behavior. In addition, mice self-administering 
ethanol in a chronic heavy drinking model evidenced depression-
like behavior during abstinence that was associated with reduced 
neurogenesis (Stevenson et al., 2009). Ethanol-induced loss of neu-
rogenesis parallels the onset of  depression-like behavior, which is 
reversed via anti-depressant treatment. Similarly, stress-induced 
IL-1β reduces neurogenesis causing depression-like behaviors (Koo 
and Duman, 2008). Inhibition of neurogenesis is also associated 
with negative affect and depression, which are key elements in the 
neurobiology of addiction. Thus, neurogenesis reflects mood, with 
reduced neurogenesis associated with innate immune gene induc-
tion, drug-induced negative affect, and depression-like behavior.

Innate immune gene activation in the brain persists for long 
periods (Qin et al., 2007, 2008), consistent with the persistence of 
addiction. This persistent nature is likely amplified in the adolescent 
brain (Spear, 2000) because of their increased ethanol consumption 
(Silveri and Spear, 1998) and greater vulnerability to the neuro-
toxic effects of alcohol (Monti et al., 2005; Crews et al., 2007). As 
such, chronic intermittent ethanol exposure during adolescence 
increases COX-2 and iNOS expression as well as apoptotic cell death 
in the neocortex and hippocampus (see Figure 4). Importantly, 
and  relevant to the potential involvement of innate immune 

histological assessment of microglia from alcoholic human brains 
indicate increased levels in the ventral tegmental area, substan-
tia nigra, hippocampus, and amygdala relative to healthy control 
subjects (He and Crews, 2008). In another post-mortem human 
alcoholic brain study, Okvist et al. (2007) reported increased NF-κB 
nuclear binding of p50 subunits with 479 NF-κB driven genes being 
generally upregulated in the frontal cortex, but not motor cortex. 
In addition, a human gene expression analysis conducted on post-
mortem tissue (Liu et al., 2006) revealed altered expression of a 
group of cell adhesion genes that is consistent with altered extracel-
lular membrane components and innate immune activation. Thus, 
studies of human alcoholic brain are consistent with the hypothesis 
that drug addiction activates brain innate immune gene expression.

The induction of innate immune gene expression is known to 
alter behavior. Perhaps the most serious consequence of cancer 
treatment with proinflammatory interferon and interleukin is the 
development of severe depression that requires treatment with 
anti-depressant medication (O’Connor et al., 2007). Several other 
studies have linked negative affect and depression to innate immune 
activation (see e.g., Kelley and Dantzer, 2011). For instance, bacte-
rial endotoxin induces sickness behavior and negative affect across 
multiple species. Indeed, Eisenberger et al. (2010) recently demon-
strated that infusions of LPS into healthy humans reduced reward 
responses and increased depressed mood. Similarly, cycles of drug 
abuse, stress, and other environmental changes amplify anxiety and 
negative affect. Interestingly, animal studies determining the genetic 
basis of behavior find that innate immune genes increase alcohol 
drinking behavior. For example, gene expression studies of geneti-
cally paired rats and mice that differ primarily in their preference 
for ethanol consumption find that NF-κB, its regulatory proteins, 
and many innate immune genes are central to high ethanol drinking 
behaviors (Mulligan et al., 2006). Furthermore, beta-2 microglobu-
lin (β2M), which is a NF-κB target gene involved in MHC immune 
signaling (Pahl, 1999) evidenced the largest increase in high ethanol 
preferring brain transcriptomes (Mulligan et al., 2006). In addition, 
work from Blednov et al. (2005, 2011b) have provided interest-
ing and novel data supporting the hypothesis that innate immune 
genes regulate ethanol drinking behavior. Across multiple strains of 
transgenic mice with innate immune gene deletion, these animals 
universally drink significantly less ethanol than matched controls 
across multiple ethanol drinking paradigms. Recently, Blednov et al. 
(2011a) discovered that innate immune activation through LPS can 
cause long-lasting increases in ethanol drinking. Indeed, strains of 
mice show varied innate immune responses to LPS that correspond 
to increases in the consumption of ethanol. Furthermore, a single 
injection of LPS is capable of producing a delayed, but long-lasting 
increase in ethanol consumption even in strains of high drinking 
mice. Similarly, a single LPS treatment induces persistent increases 
in brain innate immune gene expression (Qin et al., 2007). Taken 
together, these findings are consistent with genetic regulation of 
brain innate immune gene expression contributing to risk for 
alcoholism, alcohol drinking (both preference and quantity), and 
behavioral sensitivity to alcohol across multiple species.

A significant body of evidence supports the hypothesis that 
innate immune gene induction in the brain results in negative affect 
and depression-like behavior (Raison et al., 2009). Patients with 
major depressive disorder evidence increased blood  inflammatory 
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gene  induction in  adolescent binge drinking, administration of 
indomethacin attenuates the behavioral dysfunction associated 
with adolescent intermittent ethanol in early adulthood (Pascual 
et al., 2007).

Maturation of the frontal cortex during adolescence is par-
alleled by the development of behavioral control (Ernst et al., 
2009). Adolescence is a recognized risk period for the initiation of 
drug experimentation and addiction due to the vulnerability of 
the developing frontal cortex (Crews et al., 2007). Other studies 
have suggested that genetic factors linked to a hyperglutamater-
gic state might contribute to alcoholism (Spanagel et al., 2005) 
and  ethanol-induced NF-κB activation to increased extracellular 
glutamate (Ward et al., 2009). Innate immune gene induction 
results in hyperexcitability in the spinal cord related to neuropathic 
pain (Graeber, 2010) and in the hippocampus related to seizures 
(Maroso et al., 2010). Similarly, hyperexcitability in the frontal 
cortex results in loss of cognitive flexibility creating addiction-like 
behavior (Gruber et al., 2010). In elegant studies by Kaliva and col-
leagues have established that cocaine and stimulant addiction are 
related to a hyperglutamatergic states due to alterations of the corti-
cal glutamate transporters (Reissner and Kalivas, 2010). Studies of 
both human cocaine and alcohol addicts have revealed dysfunc-
tional decision making on tasks involving delayed reward for more 
value and reversal learning tasks that probe cognitive flexibility and 
frontal lobe function (Bechara et al., 2002). Thus, frontal–corti-
cal hyperexcitability due to innate immune gene induction likely 
contributes to the neurobiology of addiction.

Frontal–cortical dysfunction is often investigated using reversal 
learning tasks. During reversal learning, expected outcomes are 
incorrect requiring flexible behavior in response to outcomes that 
do not match those predicted by the preceding cues (Stalnaker 

Figure 3 | Chronic ethanol self-administration induces depression-like 
behavior and inhibits hippocampal neurogenesis. C57BL/6J mice 
self-administered either ethanol (10% v/v) or water for 28 days. (A) 
Abstinence-induced increase in immobility (seconds) on the forced swim test 
provides an index of depression-like behavior. Abstinence from chronic ethanol 
consumption resulted in increased negative affect. (B) Ethanol self-
administration decreased PCNA, a marker of cell proliferation, in the 
neurogenic region of the hippocampal dentate gyrus. (C) Ethanol self-

administration decreased doublecortin expression, a marker of neurogenesis, 
in the dentate gyrus. Reduced progenitor cell proliferation and neurogenesis is 
associated with increased depression-like behavior. Furthermore, these 
studies are consistent with the research suggesting that decreased 
hippocampal neurogenesis is linked to depression. Finally, desipramine 
treatment, an anti-depressant, reversed both the reduced hippocampal 
neurogenesis and the depression-like behavior in abstinent mice (see 
Stevenson et al., 2009).

Figure 4 | Ventral hippocampus shows greater activation (pMAPK + ir) 
and neurotoxicity (Silver stain) following binge ethanol treatment. Coronal 
sections of rats exposed to a 4-day binge ethanol model are shown 
[approximately −5.80 mm from bregma, adapted from Crews et. al. (2006a; The 
position of the coronal histological sections are depicted in the sagittal diagram 
in the upper left corner. The histological coronal sections show both dorsal 
(upper) and ventral (lower) dentate gyrus of hippocampus)]. Left: Mitogen-
activated protein kinase (MAPK) is a family of kinases activated by 
phosphorylation. Phosphorylated MAPK (pMAPK) provides an index of kinase 
activation. Note the lower-ventral dentate gyrus, hippocampus, and entorhinal 
cortex (indicated by black arrows) contains more pMAPK + IR than the 
upper-dorsal sections consistent with greater activation of ventral hippocampus. 
Right: Silver stain identifies dying neurons (see Crews et. al., 2006a). Note that 
the ventral hippocampus contains many more silver stained neurons (black 
arrowheads) compared to the ventral hippocampus. Boxes on the right show 
higher magnification of silver stained dorsal and ventral hippocampus. These 
findings are consistent with ethanol causing greater emotional ventral 
hippocampus activation (pMAPK + IR) and cell death (silver stain).
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Figure 5 | The neurobiology of addiction. (A) Flow chart distinguishing the 
frontal–cortical and limbic changes associated with drug addiction. Both stress 
and drug abuse activate innate immune gene expression, which increases limbic 
activation and disrupts frontal–cortical function. (B) A simplified schematic of the 
frontal–cortical and limbic circuitry that contributes to addictive behavior. 
Depicted is a rat brain with internal structures highlighted and accompanying 
projections (as indicated by black arrows). The frontal–cortical areas include the 
medial prefrontal, anterior cingulate, and orbitofrontal cortices, and are involved 
in attention, goal setting, planning, and impulse control (Schoenbaum et al., 
2006; Schoenbaum and Shaham, 2008). The limbic circuitry, comprising the 
nucleus accumbens (NAcc), amygdala (AMG), hippocampus (HPC), and ventral 
tegmental area (VTA), is involved in emotion, learning, and memory. Acute drug 
abuse activates frontal–cortical attention mechanisms, prompting limbic 

learning. Similarly, innate immune gene induction in the brain leads to PFC 
hyperexcitability (Zou and Crews 2005; Crews et al., 2006a) that inactivates 
frontal–cortical regulation of limbic structures (Gruber et al., 2010). Innate 
immune gene induction in limbic regions increases negative affect and 
depression-like behaviors prompting further drug abuse and self-medication. The 
harmful consequences of prolonged alcohol, opiate and stimulant drug 
dependence result in diminished activation of frontal–cortical circuits leading to a 
loss of attention and poor decision combined with increasing urgency and 
negative affect motivating persistent drug taking behaviors. Decreased ventral 
hippocampal activation likely contributes to frontal hyperexcitability and loss of 
cognitive flexibility (Gruber et al., 2010). Thus, an inactivated PFC, loss of 
behavioral flexibility, and increasing limbic negative emotion characterizes the 
drug-addicted brain.
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