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The success of research in the field of maternal–infant health, or in any scientific field, relies
on the adoption of best practices for data and knowledge management. Prior work by our
group and others has identified evidence-based solutions to many of the data management
challenges that exist, including cost–effective practices for ensuring high-quality data entry
and proper construction and maintenance of data standards and ontologies. Quality assur-
ance practices for data entry and processing are necessary to ensure that data are not
denigrated during processing, but the use of these practices has not been widely adopted
in the fields of psychology and biology. Furthermore, collaborative research is becoming
more common. Collaborative research often involves multiple laboratories, different scien-
tific disciplines, numerous data sources, large data sets, and data sets from public and
commercial sources. These factors present new challenges for data and knowledge man-
agement. Data security and privacy concerns are increased as data may be accessed by
investigators affiliated with different institutions. Collaborative groups must address the
challenges associated with federating data access between the data-collecting sites and a
centralized data management site. The merging of ontologies between different data sets
can become formidable, especially in fields with evolving ontologies.The increased use of
automated data acquisition can yield more data, but it can also increase the risk of intro-
ducing error or systematic biases into data. In addition, the integration of data collected
from different assay types often requires the development of new tools to analyze the data.
All of these challenges act to increase the costs and time spent on data management for
a given project, and they increase the likelihood of decreasing the quality of the data. In
this paper, we review these issues and discuss theoretical and practical approaches for
addressing these issues.
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THE DATA MANAGEMENT CHALLENGE FOR COLLABORATIVE
RESEARCH
As highlighted in a recent field guide by the National Institutes of
Health (NIH), entitled “Collaboration and Team Science: A Field
Guide” (Bennett et al., 2010), and as noted in recent publications
(Wuchty et al., 2007; Stokols et al., 2008), the NIH and the scien-
tific community have shifted their focus over the past 10 years from
research projects conducted by individual investigators or labora-
tories to research collaborations among teams of investigators and
laboratories. This shift in focus is evident in NIH actions such
as the 2006 formation of the Clinical and Translational Science
Awards Consortium1, which is designed to promote translational
research among investigative teams, the 2006 revision of the NIH
Tenure Review Committee, which added “team science” to review
criteria, and the 2007 creation of grants involving multiple Prin-
cipal Investigators. While collaborative research is not new, the
NIH focus on translational research has promoted “consortium-
oriented” collaborative research in which multiple, independent
research laboratories share funding to support research on a broad

1http://www.ctsaweb.org/

scientific question of relevance to, and requiring the expertise of,
each laboratory. We are involved in two such research collabo-
rations designed to delineate the impact of drug use on health
behaviors and to define the mechanisms responsible for these
effects. The data management practices for the first collaboration
involving the Frank Porter Graham Institute at UNC has previ-
ously been presented as a case study (Burchinal and Neebe, 2006).
Our collaborative research projects rely on the synthesis of data
generated from multiple sources, such as functional and structural
neurobiological assays, behavioral tests, genetic analyses, infant
vocalizations, and immunological assays. While consortiums like
ours have the potential to yield insight into significant scientific
problems, they also present significant challenges in the synthesis
of different research methodologies and data types. In this paper,
we look specifically at the data management challenges faced by
research collaborations, we examine the complexities involved in the
integration of data across research sites, and we review practices and
technologies that we have found to be effective for data management
and integration in collaborative research.

Figure 1 provides a high-level generalization of the data man-
agement challenges faced by multi-site research collaborations.
Importantly, multi-site collaborations include a data coordinating
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FIGURE 1 | Schematic of data exchange in a multi-site research

collaboration. In a multi-site research collaboration, data coining from and
to individual laboratories and scientific cores (e.g., metabolomic,
proteomics, imaging cores) must be managed and integrated along with
the annotation describing the data.

site that manages all project data and serves as a focal point for
the integration of data for data exploration and analysis. The
data coordinating site is often an administrative core in large
consortiums or an individual laboratory in small collaborations.
In multi-site research collaborations, different laboratories gen-
erate data through their own specialized research activities, and
these laboratories are often involved in more than one research
collaboration. Laboratories generally develop, over many years,
individualized standard operating procedures for the production,
description, and analysis of data generated from that labora-
tory. The standard operating procedures are typically tailored to
each laboratory’s research expertise and include methodological
approaches for data production and dissemination, annotation
capture, and quality assurance procedures. The ability of labora-
tories to alter their standard operating procedures for different
research collaborations is limited because of the resultant disrup-
tion in laboratory activities and loss of time (and hence, money).
In addition, different laboratories often adopt data-usage policies
that may be institution-specific and that may vary from the policies
established for the collaboration.

Thus, a key challenge for the collaboration in general and for
the data coordinating site more specifically is to ensure that data
management practices throughout the collaboration are adequate
for data integration and analysis despite the inability of the data
coordinating site to change individual laboratory practices. Data
management practices also must remain adequate throughout the
natural evolution of the research collaboration as new findings
lead to adjustments in the research process. The increased size of
data set due to new technologies, such as next-generation genetic
sequencers, present both logistical and security issues due to the
large size of individual data files and the need to co-locate data files
with adequate computational capabilities and data storage facili-
ties to allow for processing and analysis of the data. An additional
key challenge is that the synthesis of data entails the integration
of numerous data types, and a single laboratory typically does not
have direct experience with the many data types that arise in multi-
site research collaborations. For instance, in our collaboration on
the effect of disruptions in the mother–infant bond as a result of

maternal drug use, data types include fluorescence measurements
in specific brain regions derived from immunohistochemistry,
measurements derived from functional magnetic resonance imag-
ing (fMRI) in specific brain regions, sound vocalizations from
infants, and behavioral responses of mothers to the infant vocal-
izations. By developing the linkages between such diverse data sets,
the data coordinating site can enable investigators to more readily
retrieve, visualize, and compare results for selected experimental
conditions across all measurement types.

IDENTIFYING BEST PRACTICES FOR DATA MANAGEMENT
High-quality data management practices focus on reducing the
amount of error introduced during the multiple stages of the data
lifecycle, including data collection, cleaning, scoring, processing,
storage, archiving, and analysis, re-analysis, or secondary analysis.
The need for quality practices is paramount to good research. For
example, we have detected data management-related error rates
of 5–10% when data are entered only once and error rates of over
10% when research assistants score and enter developmental test
data in projects that depended on their laboratory for data collec-
tion and scoring before turning to our data center for data entry
and processing. In our study, the implementation of high-quality
practices within the data coordinating site dramatically reduced
error rates from all sources to less than 1% (Burchinal and Neebe,
2006). The NIH now acknowledges the need for high standards for
data management and requires data-sharing plans for all projects
and professional data management for large projects (Coulehan
and Wells, 2005). We review key points regarding evidence-based
practices that we have found to be cost-efficient and associated
with a reduction in errors in multi-site research collaborations.

IDENTIFICATION (ID) SYSTEM
A consistent and comprehensive ID system must be formulated
that uniquely identifies each study subject (e.g., human subject,
animal subject, or biospecimen). This entails the creation of a
unique ID for each subject in each study site at multiple time
points for longitudinal studies and for each treatment group for
clinical trials or other studies involving treatment or intervention
groups. The ID numbers should provide unique identification
across nested factors such as time, family members, clinics, or
treatment groups. Along with the ID number, a list of important
information on the study subjects such as gender or birth date
should be established – these data are often stored as the master file.
The master file provides annotation for the study subjects, allow-
ing the data coordinating site to validate data entry by different
data collectors and for data collected over time.

VARIABLE SYSTEM
A well-described system for naming and annotating variables that
are used across experiments is necessary to establish; this includes
the creation of conventions for naming variables and the establish-
ment of checks for inconsistencies and errors related to variable
values. Variable names should be unique across all datasets. When
practical, systematic variables names can include information
about the variables themselves such as the protocols that were
used to capture the variable. Annotation should be associated
with each variable and should provide details about the measure-
ment captured by the variable, the valid values for the variable,
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the type of variable (e.g., binary, ordinal), and the methodology
used to capture the measurement. The systematic nomenclature
and annotation of variables reduce errors by clearly documenting
each variable and facilitating the transfer of best data management
practices to new members of the research team.

Several challenges exist in the development of a variable system
for use in a multi-site collaboration. In a previous collaboration
focused on tissue and cell engineering, we found that the inclu-
sion of a staff member with training in both biology and ontologies
was invaluable in reducing errors. During the course of that study,
we also were able to categorize the issues that arose over a 5-
year span, which we present below. (Note that the word “term” is
used interchangeably to mean either “variable name” or “variable
value.”)

1. Use of vague terms: terms such as “Dex” or “PepMix10” are
inexact, are difficult to map between labs, and lose meaning
over time.

2. Use of synonyms: the use of synonyms such as “niacinamide”
and “vitamin B” leads to failures in the integration of data.

3. Use of similar terms: terms such as“VEGF”and“VEGF-D”refer
to different entities, but are similar enough that researchers
often mistakenly use one term instead of the other. This prob-
lem, as well as the following one, is one that is readily handled by
a staff member with expertise in both biology and ontologies.

4. Use of homonyms: oftentimes, different scientific subfields use
the same term but with different meanings. For example, the
term “CD34” could mean a gene, a cell surface protein, an anti-
body, or a type of immune cell, depending on the laboratory’s
scientific focus.

5. Complex constraints on variable values: valid values for vari-
ables are often based on evolving standards. In this case, the
implementation of quality assurance checks to ensure that the
values are consistent with standards becomes difficult and often
requires the removal of the quality assurance checks, which
could introduce error. An example is the use of list boxes on a
graphical user interface that holds valid values for a variable.

6. Failure to use standard keywords: the use of non-standard
terms (when standard terms exists) leads to problems with data
integration when merging data sets.

7. Incorrect use of variables: we identified in several cases in which
researchers would use a variable to record information if track-
ing of the information was important to the researcher, but the
desired variable was not part of the overall study or the variable
system.

8. Failure to provide variable values: researchers who aren’t
trained in the need for variable values typically do not provide
such values.

DATA PROVENANCE AND MANAGEMENT THROUGH STRUCTURED
DATA STORAGE
The data system must enable the reproducibility of the results
of all analyses of the data, i.e., the data system must provide for
the provenance of the results. In practice, provenance is hard to
achieve and is costly (Rajendra and Frew, 2005; Yogesh et al., 2006).
To address this issue, we suggest the use of a file-based directory
structure as this facilitates provenance, is easy to establish, and is

cost-efficient to maintain. We suggest separate subdirectories for
projects, programs, datasets, and documentation. For our study
on the development of language, for example, we had a direc-
tory labeled “Langstudy” with subdirectories for analysis and data
management. Within the analysis subdirectory, we included sepa-
rate sub-subdirectories for analyses specific to a given presentation
or manuscript. The analysis sub-subdirectories contained all sur-
vey programs, memorandums, and other forms of documentation
related to analysis. Within the data management subdirectory, we
included sub-subdirectories for each data collection effort. Within
both the analysis and the data management subdirectories, we
included sub-subdirectories for survey programs, data, documen-
tation, and print. The program sub-subdirectory contained all
computer programs used to enter, score, and update the data sets.
The data sub-subdirectory contained all data files. The documen-
tation sub-subdirectory contained all communication with the
project staff regarding data collected for each study instrument,
lists of errors in the data, and instructions on how to correct
those errors. The print sub-subdirectory contains copies of the
output from all software programs used to process the data. The
use of file-based directories ensures that all data files can be traced
accurately from data collection through data analysis to published
manuscript or presentation. Requirements such as data backup
and security can be addressed with existing file-based tools. For
instance, access to data can be controlled with Unix-based access
control lists or Windows Group Policies.

QUALITY ASSURANCE
While specific quality assurance practices will vary depending on
the details of how the data are captured and processed, quality
assurance practices should be put in place to validate data correct-
ness, i.e., to ensure that all data values are within the appropriate
ranges, that IDs are present, and that duplicate IDs do not exist.
Quality assurance practices also should be in place to ensure that
the transfer and integration of data within the data management
system are reliable, correct, and efficient. It is important to docu-
ment all quality assurance practices. The implementation of sound
quality assurance practices can be quite complex, and fully real-
ized quality assurance approaches such as those practiced using
the approaches set forth by six sigma (Stamatis, 2004) or Good
Manufacturing Practices/Good Laboratory Practices (Carson and
Dent, 2007) are typically beyond the resources of NIH-funded col-
laborative research. However, several simple, inexpensive quality
assurance practices can be effective. For example, the use of a sec-
ond person to double-check all scoring of assessment tools and all
data entry greatly improves data quality. Similarly, when new com-
puter programs are created to automate data processing, a software
code review by a second person (or the development team) can
aid in identifying quality concerns with the software. All devel-
oped software should include software unit tests that demonstrate
that the software performs correctly across expected use cases. In
addition, quality risk reviews with team members can ensure that
problems with data collection and processing are identified early
on. These reviews can be structured as brain-storming exercises
using a “Cause-and-Effect” diagram (Ishikawa and Loftus, 1990)
to capture first the effects of any concerns (e.g., incorrect values
in a survey item), to identify the possible causes of any concerns
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(e.g., errors in data capture software), and to assess the likely risk
that each cause is present (e.g., low if software has been validated
in other studies). The advantages of this approach are that it is
easy to perform and the documentation of risk allows for the
prioritization of concerns.

TRACKING
A tracking system should be established that allows the project
team to follow the progress (or lack thereof) of data collection
across project activities. The typical tracking system involves a
computerized“to do” list of data processing tasks that are checked-
off as they are completed. The tracking system should also record
the presence of data quality issues and the actions that were taken
to address each issue. Open source and commercial project and
ticket tracking systems can be used for tracking if the development
of a customized solution is not feasible. An example is the Con-
fluence/Jira tools that are often used for tracking software projects
and can be customized for quality tracking.

REVISION CONTROL OF DATA
During data collection, we recommend the creation of a series of
permanent data sets and the use of version numbers to keep track
of revisions. The first permanent data set is created when the data
are generated. Subsequent permanent data sets are created when
new data are added or changes are made to the data in the original
data set, and the new data sets are assigned names that indicate that
they are revisions of the previous data set. This stage involves the
processing of data for correctness, and the master file and variable
naming system can aid in this task. For longitudinal studies, for
instance, the master file may contain detailed demographic data
on subjects, and those data should match the demographic data
captured in follow-up studies. All failures and warnings indica-
tive of a mismatch of the data should be tracked, and remediation
should be taken to address the issue. The project’s tracking system
should capture what changes were made as part of the remediation
effort, the team member who made the changes, the date when the
changes were made, and the reason why the changes were neces-
sary. Proper tracking of the details related to any changes in the
data set provides an explanation for why the data in a revised data
set differ from those the original data set. With each revision of the
data set, a new version is created and named, and older versions are
maintained for reference. Finally, a log can be maintained by the
project team that documents all changes and decisions regarding
the data.

ANALYSIS CONCERNS
Permanent data sets for specific analyses should be created only
when data are completely entered, cleaned, and frozen. It is often
tempting to create an “analysis” data set to begin analyzing the
results and to include all of the data – typically from multiple data
sets – in one analysis data set. While an analysis data set may make
it easier to run an analysis program, a concern is that the project
team might make corrections to the data or add new data to the
data sets without updating the analysis data set. The creation of
analysis data sets can therefore result in the analysis of data that do
not include all possible subjects or do not reflect corrections. We
recommend an alternative approach in which a single program is

used to represent all manipulations needed to create the analyzed
data; this program is then run each time an analysis is conducted.
The use of a single program to extract data, recode data, and delete
ineligible cases has several advantages over the use of an analysis
data set. First, any updates to the data sets will be maintained
in all analyses because the program is run using the most recent
version of the data set. Second, this approach will provide com-
plete documentation about all of the decisions made regarding
which subjects were included in the analyses, how the variables
were re-coded, and which summary variables were created.

DOCUMENTATION
The creation of comprehensive documentation for a project is
one of the most valuable roles that professional data management
provides for a research team. As noted in NIH and FDA guide-
lines (U. S. Food and Drug Administration, 2003; Coulehan and
Wells, 2005), professional data management should result in data
that can be traced from collection through analysis in a man-
ner in which all changes to the data and all decisions regarding
the data are apparent. We have been able to achieve data prove-
nance through rigorous documentation and the structured storage
approach discussed above. Documentation should be created to
describe each step of the research process, and the documentation
should be available in both electronic and paper forms. Decisions
regarding the management of data sets should be documented
electronically, both within the data sets and within separate files
maintained within the database. All variables should be labeled
in each data set in a systematic manner that conveys information
about each variable, even after data sets are merged. Codebooks or
annotation forms should be created to describe each study, to map
variable names onto the data that were collected, and to docu-
ment decisions made during data-keying and processing. We have
found that these codebooks are invaluable for providing quick
access to data collection forms and information about the instru-
ment, and they also facilitate the publication process. In addition
to our electronic documentation and codebooks, we include a
notebook or set of notebooks for each project, which includes the
research proposal, all versions of the data collection instruments,
scoring instructions, a codebook for each instrument or data set,
and paper copies of all communications, including error reports
and remediation efforts.

IDENTIFYING APPROACHES FOR CROSS-COLLABORATION
DATA INTEGRATION AND SHARING
The practical matter of integrating data from multiple laboratories
may seem trivial at first consideration, but in practice, integration
presents many challenges. The research practices adopted by a col-
laborative team can affect the quality of the data, the efficiency
at which the collaboration operates, and the ability to enforce
policies. For example, content management systems (CMS) are
often used to facilitate the uploading of data from laboratories,
but CMS typically do not have good capabilities for handling data
provenance in instances, for example, when a laboratory uploads
a new version of a data set. On a practical level, when the logistics
of a research project are poorly coordinated, the likelihood that
a laboratory continues to actively participate in a project declines
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as investigators become frustrated and focus their time on other
projects.

The approach often taken for the coordination and integration
of data is to pick a familiar, but not necessarily an ideal, technol-
ogy for data management and to refine it as needed. For instance,
many collaborations use an existing, web-based CMS such as MS
SharePoint or Joomla! because information technology (IT) spe-
cialists are often familiar with such tools. We advocate for an
engineered approach in which each laboratory’s needs for data
sharing and integration are ascertained and used to determine the
technical approaches. Table 1 lists the various factors that should
be considered in gathering technological requirements.

After the project team has carefully reviewed the factors listed
above, the team will be in a position to identify the best tech-
nical approaches to take to share and integrate data across the
collaborative team. We broadly classify the technical approaches
below.

SHARED SPACE
Perhaps the simplest approach is the use of a shared storage area
that is accessible by all members of the collaborative team. This
space can be a shared network folder on a file system, an ftp site,
a DropBox folder2, or even documents stored in Google Docs3.
This approach has the benefit of convenience for collaborators and
low maintenance costs. This approach has disadvantages, however,
in that it lacks good mechanisms for enforcing policy and secu-
rity concerns. This approach also provides limited support for the
actual integration of data sets or the automation of processes such
as quality assurance checks; often, this type of support is provided
through custom software or scripts.

CONTENT MANAGEMENT SYSTEMS
A CMS such as Microsoft SharePoint4, Joomla!5, or Drupal6 can be
configured easily by IT staff with minimal IT experience, especially
if one uses virtual appliances with the system pre-installed. The
CMS typically offer convenient and familiar interfaces for labora-
tories, particularly those with limited experience in collaborative
research. In general, the CMS are easy to customize, and junior IT
staff can usually customize a CMS; however, the customizations
can be unwieldy to maintain over time.

DIGITAL ARCHIVE
Digital archive systems such as the open source DSpace7 from MIT
are aimed at building collections of digital media. As such, these
systems often provide for many collaborative needs, including data
organization, data federation, metadata support, data provenance,
and data security. While digital archive software can be used for
research collaborations, support for the detection and tracking of
quality assurance issues and for the automated processing of sci-
entific data must be accomplished by an IT specialist with strong

2http://www.dropbox.com/
3http://docs. (google).com
4http://sharepoint.microsoft.com
5http://www.joomla.org/
6http://drupal.org/
7http://www.dspace.org/

programming skills. While configuring and maintaining the sys-
tem are not difficult, they require more time with a digital archive
system than with a shared space or a CMS.

VERTICAL DATA MANAGEMENT SYSTEMS
A number of vertical data management systems, including open
source versions, have been developed, and these are aimed at spe-
cific types of scientific data. For instance, the MIDAS (Kitware8)
and Xnat9 systems were developed for the management of neural
imaging data, whereas the MADAM system (TM410) was devel-
oped for the management of microarray data. The advantages of
these systems are that they are optimized for dealing with spe-
cific types of data, they can provide data visualization and analysis
capabilities, they use structured storage of the data (which facil-
itates queries), and they include quality checks on the data. The
big disadvantage of these systems in collaborative research is that
the data management core must set-up and run multiple software
systems, each with different approaches for handling issues related
to security, provenance, and metadata. Also, these systems rarely
facilitate the federation of data.

LIBRARY INFORMATION MANAGEMENT SYSTEMS
Library information management systems (LIMS) provide both
centralized and federated approaches to manage a broad range of
laboratory data such as biospecimen tracking and reagent training
within a single system. Commercially available LIMS include very
powerful capabilities for a range of applications, including data
integration, quality assurance tracking, data provenance, automa-
tion of workflows, and electronic notebooks. These systems are
very expensive, however, and they take time to customize, often
requiring consultations or contractual agreements with the ven-
dor. Unfortunately, there are very few open source LIMS, and the
ones that exist provide very few of the benefits that the commercial
versions do and are difficult to customize.

FEDERATED SYSTEMS
Federated data systems allow for the integration of data that are
located on different computer resources that are geographically
separated, without moving the data to a centralized location.
The open source Teiid system11 from the JBoss Community is
an exemplar of this type of technology. The Teiid system provides
feature-rich, cross-site, query, and security mechanisms with a rich
graphical user interface for designing virtual databases that pull
data from remote sites on-demand and for designing administra-
tive consoles for the management of the system. The system can
be extended by software developers to automate processes and to
provide useful add-ons such as integration into a CMS. The Teiid
system comes with multiple adaptors to read from databases, flat
files, MS Excel spreadsheets, and others. Effective use of a federated
system requires an IT specialist with programming experience. A
disadvantage of federated systems is that federation requires that
laboratories provide a mechanism to access the data on their sys-
tems, or they need to submit their data to an accessible location,

8http://www.kitware.com/products/midas.html
9http://www.xnat.org/
10http://www.irods.org/
11http://www.tm4.org/madam.html
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Table 1 | Factors to consider when developing the technical approach.

Factors Description

Personnel skills and resources Identify the IT staff and technical skills already in place at the receiving and distribution sites, and determine

if they are qualified to handle the planned approaches. In particular, consider if there are personnel available

with the appropriate skill sets required for all tasks.

Data retrieval/publishing mechanisms Identify the in-place (or planned) mechanisms for data access that will be used for distributing and retrieving

data from laboratories and other data sources.

Data issues Consider the types of data that are being transferred, the formats that the data will have, and the

transformations of the data that will be required.

Integration requirements Consider how the data will be integrated and where the integration will take place. For example, will the data

be integrated “on-demand” by users at their sites, or will they be pre-computed? Will laboratories need full

access to integrated data or subsets of data? What software will be used with the integrated data, and where

will that software reside? Should integrated data be treated as data managed by best practices, with auditing

and/or changes in the data?

Scale Consider the computational and storage requirements for the integrated data and for use of the data. If these

requirements are great, can the laboratories handle the requirement, or will they require additional disk space

or computational support?

Policies Consider the policies regarding access, sharing, and movement of the data for integration. Also, consider the

policies regarding the integrated data. What privacy and security mechanisms need to be put in place? Does

the integration of data change regulatory requirements? Are there differences in Institutional Review Board

policies between institutions?

Provenance Consider the requirements for tracking the integration of data and the use of the integrated data. What result

sets must be reproducible?

and some laboratories are hesitant to provide this or otherwise
incapable.

DISTRIBUTED DATA SYSTEMS
Distributed data systems share some capabilities with federated
systems; however, we distinguish them here by goal (and this
is an arguable distinction), in that federated systems are geared
toward a single, integrated view of distributed data (e.g., a vir-
tual database), whereas distributed systems are aimed at providing
common access to distributed data (e.g., a distributed file system
with data management capabilities built-in). A distributed sys-
tem, like the iRODS data grid12, provides a unified approach to
access data at different locations and in different storage formats,
including flat files or relational databases, with a distributed rule-
engine that allows the administrator to enforce data management
policies, including security, automation, and replication, across
the collaborative team. Distributed systems have the advantage
of providing centralized control while allowing data to remain
distributed. These approaches, however, typically require an IT
specialist with strong programming skills.

HYBRID SYSTEMS
Hybrid combinations of the approaches mentioned above are
worth consideration. For example, a federated system such as Teiid
that integrates data from vertical data management systems such
as MIDAS or MADAM can provide both vertical-oriented capabil-
ities with federation across data types and laboratories. Likewise,
a CMS on top of a datagrid such as iRODS (see text footnote 12)

12http://www.jboss.org/teiid

provides both familiar web-based tools with a robust system for
policy management. A disadvantage of hybrid systems is that there
is a myriad of possibilities that can be confusing to sort out; how-
ever, the choice of technology can be facilitated by determining
which of the above factors is important and how each factor can
be addressed.

ADDRESSING USAGE POLICIES, PRIVACY, AND SECURITY
In general, the management of data security and confidential-
ity issues are well known in the research community and are
not addressed in detail here. In a collaborative research environ-
ment, however, one has to deal with the added complexity that the
data coordinating center is responsible for enforcing usage poli-
cies and security and privacy concerns related to data originating
from multiple laboratories. Depending on the collaboration, this
responsibility may become quite complex. For instance, we have
been involved in collaborations in which data received from one
laboratory required deletion of the data by the data coordinating
center after 7 days and data received from another laboratory could
only be handled by IT staff that met certain background checks. In
isolation, such policies are not hard to deal with; with multiple lab-
oratories with changing and conflicting policies, a well-managed
process must be in place to ensure that policies are followed. On
the basis of our experience, we believe that this is best achieved
when the ability to enforce policies is embedded within the data
management technology.

iRODS (see text footnote 12)is an example of a best-of-breed
technology in this regard. iRODS allows for separate policies to
be implemented as rules and for rules to be applied separately to
any data resource within the data system. iRODS also includes
a rules engine that automates the execution of policy-governing
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rules that may have been generated from different groups, thereby
allowing laboratories and coordinating sites to generate rules inde-
pendently. A key point is that iRODS has the ability to execute
multiple applied rules, even when those rules have conflicting
impacts.

A second issue that we address has only recently received atten-
tion within the IT community; this is the concept of “data leakage.”
Data-leakage refers to the inappropriate transfer of sensitive data
out of a managed-data system. Commercial security vendors such
as Symantec,McAfee,and Trend Micro have been developing suites
of data-leakage protection technologies that audit and trap data
that are moved inappropriately from one computer to another,
whether this is done by file copy, email, IM chats, or other means.
These technologies are still maturing and are often costly; how-
ever, a data coordinating center should consider this technology as
part of its overall assessment of risk versus resource allocation. The
Renaissance Computing Institute, in collaboration with the North
Carolina Translational and Clinical Sciences Institute, has devel-
oped the concept of a “Secure Research Workspace” (Owens et al.,
2011) as a solution to the data-leakage problem. In the Secure
Research Workspace, a combination of computer virtualization
and data-leakage technologies are used to provide researchers with
an on-demand work environment with provisioned data that can-
not be transferred outside of the managed environment, but that
allows the researcher to import needed tools and export analysis
results as needed.

APPLICATION OF INTEGRATED DATA
The integration of different types of data such as fMRI, sound
recordings, and genomic data offers the potential for scientific dis-
covery; however, as noted in Searls (2005), the challenges involved
in the integration of different data sources go beyond the chal-
lenges involved in bringing the data together, but rather they may
involve the development of new methodologies. Data manage-
ment practices can and should enable such discovery, but the
practices depend greatly on the approaches taken by the collab-
orative research team. Meta-analysis, a statistical method used
to combine existing evidence (Hedges and Olkin, 1985), requires
the integration of results from data sets that measure the same
outcome variables. For instance, the meta-analysis of fMRI data
across research studies and laboratories can be performed with
voxel-based measurements, anatomical labels, or a combination
of laboratory results and coordinates with varying trade-offs
(Costafreda, 2009). Recently, these approaches have been applied
to the combination of neural imaging and genetics (Mier et al.,
2010; Thompson et al., 2010). From the perspective of best data
management practices, meta-analysis is similar to other types of
analyses; raw data (in this case drawn from published articles)
are processed to produce new data sets that are then analyzed
using standard programs. As such, the existing best practices –
reviewing risk, versioning data sets, and implementing tracking
processes – apply and should be used, particularly if the results are
likely to be published. For instance, in a meta-analysis of labeled
neuroanatomical regions from published fMRI studies, consistent
use of variable labels and terminology should be applied across
data sets and become part of the data provenance process to ensure
that the results are reproducible (Laird et al., 2005).

In contrast to meta-analysis, data exploration is geared at
generating new hypotheses or insights that are often not pub-
lished, but rather lead to the generation of new studies. Key
to exploration of different types of data is the generation of a
common reference against which the data can be understood.
For instance, the PubAnatomy system from Xuan et al. (2010)
provides an electronic brain atlas upon which other data such
as gene expression can be superimposed onto the anatomical
information. This type of system provides great flexibility. For
instance, a collaborative project on stress sensitivity might use
multiple paradigms to measure the anatomical correlates of stress
(e.g., genetic or immunohistological data derived from specific
brain regions) and behavioral measures of stress sensitivity (e.g.,
socialization behavior, physical challenges), and then the collabo-
rative team might use a data exploration system like PubAnatomy
to explore the union of the results. This approach, of course,
requires making decisions as to how to relate measurements
made using different paradigms, and these decisions should be
tracked to ensure the reproducibility of the results. Data explo-
ration is much simpler when best data management practices have
ensured that the annotation among data sets is consistent, that the
data are of high quality, and that the data can be located and
retrieved easily.

DATA INTEGRATION AND VERY LARGE DATA SETS
In recent years, we have seen an explosion in the amount of scien-
tific data that is being generated, and more specifically, there has
been a dramatic increase in the size of data sets that researchers
and data coordinating sites have to work with. For example, for
one of our NIH-funded projects, we are sequencing whole human
genomes to identify linkages between genomic variants and cancer.
Our team receives data sets from sequencing facilities that contain
approximately 100–400 GB of data per sequenced subject; thus, we
require 10–40 TB of disk space for every 100 subjects just to store
the data. Another 10 TB of disk space is required to process the
data to determine variants in the DNAs and several Terabytes of
disk space are required to construct a database for analysis. Very
large data sets often require the development of new approaches
for the storage, processing, and querying of data. Presently, a Ter-
abye of high-quality data storage costs $1,000 per Terabyte for
3–4 years of support. Therefore, collaborative teams must plan for
what data is going to be stored, the storage technologies that will
be used to store the data (e.g., tape, slow disk drives, fast disk
drives, a combination), and the software approaches that will be
used to organize the data. Planning for data store is imperative to
efficiently allocate the resources that are available to the research
collaboration and the ability of the collaboration to effectively use
the data.

An in-depth review of data storage approaches is beyond the
scope of this paper; however, the impact of very large data sets
on data integration merits attention. Typically, data are integrated
either with a relational database management system (RDBMS)
or a computer program that integrates individual data sets in the
process of analysis. Both of these approaches can scale poorly
with a large number of large data sets due to the number of
read and write computer operations that are required to process
the data. The scaling problem has led to the development of
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No-SQL database technologies, initially formulated in Google
Inc.’s BigTable technology (Chang et al., 2006), that are designed
to provide high scalability for processing data sets within the
Terabyte to Petabyte scale. While commercial parallel RDBMS
systems can arguably deal with data of this size, the commer-
cial systems are often too costly for use in academic projects
(see Stonebraker, 2010 for a discussion of the pros and cons of
No-SQL technologies). Several open source No-SQL technolo-
gies, such as the Apache Hadoop/HBase system13, can address
the scaling problem and provide for data integration with very
large data sets. The SeqWare system (O’Connor et al., 2011)
uses No-SQL technology and can be used effectively to man-
age the large data sets associated with next-generation genomic
sequencing technologies and other technology that generate very
large data sets. The authors are currently investigating the inte-
gration of SeqWare with a traditional RDBMS system to deter-
mine whether this approach provide the flexibility and security
offered by RDBMS with the scaling offered by No-SQL tech-
nology. A primary disadvantage of using No-SQL approaches,
despite its growing adoption by many businesses, is that there
is a lack of IT professionals who are adequately trained to use
these systems.

13http://hadoop.apache.org

CONCLUSION
Collaborative research projects face the double challenge of ensur-
ing the integrity of research data and the orchestration of data
management across multiple laboratories. Sound data manage-
ment practices are needed to ensure success in addressing these
challenges. While high-quality practices require that research
staff receive specific training in best practices and sufficient
time to implement those practices, the benefits are broad. The
practices and technologies reviewed here can help to maintain
data integrity and provide comprehensive documentation on
how the project was implemented, thereby facilitating the inte-
gration of data and enabling cross-collaborative discoveries to
be made.

ACKNOWLEDGMENTS
The work described in this manuscript was supported in part
by Award Number P01DA022446 (JMJ) from the National Insti-
tute on Drug Abuse. The content is solely the responsibility of
the authors and does not necessarily represent the official views
of the National Institute on Drug Abuse or the National Insti-
tutes of Health. The work was also supported by internal funds
from the Renaissance Computing Institute. The authors would like
to acknowledge Dr. Karamarie Fecho of Copperline Professional
Solutions, LLC, for the review and editing of this manuscript.
NICHD P30 HD03110 awarded to J. Piven.

REFERENCES
Bennett, L. M., Gadlin, H., and

Levine-Finley, S. (2010). Collabora-
tion and Team Science: A Field Guide.
Bethesda, MD: National Institutes of
Health.

Burchinal, M., and Neebe, E. (2006).
Data management: recommended
practices. Monogr. Soc. Res. Child
Dev. 71, 9–23.

Carson, P., and Dent, N. (2007). Good
Clinical, Laboratory and Manufac-
turing Practices: Techniques for the
QA Professional. Cambridge, UK:
Royal Society of Chemistry.

Chang, F., Dean, J., Ghemawat, S.,
Hsieh, W. C., Wallach, D. A., Bur-
rows, M., Chandra, T., Fikes, A.,
and Gruber, R. E. (2006). “Bigtable:
a distributed storage system for
structured data,” in OSDI’06: Sev-
enth Symposium on Operating Sys-
tem Design and Implementation,
Seattle, WA.

Costafreda, S. G. (2009). Pooling
fMRI data: meta-analysis, mega-
analysis and multi-center stud-
ies. Front. Neuroinform. 3:33. doi:
10.3389/neuro.11.033.2009

Coulehan, M. B., and Wells, J. F.
(2005). Guidelines for Responsi-
ble Data Management in Scien-
tific Research. Bethesda, MD: U.S.
Department of Health and Human
Services.

Hedges, L. B., and Olkin, I. (1985). Sta-
tistical Methods for Meta-Analysis.
Stanford, CA: Academic Press.

Ishikawa, K., and Loftus, J. H. (1990).
Introduction to Quality Control.
Tokyo: 3A Corporation.Bennett,
448.

Laird, A. R., McMillan, K. M., Lancaster,
J. L., Kochunov, P., Turkeltaub, P. E.,
Pardo, J. V., and Fox, P. T. (2005).
A comparison of label-based review
and ALE meta analysis in the stroop
task. Hum. Brain Mapp. 25, 6–21.

Mier, D., Kirsch, P., and Meyer-
Lindenberg, A. (2010). Neural sub-
strates of pleiotropic action of
genetic variation in COMT: a
meta-analysis. Mol. Psychiatry 15,
918–927.

O’Connor, B. D., Merriman, B., and
Nelson, S. F. (2011). SeqWare
Query Engine: storing and search-
ing sequence data in the cloud. BMC
Bioinformatics 11(Suppl. 12), S2.
doi: 10.1186/1471-2105-11-S12-S2

Owens, P., Shoffner, M., Wang, X.,
Schmitt, C. P., Lamm, B., and
Mustafa, J. (2011). Secure Med-
ical Workspace Prototype. Technical
Report TR-11-01. Chapel Hill, NC:
RENCI.

Rajendra, B., and Frew, J. (2005). Lin-
eage retrieval for scientific data pro-
cessing: a survey. ACM Comput.
Surv. 37, 1–28.

Searls, D. B. (2005). Data integration:
challenges for drug discovery. Nat.
Rev. Drug Discov. 4, 45–58.

Stamatis, D. H. (2004). Six Sigma Fun-
damentals: A Complete Guide to the
System, Methods, and Tools. New
York: Productivity Press.

Stokols, D., Hall, K. L., Taylor, B. K., and
Moser, R. P. (2008). The science of
team science: overview of the field
and introduction to the supplement.
Am. J. Prevent. Med. 35, S77–S89.

Stonebraker, M. (2010). SQL databases
v. NoSQL databases. Comm. ACM
53, 4.

Thompson, P. M., Martin, N. G.,
and Wright, M. J. (2010). Imaging
genomics. Curr. Opin. Neurol. 23,
368–373.

U. S. Food and Drug Administra-
tion. (2003). Storage and Retrieval of
Records and Data. Part 58: Good Lab-
oratory Practice for Nonclinical Lab-
oratory Studies. Subpart J: Records
and Report. Code of Federal Regula-
tions. Title 21, Section 58.190. Silver
Spring, MD: U.S. Food and Drug
Administration.

Wuchty, S., Jones, B. F., and Uzzi, B.
(2007). The increasing dominance
of teams in production of knowl-
edge. Science 316, 1036–1039.

Xuan, W., Dai, M., Buckner, J., Mirel,
B., Song, J., Athey, B., Watson, S. J.,
and Meng, F. (2010). Cross-domain

neurobiology data integration and
exploration. BMC Genomics 1, 11.
doi: 10.1186/1471-2164-11-S3-S6

Yogesh, L., Simmhan, Y. L., Plale,
B., and Gannon, D. (2006). A
Survey of Data Provenance Tech-
niques. Technical Report IUB-CS-
TR61. Bloomington, IN: Depart-
ment of Computer Science, Indiana
University.

Conflict of Interest Statement: The
authors declare that the research was
conducted in the absence of any com-
mercial or financial relationships that
could be construed as a potential con-
flict of interest.

Received: 20 February 2011; accepted: 11
July 2011; published online: 22 July 2011.
Citation: Schmitt CP and Burchinal M
(2011) Data management practices for
collaborative research. Front. Psychiatry
2:47. doi: 10.3389/fpsyt.2011.00047
This article was submitted to Frontiers in
Child and Neurodevelopmental Psychia-
try, a specialty of Frontiers in Psychiatry.
Copyright © 2011 Schmitt and Burchi-
nal. This is an open-access article subject
to a non-exclusive license between the
authors and Frontiers Media SA, which
permits use, distribution and reproduc-
tion in other forums, provided the original
authors and source are credited and other
Frontiers conditions are complied with.

Frontiers in Psychiatry | Child and Neurodevelopmental Psychiatry July 2011 | Volume 2 | Article 47 | 8

http://dx.doi.org/10.3389/fpsyt.2011.00047
http://www.frontiersin.org/Psychiatry
http://www.frontiersin.org/Child_and_Neurodevelopmental_Psychiatry
http://www.frontiersin.org/Child_and_Neurodevelopmental_Psychiatry/archive

	Data management practices for collaborative research
	Acknowledgments
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages false
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages false
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages false
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


