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N -[(4-trifluoromethyl)benzyl]4-methoxybutyramide (GET73) is a newly synthesized com-
pound structurally related to the clinically used, alcohol-substituting agent, gamma-
hydroxybutyric acid (GHB). The present study was designed to assess whether GET73
may share with GHB the capacity to reduce alcohol intake in rats. Additionally, the effect
of treatment with GET73 on anxiety-related behaviors and cognitive tasks in rats was
investigated. A series of in vitro binding assays investigated the capacity of GET73 to
bind to the GHB binding site and multiple other receptors. GET73 (10−9–10−3 M) failed
to inhibit [3H]GHB binding at both high- and low-affinity GHB recognition sites in rat corti-
cal membranes. GET73 displayed minimal, if any, binding at dopamine, serotonin, GABA,
and glutamate receptors in membranes from different rat brain areas. Acute treatment
with low-to-moderate, non-sedative doses of GET73 (5–50 mg/kg, i.g. or i.p.) (a) reduced
alcohol intake and suppressed “alcohol deprivation effect” (a model of alcohol relapse)
in selectively bred, Sardinian alcohol-preferring (sP) rats, (b) exerted anxiolytic effects in
Sprague-Dawley (SD) and sP rats exposed to the Elevated Plus Maze test, and (c) tended
to induce promnestic effects in SD rats exposed to a modified water version of the Hebb–
Williams maze test. Although the mechanism of GET73 action is currently unknown, the
results of the present study suggest that GET73 has a multifaceted pharmacological profile,
including the capacity to reduce alcohol drinking and anxiety-related behaviors in rats.

Keywords: GET73, γ-hydroxybutyric acid, alcohol intake, alcohol deprivation effect, anxiety-related behaviors,
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INTRODUCTION
In spite of the increasing emphasis placed on alcohol use disorders
(AUDs) worldwide, to date only a few therapeutic options (namely
disulfiram, naltrexone, and acamprosate) have been approved
and are currently available for clinical use. Moreover, the overall
efficacy of these compounds is often viewed as not being com-
pletely satisfactory (see Krishnan-Sarin et al., 2008; O’Malley and
O’Connor, 2011), thus underlining the need for novel, and poten-
tially effective, pharmacological agents. Accordingly, in recent
years research studies have focused on investigating multiple alter-
native molecular targets potentially involved in AUDs, and testing
drugs capable of modulating these neural systems and affecting
different alcohol-related behaviors.

The outcome of these studies has resulted in the development
of gamma-hydroxybutyric acid (GHB) for use in the treatment
of alcohol dependence. GHB is an endogenous constituent of the
mammalian brain, with a neurotransmitter and/or neuromod-
ulator profile (see Snead and Gibson, 2005; Carter et al., 2009;
Agabio et al., 2010; Andresen et al., 2011). A series of experimental
data have provided confirmation of its capacity to reduce differ-
ent alcohol-related behaviors, including alcohol intake under the
homecage two-bottle choice and oral alcohol self-administration

under standard operant procedures, in selectively bred, Sardinian
alcohol-preferring (sP; Agabio et al., 1998; Maccioni et al., 2008),
and Indiana alcohol-preferring (P; June et al., 1995) rats. Open
and double-blind clinical trials, as well as several case reports,
have demonstrated the capacity of GHB to (a) reduce alcohol
craving and consumption, (b) promote and maintain abstinence
from alcohol, and (c) ameliorate signs and symptoms of alcohol
withdrawal syndrome in alcoholics (e.g., Gallimberti et al., 1989,
1992; Addolorato et al., 1996, 1998a,b, 1999; Moncini et al., 2000;
Glisson and Norton, 2002; Nimmerrichter et al., 2002; for review,
see Agabio and Gessa, 2002; Addolorato et al., 2009; Caputo et al.,
2010; Chick and Nutt, 2012). These data have led to GHB obtain-
ing approval as a pharmacotherapy for alcohol dependence in Italy
and other European Countries.

The present paper is intended to illustrate the anti-alcohol
and anxiolytic properties of N -[(4-trifluoromethyl)benzyl]4-
methoxybutyramide (GET73), a newly synthesized compound
structurally related to GHB (Figure 1). GET73 was initially
designed as a GHB derivative, thought to possess a more favorable
pharmacodynamic and pharmacokinetic profile. The pharmaco-
logical characterization of GET73 conducted in the present study
included: (a) binding assays to evaluate the capacity of GET73 to
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FIGURE 1 | Molecular structure of GHB and GET73.

bind to the GHB binding site (Experiment 1) as well as other recep-
tor systems (Experiment 2); (b) evaluation of GET73 effects on
spontaneous locomotor activity (Experiment 3), cognitive func-
tions (Experiments 4–6), and anxiety-related behaviors (Exper-
iment 7) in Sprague-Dawley (SD) and sP rats; (c) investigation
on the capacity of GET73 to affect alcohol drinking behavior and
relapse-like drinking in sP rats (Experiments 8 and 9).

MATERIALS AND METHODS
All experimental procedures employed in the present study were
conducted in accordance with the European Community ethi-
cal regulations on the care of animal for scientific research (CEE
86/609).

ANIMALS
Experiments 1–7a employed male SD rats (Harlan, San Pietro al
Natisone, Italy), weighing 200–300 g. Experiments 7b, 8, and 9
employed male sP rats, 75 days old and weighing 300–350 g at
the start of each experiment. A total of 248 SD and 296 sP rats
were used. Rats of the sP line belonged to generations 60–62 and
65 in Experiments 8 and 9, and generation 73 in Experiment 7b.
Experiments with SD and sP rats were conducted in Sanremo
and Cagliari, respectively. Each experiment employed independent
groups of rats.

Animal facilities were kept under standard environmental
conditions (22 ± 2˚C; 55 ± 10% relative humidity) and reversed
light/dark cycle (lights on at 21:00). Rats were housed either four
per cage (Experiments 1–7) or individually (Experiments 8 and
9) in standard plastic cages with wood chip bedding. Standard rat
chow (Mucedola, Settimo Milanese, Italy) and water were always
available in the homecage, except as noted below. Over the 2 weeks
preceding the start of each experiment, rats underwent daily 10-
min sessions during which they were extensively habituated to
handling and drug administration procedures.

DRUGS
In in vivo experiments, GET73 (batch M50060010; Dipharma
Francis, Caronno Pertusella, Italy), was suspended in 0.5% car-
boxymethyl cellulose and administered either i.p. (injection vol-
ume: 2 ml/kg) or i.g. (by metal gavage; infusion volume: 4 ml/kg).
Time of GET73 treatment was chosen on the basis of previous
data in SD rats, suggesting that peak plasma concentrations are
achieved 30 min after both intraperitoneal and oral administra-
tion. Chemicals, radioligands, and cold ligands used for binding
studies were obtained from commercial sources.

EXPERIMENTAL PROCEDURES
Testing was undertaken according to standard operating proto-
cols by trained personnel blinded to the treatment conditions.
All behavioral procedures were conducted during the dark phase
of the light/dark cycle, in quiet, dimly lit rooms, adjacent to the
housing room.

Experiment 1: [3H]GHB binding assay
The GHB binding assay was carried out on rat cerebral cortex.
The tissue was processed as previously described (Castelli et al.,
2003). Briefly, rats were killed by decapitation, their brains rapidly
removed, and cerebral cortices dissected on ice. The tissue was
homogenized in 20 volumes (v/w) of ice-cold 0.32 M sucrose,
containing 1 mM EDTA, using a homogenizer system (Glass-Col,
Terre Haute, IN, USA). The homogenate was centrifuged at 1,000 g
for 10 min and the supernatant collected and recentrifuged at
20,000 g for 20 min. The pellet was resuspended in 20 volumes
(v/w) of ice-cold water, homogenized using a Polytron homog-
enizer, and centrifuged at 8,000 g for 20 min. The supernatant,
together with the buffy layer on the pellet, was then centrifuged
at 45,000 g for 20 min. The resulting pellet was resuspended in
ice-cold distilled water and once more centrifuged at 45,000 g
for 30 min. Homogenization and centrifugation in water was per-
formed to lyse the tissue and wash out endogenous GHB. The final
pellet was frozen and stored at −80˚C for at least 18 h before bind-
ing assay. Membrane pellets were allowed to thaw at 4˚C before
resuspension in 20 volumes (v/w) of 50 mM KH2PO4 buffer (pH
6.5) containing 1 mM EDTA. The suspension was incubated for
20 min at 20˚C before centrifugation at 7,000 g for 10 min. The
washing step was repeated three more times, allowing 15 min incu-
bation with each addition of the same buffer to further remove the
residual endogenous ligand GHB. The final pellet was then resus-
pended in 50 mM KH2PO4, pH 6.5, to a final concentration of
200–300 μg of membrane protein.

[3H]GHB binding assay was performed in triplicate in a volume
of 0.6 ml at 4˚C for 30 min. Non-specific binding was estimated
in the presence of 1 mM unlabeled GHB. Free ligand was sepa-
rated from bound ligand by rapid filtration through Whatman
GF/B glass filters using a Brandel 24-sample harvester (Brandel,
Gaithersburg, MD, USA). Filters were then rinsed twice with ice-
cold 50 mM KH2PO4 buffer (pH 6.5) and filter-bound radioactiv-
ity was counted in a liquid scintillation counter (Packard Tri-Carb
2900; Packard, Meridien, CT, USA), using 3 ml of scintillation fluid
(Packard Ultima Gold MV).
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[3H]GHB displacement curves were carried out using serial
dilutions ranging from 10−9 to 10−3 M of the unlabeled com-
pound and [3H]GHB (60 nM). Independent experiments were
repeated on membrane preparations from at least three different
brains.

The Bradford protein assay (Bradford, 1976) was used for pro-
tein determination using bovine serum albumin as a standard
according to the protocol of the supplier (Bio-Rad, Milan, Italy).

The calculation of IC50 (concentration which inhibits 50% of
specific radioligand binding) was performed by non-linear curve
fitting of the concentration–effect curves using GraphPad Prism
Program (San Diego, CA, USA).

Experiment 2: other binding assays
This experiment tested GET73 affinity for the following targets:
dopamine D1, D2, and D3 receptors, serotonin 5-HT1, 5-HT2, and
5-HT3 receptors, GABAA and GABAB receptors, benzodiazepine
binding site, chloride channel, ionotropic glutamate [α-amino-3-
hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), N -methyl-
d-aspartate (NMDA), and kainate] receptors, dopamine, and sero-
tonin reuptake sites. All methodological details and references are
reported in Table 1.

Rats were killed by decapitation, their brains rapidly removed,
and areas dissected on ice. Brain tissue was sonicated in a Polytron
PT 10 microhomogenizer (Kinematica, Littau, Switzerland) in 25–
50 volumes (v/w) of the appropriate buffer (50 mM Tris–HCl, pH
7.4–7.7 or 10–50 mM Na/K phosphate, pH 7.4) complemented,
when necessary, with the suitable ions. The homogenate was cen-
trifuged three times at 50,000 g for 10 min at 4˚C, with resuspen-
sion of the intermediate pellet. The final pellet was resuspended
(crude membrane synaptosomal preparation) in 50–100 volumes
(v/w) of the cold incubation buffer.

GET73 or reference compounds, dissolved and diluted in incu-
bation buffer (100–200 μl) and 500–1,500 μl of radioligand solu-
tion, were put in 10 ml polypropylene tubes. Finally, receptor
preparation (500–1,500 μl) was added, the incubation mixture
was adjusted to the appropriate final volume (1–2 ml) by addition
of incubation buffer and the tubes were put into the incubation
bath (see Table 1). The incubation was stopped and the mem-
brane bound radioligand was separated from the free fraction by
addition of 5 ml of cold buffer and rapid filtration through glass
fiber filters (GF/A or/B or/C) using a Brandel harvester (Gaithers-
burg, MD, USA). After 3 ml × 5 ml cold buffer washings, disk filters
were put into plastic vials containing 10 ml Biofluor and radioac-
tivity in the filters was counted by liquid scintillation spectroscopy
(Packard Tri-Carb 2000 CA, counting efficiency about 55–60%).

Binding assays were performed in triplicate and GET73 was
evaluated at 10−4, 10−5, and 10−6 M.

IC50 values of known reference drugs run in parallel to GET73
were calculated with the “ALLFIT” program. The comparison of
IC50 values with the historical data base of the lab served as quality
control of binding data.

Experiment 3: spontaneous motor activity
Four custom-made gray plastic test cages [57 cm × 27 cm × 30(h) cm]
were used. Rats were not familiar to the test cage before testing.
Each rat was placed in the test cage and its horizontal locomotor
activity was recorded by a computer-controlled, digital camera;
the computer was equipped with Smart V2.0 software (Panlab,
Cornellà, Spain) for tracking analysis. The measured variable was
the distance traveled (expressed in centimeter). The test cage was
thoroughly cleaned after each trial.

Rats were fasted 15 h before GET73 administration. Rats were
divided into four groups (n = 8) and treated acutely and i.g. with

Table 1 | Assay conditions for radioligand binding experiments.

Receptor/binding site Receptor source [Radioligand] Non-specific binding

in the presence of

Incubation time

and temperature

Reference

Dopamine D1 Rat striatum 0.35 nM, [3H]SCH23390 3 μM, cis-flupenthixol 20 min, 37˚C Billard et al. (1984)

Dopamine D2 Rat striatum 0.15 nM, [3H]spiperone 3 μM, (+)butaclamol 15 min, 37˚C Fields et al. (1977)

Dopamine D3 Rat olfactory tubercles 0.70 nM, [3H]7-OHDPAT 1 μM, dopamine 60 min, 25˚C Lévesque et al. (1992)

Dopamine uptake site Rat striatum 2.0 nM, [3H]WIN35,428 100 μM, cocaine 30 min, 4˚C Valchar and Hanbauer (1993)

Serotonin 5-HT1 Rat cortex 1.8 nM, [3H]-5HT 5 μM, 5-HT 20 min, 37˚C Bennet and Snyder (1976)

Serotonin 5-HT2 Rat prefrontal cortex 0.6 nM, [3H]ketanserin 3.6 μM, metergoline 20 min, 37˚C Leysen et al. (1981)

Serotonin 5-HT3 Rat entorhinal cortex 0.2 nM, [3H]GR65630 72 μM, quipazine 30 min, 37˚C Kilpatrick et al. (1987)

Serotonin uptake site Rat forebrain 0.04 nM, [3H]paroxetine 100 μM, 5-HT 60 min, 22˚C Marcusson et al. (1988)

Benzodiazepines Rat forebrain 1 nM, [3H]RO15-1788 10 μM, diazepam 90 min, melting ice Chiu and Rosemberg (1983)

GABAA Rat cortex and cere-

bellum

2.20 nM, [3H]muscimol 20 μM, GABA 30 min, 4˚C Yoneda and Kuriyama (1980)

GABAB Rat cortex 10 nM, [3H]GABA 100 μM, (−)baclofen 10 min, 25˚C Enna and Snyder (1977), Her-

schel and Baldessarini (1979)

Chlorine channel Rat whole brain 0.11 nM, [35S]TBPS 100 μM, picrotoxinin 120 min, 25˚C Corda et al. (1993)

AMPA Rat cerebral cortex 8 nM, [3H]AMPA 1 mM, l-glutamate 60 min, 4˚C Murphy et al. (1987)

NMDA Rat cerebral cortex 5 nM, [3H]CGP 39653 100 μM, l-glutamate 60 min, 4˚C Sills et al. (1991)

Kainate Rat cerebral cortex 5 nM, [3H]kainic acid 1 mM, l-glutamate 60 min, 4˚C Monaghan and Cotman

(1982)

GABA, γ-aminobutyric acid; TBPS, t-butylbicyclophosphorothionate; AMPA, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid; NMDA, N-methyl-d-aspartate.
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0, 5, 50, and 200 mg/kg GET73, 30 min before exposure to the test
cage. Locomotor activity was recorded for 30 consecutive min in
six 5-min bins.

Experiment 4: passive avoidance
Four identical two-way shuttle boxes [Automatic Reflex Con-
ditioner; Ugo Basile, Comerio, Italy; 55 cm × 33 cm × 33(h) cm]
were used. Each box was divided into two equally sized compart-
ments (one illuminated and one dark) and connected by a vertical
sliding door. The grid floor consisted of forty 3-mm diameter,
stainless-steel rods spaced 12 mm apart, through which a scram-
bled foot-shock was delivered by a programming-recording unit
(Ugo Basile, Comerio, Italy).

The procedure consisted of a training and a test session. In
the training session the rat was gently placed in the illuminated
compartment and allowed to freely explore both compartments.
Once the rat entered the dark compartment, the sliding door was
closed and a 0.5 mA foot-shock was delivered for 2 s. Rats not
entering the dark compartment within 120 s were excluded. After
foot-shock delivery, the rat was immediately removed from the box
and returned to its homecage. The test session was carried out 24 h
later. The sliding door was kept open and no foot-shock was deliv-
ered. Latency of entry into the dark compartment was recorded.
If a rat did not enter the dark compartment within 180 s, it was
assigned the latency value of 180.

Three independent experiments were conducted. In each exper-
iment, rats were divided into four groups (n = 9–10). GET73 was
administered acutely and i.p. at the doses of 0, 5, 10, and 25 mg/kg,
30 min before the training session (Experiment 4a), immediately
after the training session (Experiment 4b), or 30 min before the
test session (Experiment 4c).

Experiment 5: active avoidance
The four shuttle boxes previously described (see Experiment 4)
were used. Each box was equipped with white lamps and housed
in a ventilated isolation cubicle [70 cm × 45 cm × 50(h) cm] for
sound attenuation.

The Active Avoidance paradigm was carried out over two con-
secutive days. On day 1 (habituation session), each rat was placed
in the box and allowed to freely explore both compartments for
50 min. This initial session was carried out to allow rats to fully
explore the box and minimize novelty-associated stress in the test
session. The number of spontaneous crossings between the two
compartments was recorded by the programming-recording unit.
Test session (day 2) consisted of 100 avoidance trials; each trial con-
sisted of a 12-s lights on of the white light (conditioned stimulus,
CS) and a 2-s, 0.5-mA foot-shock delivery (unconditioned stim-
ulus, US). US was delivered 10 s after onset of CS presentation.
The inter-trial interval was randomly variable (range: 25–45 s).
Rat crossing had two consequences on US: (a) complete preven-
tion, if crossing occurred within 10 s from onset of CS (avoid-
ance); (b) termination, if crossing occurred once US had already
been delivered (escape). If a rat failed to shuttle, the response
was recorded as escape failure. Each session lasted approximately
50 min.

On day 2, rats were divided into four groups (n = 8), matched
for body weight and number of crossings on day 1. GET73 was

administered acutely and i.p. at the doses of 0, 5, 10, and 25 mg/kg,
30 min before the test.

Experiment 6: water maze
The effect of GET73 on spatial memory was explored using a
modified water version of the Hebb–Williams maze (Hebb and
Williams, 1946; Kobayashi et al., 2002). In this spatial learning
task, rats are required to learn the location of an exit from a water
pool, with a fixed configuration of inner barriers, across a series
of daily sessions. The latency to reach the exit and the number of
errors made during the acquisition are taken as indexes of learn-
ing. Moreover, this procedure allows to assess working-memory
(WM) and reference-memory (RM) capacities. Trial-specific WM
allows the animal to recall zones entered previously on the current
trial and therefore avoid re-entries; RM refers to stored repre-
sentations and rules that are useful for all trials (Olton et al.,
1979; Eichenbaum, 2001). Two custom-made, gray plastic boxes
[90 cm × 54 cm × 40(h) cm], filled with warm water (25˚C) up to
the height of 20 cm, were used. A series of inner barriers were
arranged to create the maze illustrated in Figure 2, with an entry
zone (Figure 2A), a series of blind alleys (Figures 2A–E, error
zones), and an exit metal grid (Figure 2F), the final portion
of which was above the water level. Multiple intra-maze (e.g.,
black/white stripes on the wall of the exit zone) and extra-maze
(e.g., lab benches and shelves) cues facilitated acquisition of the
spatial map.

Each rat underwent five daily sessions (Monday to Friday).
Specifically, the rat was gently placed in the entry zone and allowed
to freely swim with a cut-off time of 5 min. In the first session, if the
rat failed to reach the exit zone within 5 min, it was gently guided
to the exit zone. After each session, rats were dried with paper
towels and exposed to a heater before returning to the homecage.

In each session, measured variables were: (a) latency (in sec-
ond) to reach the exit zone; (b) number of alley errors (i.e.,
entries into the blind alleys); (c) number of swimming reversals
(defined as complete U-turns). Additionally, number of working-
memory errors (i.e., re-entries in blind alleys already visited in the

FIGURE 2 |The water maze apparatus and its different zones, coded as

follows: (A) entry zone; (A–E) blind alleys (error zones); (F) exit zone.
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on-going session) and number of reference-memory errors (i.e.,
re-entries in blind alleys visited in the very previous session) were
recorded. Tracking analysis [performed by computer-controlled,
digital camera, and Smart V2.0 software (see above)] provided
measures of distance traveled (in centimeter) and swimming speed
(in centimeter per second).

Rats were divided into four groups (n = 10), matched for body
weight. GET73 was administered i.p. at the doses of 0, 5, 10, and
50 mg/kg, 30 min before each daily session.

Experiment 7: elevated plus maze
The elevated plus maze (EPM) is one of the most widely used
task to assess anxiety-related behaviors in rodents. This procedure
involves stimuli that are ethologically relevant to rats and mice,
being based on the spontaneous aversion of rodents for open,
unprotected environments and their preference for sheltered, safe
spaces (see Hogg, 1996; Rodgers et al., 1997). Specifically, the EPM
test measures the conflict of rats and mice between the propen-
sity to explore the open arms (OAs) of the maze and to stay in its
closed arms (CAs). The validity of the EPM procedure has been
further improved by addition of measurement of risk-assessment
responses (see Hogg, 1996; Rodgers et al., 1997). The EPM appa-
ratus (Med Associates, St. Albans, VT, USA) was made of black
plexiglas and consisted of four arms [12(w) cm × 60(l) cm] posi-
tioned to form a plus sign. Two opposite facing arms had 50(h)-cm
walls and open roof (CAs), whereas the other two opposite fac-
ing arms had no walls (OAs), unless a 0.5(h)-cm border. The
arms were connected by a 12 cm × 12 cm central square (CS). The
entire maze was elevated 50 cm above the floor. A custom-made,
computer-controlled, video-tracking system was used to record
rat behavior.

At the start of the EPM test, each rat was placed on one of the
OAs facing the CS. At the end of each test, the maze was cleaned
thoroughly. During the 5-min test, the following variables were
recorded: (a) number of entries into CAs (ECAs); (b) number of
entries into OAs (expressed as percent of total number of entries
into arms; %EOAs); (c) time spent in OAs (expressed as percent of
total time spent in arms; %TOAs); (d) total number of stretched
attend postures (SAPs; defined as the rat stretching to its full length
with the forepaws, keeping the hindpaws in the same place, and
then resuming the initial position); (e) number of protected SAPs
(defined as those SAPs occurring in CAs); (f) number of unpro-
tected SAPs (defined as those SAPs occurring in OAs); (g) total
number of head dippings (HDs; defined as moving the head below
the level of the maze floor); (h) number of protected HDs (defined
as those HDs occurring in CAs); (i) number of unprotected HDs
(defined as those HDs occurring in OAs); (l) number of end-arm
explorations in OAs (defined as the rat reaching the last 10-cm
portion of OA). Entry into a given arm was scored once the rat
had all four paws in that arm. Number of ECAs was recorded as
measure of locomotor activity; %EOAs and %TOAs were recorded
as measure of anxiety-related behaviors; SAPs, HDs, and end-arm
explorations in OAs were recorded as measure of risk assessment.

Two independent experiments were conducted, one testing SD
rats (Experiment 7a) and one testing sP rats (Experiment 7b). In
both experiments, rats were fasted 15 h before GET73 administra-
tion. In Experiment 7a, on the test day, rats were divided into five

groups (n = 4–7), matched for body weight. GET73 was admin-
istered acutely and i.g. at the doses of 0, 5, 10, 25, and 50 mg/kg,
30 min before rat exposure to the EPM. In Experiment 7b, on the
test day, rats were divided into four groups (n = 12–14), matched
for body weight. GET73 was administered acutely and i.g. at the
doses of 0, 10, 25, and 50 mg/kg, 30 min before rat exposure to the
EPM. Rats were alcohol-naive.

Experiment 8: maintenance of alcohol intake
Rats of the sP line were exposed to the homecage, two-bottle choice
regimen between alcohol (10% v/v, in water) and water, with
unlimited access for 24 h/day, for eight consecutive weeks before
the start of the experiment with GET73; this procedure resulted
in the production of “alcohol-experienced” rats with steady daily
intakes of alcohol. Bottles were refilled every day with fresh solu-
tion and their left–right positions interchanged daily to avoid
development of position preference. Daily alcohol, water, and food
intake was monitored by weighing the bottles and food pellets (0.1-
g accuracy) every day immediately before the start of the dark
phase.

On the test day, rats were divided into four groups (n = 10),
matched for body weight as well as alcohol, water, and food
intake during the last 7 days preceding the experiment. GET73
was administered acutely and i.g. at the doses of 0, 10, 25, and
50 mg/kg, 30 min before lights off. Alcohol, water, and food intake
was monitored by weighing the bottles and food pellets 60, 120,
180, and 240 min after lights off.

Experiment 9: alcohol deprivation effect
The effect of GET73 on relapse-like drinking was investigated
using the “alcohol deprivation effect” (ADE) test. ADE is defined
as the temporary increase in alcohol intake occurring, in differ-
ent animal species, after a period of abstinence from alcohol; this
increase in alcohol intake has been validated as an animal model
of relapse drinking episodes and loss of control over alcohol in
human alcoholics (see Spanagel, 2005). Rats of the sP line consti-
tute a proper animal model for this investigation, as they display a
pronounced ADE during the first hour of re-access to alcohol after
a period of deprivation from alcohol (see Colombo et al., 2006).

Three independent experiments, each testing a different GET73
dose-range, were conducted. Each experiment started with a 6-
week period during which rats were given continuous access to
alcohol (10% v/v, in water) and water under the homecage, two-
bottle choice regimen. Daily alcohol, water, and food intake was
monitored as described above (see Experiment 8).

In each experiment, at the end of this initial period of free
access to alcohol, rats were divided into two groups (matched for
body weight as well as alcohol, water, and food intake over the last
7 days). One rat group was deprived of alcohol for 14 consecutive
days, during which water was the sole fluid available (alcohol-
deprived rats). The second rat group continued to have unlimited
access to alcohol and water (alcohol-non-deprived rats), with the
exception of the last 6 h before GET73 administration, when the
alcohol bottle was removed to ensure that blood alcohol levels were
equal to zero at the time of the test.

In each experiment, at the end of the 14th day of the depriva-
tion phase, rats of both groups were divided into three subgroups,
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matched for body weight, and treated with either (a) 0 mg/kg
(n = 16–17), 1.25 mg/kg (n = 15–18), and 2.5 mg/kg (n = 15–17)
GET73 (Experiment 9a), (b) 0 mg/kg (n = 10), 5 mg/kg (n = 10),
and 10 mg/kg (n = 10) GET73 (Experiment 9b), or (c) 0 mg/kg
(n = 7–8), 25 mg/kg (n = 8), and 50 mg/kg (n = 8) GET73 (Exper-
iment 9c). GET73 was administered acutely and i.g. 30 min before
lights off. Alcohol was presented once again at lights off. Alcohol,
water, and food intake was recorded 60 min later.

STATISTICAL ANALYSIS
All data are reported as mean ± SEM. Parametric analysis was
performed using the Student’s t -test and one- or two-way analy-
sis of variance (ANOVA), followed by the Newman–Keuls test
for post hoc comparisons. Non-parametric analysis of indepen-
dent samples was carried out using the Kruskal–Wallis ANOVA
or Mann–Whitney U -test. Non-parametric analysis of dependent
samples was done by Friedman ANOVA for dependent samples.

RESULTS
EXPERIMENT 1: [3H]GHB BINDING ASSAY
As expected from previous studies (Carai et al., 2002; Castelli et al.,
2003), GHB – used as reference compound – inhibited [3H]GHB
binding with IC50 equal to 108 ± 30 nM and 3.5 ± 1.0 μM (high-
and low-affinity GHB recognition sites, respectively). Conversely,
GET73 – tested at concentrations ranging from 10−9 to 10−3 M –
failed to inhibit [3H]GHB binding at both GHB recognition
sites.

EXPERIMENT 2: OTHER BINDING ASSAYS
The sole, although weak, interactions displayed by GET73 with
selected receptor systems (listed in Table 1) were those with (a) 5-
HT3 receptor, as suggested by a 13% inhibition of [3H]GR65630
binding at the concentration of 10−5 M GET73, and (b) GABAA

receptor, as suggested by a 30% inhibition of [3H]muscimol
binding at the concentration of 10−5 M GET73.

EXPERIMENT 3: SPONTANEOUS MOTOR ACTIVITY
Analysis of time-course revealed that only the 200-mg/kg
dose of GET73 affected spontaneous locomotor activity in
SD rats [F treatment(3,28) = 4.89, P < 0.01; F time(5,140) = 85.16,
P < 0.0001; F interaction(15,140) = 1.26, P > 0.05; Figure 3]. Dis-
tance traveled by 200-mg/kg GET73-treated rats was indeed 15–
25% lower than that recorded in vehicle-treated rats at 5-, 10-, 15-,
and 20-min time intervals (Figure 3). Conversely, distance trav-
eled was totally unaltered, at any time interval, by treatment with
5 and 50 mg/kg GET73 (Figure 3).

Total distance traveled over the entire 30-min session was
affected by treatment with GET73 [F(3,28) = 4.894, P < 0.05].
Post hoc analysis revealed a difference between 0 and 200 mg/kg
GET73-treated rat groups (P < 0.05, Newman–Keuls test;
Figure 3, inset).

EXPERIMENT 4: PASSIVE AVOIDANCE
During the training session (day 1) of all three experiments, rats
entered the dark compartment with a relatively short latency
(<50 s) and no difference among rat groups [Experiment 4a:
F(3,34) = 1.99, P > 0.05; Experiment 4b: F(3,35) = 0.57, P > 0.05;
Experiment 4c: F(3,36) = 1.53, P > 0.05; Table 2].

FIGURE 3 | Effect of the acute, intragastric administration of different

doses of GET73 on spontaneous locomotor activity in

Sprague-Dawley rats. GET73 was administered 30 min before the start of
the 30-min session. Data were recorded in six 5-min bins; total distance
traveled over the 30-min session is reported in the inset. Each point or bar
is the mean ± SEM of n = 8. *P < 0.05 with respect to 0-mg/kg
GET73-treated rat group at the corresponding time (Newman–Keuls test).

At the time of the test session (day 2) of all three experi-
ments, acute treatment with GET73 did not alter the latency of
entry into the dark compartment [Experiment 4a: F(3,34) = 0.0,
P > 0.05; Experiment 4b: F(3,35) = 1.24, P > 0.05; Experiment 4c:
F(3,36) = 0.19, P > 0.05; Table 2]. These data suggest that treat-
ment with GET73 did not alter the rats’ performance at the Passive
Avoidance test, irrespective of the time of GET73 administration
[30 min before the training session (Experiment 4a), immediately
after the training session (Experiment 4b), or 30 min before the
test session (Experiment 4c)].

EXPERIMENT 5: ACTIVE AVOIDANCE
Throughout the habituation session (day 1), the number of
crossings did not differ among the four rat groups investigated
[F(3,28) = 2.6, P > 0.05; Table 3].

In the test session (day 2), no dose of acutely adminis-
tered GET73 affected any of the measured variables [num-
ber of avoidances; F(3,28) = 0.96, P > 0.05; number of escapes:
F(3,28) = 0.19,P > 0.05; number of escape failures F(3,28) = 0.94,
P > 0.05; Table 3]. These data suggest that treatment with GET73
did not alter the rats’ performance at the Active Avoidance test.

EXPERIMENT 6: WATER MAZE
In vehicle-treated rats, the rats’ performance tended to improve
on continuing exposure to the maze task, as revealed by progres-
sively lower values in each measured variable from day 1 to day 5
(Figure 4).

Latency in reaching the exit was not altered by repeated treat-
ment with GET73 (P > 0.05, Kruskal–Wallis test; data not shown).
In contrast, treatment with GET73 affected the number of alley
errors (Figure 4A), number of swimming reversals (Figure 4B),
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Table 2 | Effect of the acute, intraperitoneal administration of different doses of GET73 on latency of entry into the dark compartment in training

and test sessions in Sprague-Dawley rats exposed to the Passive Avoidance test.

GET73 (mg/kg)

0 5 10 25

EXPERIMENT 4a

Training session (day 1) 15.2 ± 4.1 10.1 ± 3.5 21.6 ± 4.0 10.0 ± 3.7

Test session (day 2) 180.0 ± 0.0 180.0 ± 0.0 180.0 ± 0.0 180.0 ± 0.0

EXPERIMENT 4b

Training session (day 1) 11.5 ± 2.9 8.5 ± 1.8 7.8 ± 2.0 8.4 ± 2.0

Test session (day 2) 180.0 ± 0.0 162.8 ± 17.2 180.0 ± 0.0 146.4 ± 22.5

EXPERIMENT 4c

Training session (day 1) 12.4 ± 2.7 13.9 ± 3.6 8.5 ± 2.1 6.8 ± 2.0

Test session (day 2) 146.9 ± 22.1 162.1 ± 17.9 162.1 ± 17.9 164.6 ± 15.4

GET73 was administered acutely 30 min before the training session (Experiment 4a), immediately after the training session (Experiment 4b), or 30 min before the

test session (Experiment 4c). Each value is the mean ± SEM of n = 9–10.

Table 3 | Effect of the acute, intraperitoneal administration of different doses of GET73 on a series of variables measured in habituation and test

sessions in Sprague-Dawley rats exposed to the Active Avoidance test.

GET73 (mg/kg) Habituation session (day 1) Test session (day 2)

Number of crossings Number of avoidances Number of escapes Number of escape failures

0 54.5 ± 7.2 57.9 ± 3.1 31.3 ± 3.8 10.9 ± 2.2

5 62.6 ± 9.6 38.3 ± 10.1 31.9 ± 5.9 29.9 ± 11.9

10 83.1 ± 4.3 50.6 ± 9.5 28.4 ± 4.3 21.0 ± 7.1

25 62.9 ± 8.1 47.3 ± 8.7 33.5 ± 5.1 19.3 ± 7.9

GET73 was administered acutely 30 min before the test session. Each value is the mean ± SEM of n = 8.

and number of working-memory errors (Figure 4C) in a relatively
complex manner.

Specifically, treatment with 5 mg/kg GET73 (a) had no effect
on the number of alley errors (Figure 4A), (b) marginally affected
the number of swimming reversals in session 5 (P = 0.091), and
(c) reduced the number of working-memory errors in session 5
(P < 0.05, Kruskal–Wallis and Mann–Whitney test; Figure 4C).
Treatment with 10 mg/kg GET73 (a) had no effect on the number
of alley errors (Figure 4A), (b) reduced the number of swimming
reversals in session 5 (P < 0.01, Mann–Whitney test; Figure 4B),
and (c) reduced the number of working-memory errors in session
2 (P < 0.05, Kruskal–Wallis and Mann–Whitney test; Figure 4C).
Conversely, treatment with 50 mg/kg GET73 increased the num-
ber of (a) alley errors in session 1 (P < 0.01, Mann–Whitney
test; Figure 4A) with a marginally significant effect in session
2 (P = 0.053, Mann–Whitney test), (b) swimming reversals in
session 1 (P < 0.001, Mann–Whitney test; Figure 4B), and (c)
working-memory errors in session 1 (P < 0.01, Mann–Whitney
test), with a marginally significant effect in session 2 (P = 0.080,
Mann–Whitney test; Figure 4C). Finally, no dose of GET73 altered
the number of reference-memory errors (data not shown).

In line with the complex profile illustrated above,GET73 altered
the distance traveled to reach the exit in sessions 1 and 5 (P < 0.01
and P < 0.05, respectively, Kruskal–Wallis test), with marginally

significant effects in sessions 3 (P = 0.065, Kruskal–Wallis test)
and 4 (P = 0.086, Kruskal–Wallis test). Specifically, treatment with
5 and 10 mg/kg GET73 decreased the distance traveled in session 5
(P < 0.05, Mann–Whitney test; Figure 4D); conversely, treatment
with 50 mg/kg GET73 increased the distance traveled in session 1
(P < 0.01, Mann–Whitney test; Figure 4D).

Mean speed of swimming was not altered by GET73 treatment,
ruling out a possible motor dysfunction (P > 0.05, Kruskal–Wallis
test; data not shown).

EXPERIMENT 7: ELEVATED PLUS MAZE
In Experiment 7a (SD rats), acute treatment with GET73 did not
alter basal locomotor activity, as revealed by the lack of any differ-
ence in the number of ECAs among the five rat groups (P > 0.05,
Kruskal–Wallis test; Table 4). Treatment with GET73 exerted an
anxiolytic effect, as indicated by the increase – with respect to
vehicle-treated rats – in %EOAs (P < 0.05, Kruskal–Wallis test;
Figure 5A) and %TOAs (P < 0.05, Kruskal–Wallis test; Figure 5B).
The increase in %EOAs occurred at the doses of 25 and 50 mg/kg
(P < 0.01, Mann–Whitney test), while the increase in %TOAs
occurred at the doses of 10 (P < 0.05, Mann–Whitney test), 25
(P < 0.01, Mann–Whitney test), and 50 mg/kg (P < 0.01, Mann–
Whitney test). Treatment with GET73 decreased total number of
SAPs (P < 0.01, Kruskal–Wallis test) and number of protected
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FIGURE 4 | Effect of the repeated, intraperitoneal administration of

different doses of GET73 on three measures of spatial memory in

Sprague-Dawley rats exposed to the water maze (WM) test: number

of alley errors [entries into blind alleys (A)], number of swimming

reversals [defined as complete U-turns (B)], number of

working-memory errors [re-entries in blind alleys already visited in

the on-going session (C)], and distance traveled [in cm; (D)]. GET73

was administered 30 min before each WM session. Each WM session
lasted for 5 min. Each point is the mean ± SEM of n = 10. *P < 0.05,
**P < 0.01, and ***P < 0.001 with respect to 0-mg/kg GET73-treated rat
group in the corresponding session (Kruskal–Wallis and Mann–Whitney
test).

Table 4 | Effect of the acute, intragastric administration of different doses of GET73 on a series of variables measured in Sprague-Dawley rats

exposed to the elevated plus maze (EPM) test.

GET73 (mg/kg)

0 5 10 25 50

Number of ECAs 6.3 ± 1.1 7.7 ± 1.1 7.0 ± 0.3 6.0 ± 0.9 8.2 ± 1.7

Total number of SAPs 6.3 ± 1.4 3.8 ± 0.9 4.0 ± 0.9 1.0 ± 0.7* 1.2 ± 0.4**

Number of protected SAPs 5.7 ± 1.2 3.2 ± 0.4 3.8 ± 0.9 1.0 ± 0.7* 1.2 ± 0.4**

Number of unprotected SAPs 0.6 ± 0.4 0.6 ± 0.6 0.2 ± 0.2 0.0 ± 0.0 0.0 ± 0.0

Total number of HDs 8.6 ± 1.3 11.6 ± 2.7 17.0 ± 2.9 15.5 ± 3.8 11.6 ± 1.9

Number of protected HDs 6.9 ± 1.1 4.4 ± 1.0 6.0 ± 1.4 8.0 ± 2.3 5.6 ± 1.7

Number of unprotected HDs 1.7 ± 0.7 7.2 ± 3.0 11.0 ± 3.0** 7.5 ± 1.9* 6.0 ± 0.4**

Number of end-arm explorations in OAs 0.3 ± 0.3 2.2 ± 1.4 4.8 ± 1.7** 5.5 ± 0.3** 5.0 ± 0.8**

CA, closed arm; OA, open arm; ECAs, entries into CAs; SAPs, stretched attend postures; HDs, head dippings.

Stretched attend postures were defined as the rat’s stretching to its full length with the forepaws, keeping the hindpaws in the same place, and then resuming the

initial position. Protected SAPs were defined as those SAPs occurring in the CAs. Unprotected SAPs were defined as those SAPs occurring in the OAs. HDs were

defined as moving the head below the level of the maze floor. Protected HDs were defined as those HDs occurring in the CAs. Unprotected HDs were defined as

those HDs occurring in the OAs. End-arm explorations in OAs were defined as the rat reaching the last 10-cm portion of the open arm.

GET73 was administered acutely 30 min before the EPM test. Exposure to the EPM lasted for 5 min. Entry into a given arm was scored once the rat had all four paws

in that arm. Each value is the mean ± SEM of n = 4–7. *P < 0.05 and **P < 0.01 with respect to 0-mg/kg GET73-treated rat group (Kruskal–Wallis and Mann–Whitney

test).
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SAPs (P < 0.01, Kruskal–Wallis test; Table 4); conversely, treat-
ment with GET73 did not alter the number of unprotected SAPs
(P > 0.05, Kruskal–Wallis test; Table 4). The decrease in SAPs
occurred at the doses of 25 (P < 0.05, Mann–Whitney test) and
50 mg/kg (P < 0.01, Mann–Whitney test). Treatment with GET73
increased the number of unprotected HDs (P < 0.05, Kruskal–
Wallis test) and end-arm explorations in OAs (P < 0.01, Kruskal–
Wallis test; Table 4). These effects were exerted at the doses
of 10 (P < 0.01 for both unprotected HDs and end-arm explo-
rations; Mann–Whitney test), 25 mg/kg (P < 0.05 and P < 0.01 for
unprotected HDs and end-arm explorations, respectively; Mann–
Whitney test), and 50 mg/kg (P < 0.01 for both unprotected HDs
and end-arm explorations; Mann–Whitney test).

In Experiment 7b (sP rats), acute treatment with GET73 did
not alter basal locomotor activity, as revealed by the lack of any
difference in the number of ECAs among the four rat groups
[F(3,47) = 0.31, P > 0.05; Table 5]. Treatment with GET73 exerted
an anxiolytic effect, as indicated by the increase – with respect
to vehicle-treated rats – in %EOAs [F(3,47) = 5.81, P < 0.005;
Figure 6A] and %TOAs [F(3,47) = 3.55, P < 0.05; Figure 6B].
The anxiolytic effect of GET73 was a bell-shaped function of
GET73 dose, as the increase in %EOAs and %TOAs occurred
only at the doses of 10 and 25 mg/kg GET73. Post hoc analy-
sis revealed an effect of both doses on %EOAs (P < 0.05 and
P < 0.01 for the 10- and 25-mg/kg GET73-treated rat groups,
respectively; Newman–Keuls test) and a tendency for the 25-
mg/kg GET73 dose on %TOAs (P = 0.055, Newman–Keuls
test). ANOVA failed to reveal any difference among the 4 rat
groups in (a) total number of SAPs [F(3,47) = 0.26, P > 0.05],
(b) number of protected SAPs [F(3,47) = 1.68, P > 0.05], and

(c) number of unprotected SAPs [F(3,47) = 0.25, P > 0.05;
Table 5]. Treatment with GET73 increased (a) total number
of HDs [F(3,47) = 3.74, P < 0.05] and (b) number of unpro-
tected HDs [F(3,47) = 3.33, P < 0.05]; this effect was again a
bell-shaped function of GET73 dose, with the 25-mg/kg GET73
dose exerting the maximal effect (Table 5). Conversely, treat-
ment with 25 mg/kg GET73 produced only a tendency toward
an increase in the number of protected HDs [F(3,47) = 1.26,
P > 0.05; Table 5]. Finally, treatment with GET73 increased
the number of end-arm explorations in OAs [F(3,47) = 3.05,
P < 0.05; Table 5]. Again, the increase appeared to be lim-
ited to the 25-mg/kg GET73 dose (P = 0.056, Newman–Keuls
test).

EXPERIMENT 8: MAINTENANCE OF ALCOHOL INTAKE
Acute administration of 10, 25, and 50 mg/kg GET73 reduced alco-
hol intake in alcohol-experienced sP rats over the first 3 h of the
dark phase of the light/dark cycle [results of one-way ANOVA:
0–60 min interval: F(3,36) = 7.75, P < 0.0005; 0–120 min inter-
val: F(3,36) = 6.41, P < 0.001; 0–180 min interval: F(3,36) = 4.46,
P < 0.01]. This effect tended to be dose-independent, as the mag-
nitude of the reduction in alcohol intake (with respect to vehicle-
treated rats) was similar among the rat groups treated with the
three different doses of GET73 (Figures 7A–C). At the 0- to 60-min
interval, reduction in alcohol intake (with respect to vehicle-
treated rats) averaged 35–45% in GET73-treated rat groups. The
reducing effect of GET73 on alcohol intake tended to vanish at
the final recording time, as indicated by the lack of statistical sig-
nificance at the 0- to 240-min interval [F(3,36) = 1.94, P > 0.05;
Figure 7D].

FIGURE 5 | Effect of the acute, intragastric administration of different

doses of GET73 on two measures of “anxiety” [number of entries into

open arms (OAs; %EOAs; expressed as percent of total number of entries

into arms (A))]; time spent in OAs [(%TOAs; expressed as percent of total

time spent in arms (B)] in Sprague-Dawley rats exposed to the elevated

plus maze (EPM) test. GET73 was administered 30 min before the EPM test.
Exposure to the EPM lasted for 5 min. Entry into a given arm was scored
once the rat had all four paws in that arm. Each bar is the mean ± SEM of
n = 4–7. *P < 0.05 and **P < 0.01 with respect to 0-mg/kg GET73-treated rat
group (Kruskal–Wallis and Mann–Whitney test).
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Table 5 | Effect of the acute, intragastric administration of different doses of GET73 on a series of variables measured in Sardinian

alcohol-preferring (sP) rats exposed to the elevated plus maze (EPM) test.

GET73 (mg/kg)

0 10 25 50

Number of ECAs 4.9 ± 0.7 5.5 ± 0.8 5.8 ± 0.6 5.9 ± 0.9

Total number of SAPs 8.2 ± 0.9 7.8 ± 1.0 8.8 ± 1.0 8.0 ± 0.6

Number of protected SAPs 3.4 ± 0.7 2.2 ± 0.5 4.0 ± 0.9 2.7 ± 0.3

Number of unprotected SAPs 4.8 ± 1.0 5.6 ± 1.0 4.8 ± 0.7 5.3 ± 0.5

Total number of HDs 3.5 ± 0.9 6.8 ± 2.0 8.7 ± 1.9* 2.8 ± 0.6

Number of protected HDs 1.9 ± 0.8 2.7 ± 0.7 3.6 ± 0.8 2.0 ± 0.5

Number of unprotected HDs 1.6 ± 0.7 4.2 ± 1.7 5.1 ± 1.5* 0.8 ± 0.3

Number of end-arm explorations in OAs 0.2 ± 0.1 0.7 ± 0.4 1.4 ± 0.5* 0.2 ± 0.1

CA, closed arm; OA, open arm; ECAs, entries into CAs; SAPs, stretched attend postures; HDs, head dippings.

Stretched attend postures were defined as the rat’s stretching to its full length with the forepaws, keeping the hindpaws in the same place, and then turning back

to the initial position. Protected SAPs were defined as those SAPs occurring in the CAs. Unprotected SAPs were defined as those SAPs occurring in the OAs. HDs

were defined as moving the head below the level of the maze floor. Protected HDs were defined as those HDs occurring in the CAs. Unprotected HDs were defined

as those HDs occurring in the OAs. End-arm explorations in OAs were defined as the rat reaching the last 10-cm portion of the open arm.

GET73 was administered acutely 30 min before the EPM test. Exposure to the EPM lasted for 5 min. Entry into a given arm was scored once the rat had all four paws

in that arm. Each value is the mean ± SEM of n = 12–14. *P < 0.05 with respect to 0-mg/kg GET73-treated rat group (Newman–Keuls test).

FIGURE 6 | Effect of the acute, intragastric administration of different

doses of GET73 on two measures of “anxiety” [number of entries into

open arms (OAs; %EOAs; expressed as percent of total number of entries

into arms (A))]; time spent in OAs [(%TOAs; expressed as percent of total

time spent in arms (B)] in Sardinian alcohol-preferring (sP) rats exposed

to the elevated plus maze (EPM) test. GET73 was administered 30 min
before the EPM test. Exposure to the EPM lasted for 5 min. Entry into a given
arm was scored once the rat had all four paws in that arm. Each bar is the
mean ± SEM of n = 12–14. *P < 0.05 and **P < 0.01 with respect to 0-mg/kg
GET73-treated rat group (Newman–Keuls test).

Conversely, both water [results of one-way ANOVA: 0–60 min
interval: F(3,36) = 0.83,P > 0.05; 0–120 min interval: F(3,36) = 0.73,
P > 0.05; 0–180 min interval: F(3,36) = 0.18, P > 0.05; 0–240 min
interval: F(3,36) = 1.94, P > 0.05; Figures 7E–H] and food [results
of one-way ANOVA: 0–60 min interval: F(3,36) = 0.47, P > 0.05;
0–120 min interval: F(3,36) = 1.19, P > 0.05; 0–180 min interval:
F(3,36) = 0.25, P > 0.05; 0–240 min interval: F(3,36) = 0.49,
P > 0.05; Figures 7I–L] intake was unaltered by treatment with
GET73 at any time interval.

EXPERIMENT 9: ALCOHOL DEPRIVATION EFFECT
In Experiment 9a [testing acutely administered low doses of
GET73 (1.25 and 2.5 mg/kg)], two-way (deprivation; treat-
ment) ANOVA revealed a significant effect of deprivation
alone [F(1,92) = 36.92, P < 0.0001], but not of treatment
[F(2,92) = 0.15, P > 0.05], and no significant interaction
[F(2,92) = 0.10, P > 0.05] on alcohol intake. In the first hour
of the post-deprivation phase, alcohol intake was higher – by
approximately 65% – in vehicle-treated lcohol-deprived rats

Frontiers in Psychiatry | Addictive Disorders February 2012 | Volume 3 | Article 8 | 10

http://www.frontiersin.org/Psychiatry
http://www.frontiersin.org/Addictive_Disorders
http://www.frontiersin.org/Addictive_Disorders/archive


Loche et al. Anti-alcohol and anxiolytic properties of GET73

than in vehicle-treated alcohol-non-deprived rats (Figure 8A),
indicative of the development of ADE. No dose of GET73
altered, even minimally, this extra-intake of alcohol. Finally,
neither water nor food intake resulted to be affected
by either deprivation or treatment with GET73 [water
intake: F deprivation(1,92) = 0.35, P > 0.05; F treatment(2,92) = 1.82,
P > 0.05; F interaction(2,92) = 2.38,P > 0.05; food intake: Fdeprivation

(1,92) = 0.01,P > 0.05; F treatment(2,92) = 0.10,P > 0.05; F interaction

(2,92) = 0.02, P > 0.05; data not shown].
In Experiment 9b [testing acutely administered moderate doses

of GET73 (5 and 10 mg/kg)], two-way (deprivation; treatment)
ANOVA revealed significant effects of treatment [F(1,54) = 4.34,
P < 0.05] and deprivation [F(2,54) = 7.80, P < 0.005], and a
significant interaction [F(2,54) = 6.10, P < 0.005] on alcohol
intake. In the first hour of the post-deprivation phase, alco-
hol intake was higher – by approximately 65% – in vehicle-
treated alcohol-deprived rats than in vehicle-treated alcohol-
non-deprived rats (Figure 8B). Post hoc analysis showed
that both doses of GET73 completely suppressed this extra-
intake of alcohol; indeed, alcohol intake in the two GET73-
treated alcohol-deprived rat groups was significantly lower

than that recorded in vehicle-treated alcohol-deprived rats.
Further, alcohol intake did not differ between alcohol-deprived
and non-deprived rats at each GET73 dose. Finally, neither
water [Fdeprivation(1,54) = 0.04, P > 0.05; F treatment(2,54) = 0.05,
P > 0.05; F interaction(2,54) = 0.08, P > 0.05] nor food [F deprivation

(1,54) = 0.01,P > 0.05; F treatment(2,54) = 0.06,P > 0.05; F interaction

(2,54) = 0.03, P > 0.05] intake resulted to be affected by either
deprivation or treatment with GET73 (data not shown).

In Experiment 9c [testing acutely administered relatively
high doses of GET73 (25 and 50 mg/kg)], two-way (depri-
vation; treatment) ANOVA revealed a significant effect of
treatment [F(2,41) = 3.56, P < 0.05], but not of depriva-
tion [F(1,41) = 2.25, P > 0.05], and a significant interac-
tion [F(2,41) = 4.45, P < 0.05] on alcohol intake. In the
first hour of the post-deprivation phase, alcohol intake
was higher – by approximately 80% – in vehicle-treated
alcohol-deprived rats than in vehicle-treated alcohol-non-
deprived rats (Figure 8C). Post hoc analysis showed that
both doses of GET73 completely suppressed this extra-
intake of alcohol; indeed, alcohol intake in the two GET73-
treated alcohol-deprived rat groups was lower than that

FIGURE 7 | Effect of the acute, intragastric administration of

different doses of GET73 on alcohol (A–D), water (E–H), and food

(I–L) intake in “alcohol-experienced” Sardinian alcohol-preferring

(sP) rats. Alcohol (10% v/v, in water) was offered under the standard,
homecage two-bottle “alcohol vs water” choice regimen with unlimited

access for 24 h/day. GET73 was administered 30 min before lights off.
Alcohol, water, and food intake was recorded 60, 120, 180, and 240 min
after lights off. Each bar is the mean ± SEM of n = 10 rats. *P < 0.05,
**P < 0.01, and ***P < 0.005 with respect to 0-mg/kg GET73-treated rat
group (Newman–Keuls test).
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recorded in vehicle-treated alcohol-deprived rats. Further, at
each GET73 dose, alcohol intake did not differ significantly
between alcohol-deprived and -non-deprived rats. Finally, neither
water [F deprivation(1,41) = 0.22, P > 0.05; F treatment(2,41) = 1.81,
P > 0.05; F interaction(2,41) = 0.69, P > 0.05] nor food [F deprivation

(1,41) = 2.27,P > 0.05; F treatment(2,41) = 0.87,P > 0.05; F interaction

(2,41) = 1.44, P > 0.05] intake resulted to be affected by
either deprivation or treatment with GET73 (data not
shown).

DISCUSSION
The results of the present study illustrate how the pharmaco-
logical profile of GET73 is composed of different actions of
potential interest: low-to-moderate doses of GET73 indeed exerted
anti-alcohol and anxiolytic effects in multiple experimental
procedures validated for the evaluation of alcohol drinking,
relapse-like drinking, and anxiety-related behaviors.

Experiments 8 and 9 assessed the effect of acute administration
of GET73 on different aspects of alcohol drinking in alcohol-
preferring sP rats, one of the few rat lines selectively bred world-
wide for high alcohol preference and consumption (see Colombo
et al., 2006). The results of Experiment 8 demonstrated that doses
of GET73 ranging from 10 to 50 mg/kg markedly decreased alcohol
intake in alcohol-experienced sP rats, an experimental procedure
thought to model the“active drinking phase”of human alcoholism
(see Colombo et al., 2006). The decreasing effect of GET73 on alco-
hol intake appeared to be relatively dose-independent, posing the
question as to its minimally effective dose(s). A subsequent series
of experiments (still preliminary at the present stage) suggests
that the minimally effective dose of GET73 on alcohol intake in
alcohol-experienced sP rats may lie between 5 and 10 mg/kg (data
not shown).

Overall results of ADE experiments (Experiment 9) demon-
strated that doses of GET73 equal to or higher than 5 mg/kg
suppressed the additional amount of alcohol (65–80% of baseline
in the present series of experiments) consumed by sP rats after
a period of alcohol deprivation; these increases are thought to
model relapse drinking episodes and loss of control over alcohol
in human alcoholics (see Spanagel, 2005).

The reducing effect of GET73 in“maintenance”and ADE exper-
iments was specific for alcohol intake, as water and food intake was
never affected, even minimally, by treatment with GET73. These
data are moreover of relevance as they tend to exclude the possibil-
ity that GET73-induced reduction in alcohol intake was secondary
to sedation or malaise. This conclusion is further strengthened by
the results of Experiment 3, demonstrating that doses of GET73
up to 50 mg/kg did not affect, even minimally, spontaneous loco-
motor activity in SD rats, suggesting a wide separation between
the doses of GET73 exerting the “desired” pharmacological effects
and those producing “adverse” effects.

Recent data demonstrated that repeated treatment with doses
of GET73 ranging between 10 and 200 mg/kg markedly reduced
sucrose intake (Tacchi et al., 2008) and consumption of highly
palatable foods (Ottani et al., 2007) in Wistar rats. The reducing
effect on palatable food was associated to an increased consump-
tion of regular food pellets, indicating the specificity of GET73
action on the hedonic components of food intake. These data,

FIGURE 8 | Effect of the acute, intragastric administration of low (A),

moderate (B), and high doses (C) of GET73 – tested in three

independent experiments – on the “alcohol deprivation effect” (ADE)

in Sardinian alcohol-preferring (sP) rats. Alcohol (10% v/v, in water) was
offered under the standard, homecage two-bottle “alcohol vs water” choice
regimen with unlimited access for 24 h/day. Alcohol-deprived rats were
deprived of alcohol for 14 consecutive days; alcohol-non-deprived rats had
continuous access to alcohol and water. Thirty minutes before
representation of the alcohol bottle (which coincided with lights off), both
alcohol-deprived and -non-deprived rats were treated acutely with GET73.
Alcohol intake was registered 60 min after lights off. Each bar is the
mean ± SEM of n = 7–18. *P < 0.05 with respect to alcohol-non-deprived
rats receiving 0 mg/kg GET73 (Newman–Keuls test); +P < 0.05 with respect
to alcohol-deprived rats receiving 0 mg/kg GET73 (Newman–Keuls test).
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together with those generated by Experiments 8 and 9 of the
present study, suggest that GET73 may be capable of interfering
with different reward-related behaviors in rats.

Comorbidity of AUDs and psychiatric disorders, including
panic disorders, generalized anxiety, and post-traumatic stress
disorders, is a well-documented clinical feature (see Grant et al.,
2004), often requiring complex treatment strategies. It was there-
fore of interest to assess the anxiolytic potential of GET73. Accord-
ingly, Experiment 7 evaluated the effect of a large spectrum of
GET73 doses (5–50 mg/kg) in SD and sP rats exposed to the EPM
test, one of the most widely used procedures in the assessment of
anxiety-related behaviors in rodents. Data from the EPM exper-
iments indicate that (a) treatment with GET73 produced a clear
anxiolytic effect in both SD (Experiment 7a) and sP (Experiment
7b) rats, (b) the effect of GET73 was a bell-shaped function of its
dose, and (c) this pattern was particularly evident in sP rats. Dif-
ferences in basal, emotional states and behavioral profile of SD and
sP rats might explain the differential effect of GET73 in the two
rat lines at the EMP test. Further, Experiments 7a (SD rats) and 7b
(sP rats) were conducted in two different locations (Sanremo and
Cagliari, respectively); although maximal care was taken to mini-
mize differences in the experimental procedures, it cannot be ruled
out that the differences observed between SD and sP rats were due,
at least in part, to slight methodological differences between the
two laboratories.

Rats of the sP lines have been found to display high levels of
inherent anxiety-related behaviors in multiple experimental pro-
cedures, including the EPM test (Colombo et al., 1995; Richter
et al., 2000; Agabio et al., 2001; Cagiano et al., 2002; Leggio et al.,
2003; Roman and Colombo, 2009; Roman et al., 2012). Volun-
tarily consumed alcohol reduced anxiety-related behaviors in sP
rats (Colombo et al., 1995), suggesting that these rats may con-
sume alcohol to ameliorate their high negative emotional states.
Accordingly, it can be hypothesized that the anxiolytic effect of
GET73 could“substitute,”at least in part, for the anxiolytic effect of
alcohol sought by sP rats, contributing toward reducing voluntary
alcohol intake in this rat line. In agreement with this hypothesis,
drugs exerting anxiolytic effects in sP rats have also been found to
reduce alcohol drinking: as an example, acute administration of
non-sedative doses of GHB suppressed anxiety-related behaviors
in sP rats exposed to the EPM test (Agabio et al., 1998) and reduced
alcohol intake (Agabio et al., 1998) and operant, oral alcohol self-
administration (Maccioni et al., 2008) in sP rats. Application of
this “substitution” hypothesis to GET73 is somehow challenged
by the lack of anxiolytic effect exerted by the highest tested dose
of GET73 (50 mg/kg), that – conversely – reduced alcohol intake
(in both “maintenance” and ADE experiments) to an extent com-
parable to that of the two “anxiolytic” doses of GET73 (10 and
25 mg/kg). This discrepancy might be explained by the involve-
ment of additional mechanism(s) and/or active metabolite(s) of
GET73.

A series of experiments (namely, Experiments 4–6) investigated
the effect of treatment with GET73 on different cognitive functions
in SD rats. In all three experiments, the tested dose-range of GET73
was comparable to those found to exert anti-alcohol effects in sP
rats (Experiments 8 and 9) and anxiolytic effects in SD and sP rats

(Experiment 7); further, these doses were devoid of any hypolo-
comotor and sedative effect in SD rats, as demonstrated by the
results of Experiment 3. Results of Experiments 4 and 5 indicated
that treatment with GET73 failed to alter the cognitive processes
involved in both Passive and Active Avoidance tasks.

A more complex picture can be drawn from the results of Exper-
iment 6, in which SD rats treated with different doses of GET73
were exposed to a modified water version of the Hebb–Williams
maze test. GET73 tended to exert a biphasic effect on spatial-
memory performance, with promnestic and amnestic effects as the
dose was increased. Specifically: (a) treatment with low doses of
GET73 (5 and 10 mg/kg) increased the rat ability to find the maze
exit, as suggested by significant reductions, in several sessions,
in number of swimming reversals, number of working-memory
errors, and distance traveled to reach the exit zone; (b) treat-
ment with a high dose of GET73 (50 mg/kg) resulted in increases
in number of entries into the blind alleys, number of swim-
ming reversals, number of working-memory errors, and distance
traveled to reach the exit zone in several sessions, suggesting a per-
severation in making the same errors and a clear impairment in
the spatial-map acquisition and consolidation.

The exact mechanism of action underlying the multiple behav-
ioral effects of GET73 is presently unknown. GET73 was designed
as a possible analog or derivative of GHB; however, data from
Experiments 1 indicated that GET73 was devoid of any affinity for
GHB binding sites (low and high affinity).

Experiment 2 explored the possibility that GET73 could bind
to multiple receptor and uptake systems known to be part of
the neural substrates involved in reward, drug addiction, emo-
tional states, and cognition. However, data failed to demonstrate
any functionally meaningful affinity of GET73 for dopamine D1,
D2, and D3 receptors, serotonin 5-HT1, 5-HT2, and 5-HT3 recep-
tors, GABAA and GABAB receptors, benzodiazepine binding site,
chloride channel, ionotropic glutamate receptors, dopamine, and
serotonin reuptake sites. These results leave the question on the
mode of action of GET73 still open.

More recent in vitro neurochemical studies however lead to the
advancing of an additional hypothesis. It has indeed been found
that GET73 may influence glutamate neurotransmission in the
CA1 region of the rat hippocampus, this effect being mediated via
the subtype 5 of the metabotropic glutamate (mGlu5) receptor
(Ferraro et al., 2011). Notably, different drugs interacting with the
mGlu5 receptor (such as the mGlu5 receptor antagonists, MPEP
and MTEP) have been repeatedly reported to (a) reduce alcohol
intake and operant alcohol self-administration (e.g., Cowen et al.,
2007; Besheer et al., 2008; Sidhpura et al., 2010), (b) exert anxi-
olytic effects (e.g., Ballard et al., 2005; Varty et al., 2005; Pérez de
la Mora et al., 2006), and (c) induce complex effects on various
learning and memory tasks (e.g., Campbell et al., 2004; Homay-
oun et al., 2004; Ballard et al., 2005) in rats and mice, displaying a
profile that is – to some extent – similar to that of GET73.

In conclusion, the results of the present study suggest that
GET73 exerted anti-alcohol and anxiolytic effects in rats. Future
clinical studies will assess whether GET73 may represent a poten-
tial pharmacotherapy for alcohol dependence and associated
anxiety disorders.
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