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In alcohol dependence studies, the treatment effect at different dose levels remains to
be ascertained. Establishing this effect would aid us in identifying the best dose that has
satisfactory efficacy while minimizing the rate of adverse events. We advocate the use
of dose-finding methodology that has been successfully implemented in the cancer and
HIV settings to identify the optimal dose in a cost-effective way. Specifically, we describe
the continual reassessment method (CRM), an adaptive design proposed for cancer trials
to reconcile the needs of dose-finding experiments with the ethical demands of estab-
lished medical practice. We are applying adaptive designs for identifying the optimal dose
of medications for the first time in the context of pharmacotherapy research in alcoholism.
We provide an example of a topiramate trial as an illustration of how adaptive designs can
be used to locate the optimal dose in alcohol treatment trials. It is believed that the intro-
duction of adaptive design methods will enable the development of medications for the
treatment of alcohol dependence to be accelerated.

Keywords: alcohol research, dose-finding, maximum tolerated dose, most successful dose, continual reassessment
method

INTRODUCTION
Alcoholism and alcohol abuse compose a large, worldwide pub-
lic health problem that is responsible for significant morbidity
and mortality (Mokdad et al., 2004). To this point, the most
common form of treatment for alcohol dependence in the USA
has been group counseling and referral to community support
groups. Three medications – disulfiram, naltrexone, and acam-
prosate – have been approved for the treatment of alcohol depen-
dence although the use of these medications is limited. Further,
there is no single medication that is effective in every case or
every person. Craving is an instrumental component of alcohol
dependence and can involve a desire for the reward provided by
alcohol, the need for relief from tension, or an obsessive loss of
control over one’s thoughts about alcohol; hence, the most promis-
ing and efficacious medications are those that interfere with the
neurotransmitters involved in craving mechanisms (Addolorato
et al., 2005). The development of new and more effective med-
ications to treat alcoholism remains a high priority (Willenbring,
2007).

Many clinical trials have been used to evaluate the efficacy
and safety of new medications to treat alcoholism. Most of them
involve two arms: a treatment arm and a control arm. It is often of
particular interest to clinicians, however, to determine the optimal
dose from a range of doses. In this case, two-arm studies are insuf-
ficient. For instance, in the single-site topiramate study (Johnson
et al., 2003), topiramate’s (or matching placebo’s) dose started at
25 mg for week 1, with a 25-mg increment in weeks 2–4 and a
50-mg increment in weeks 5–8 (up to a total dose of 300 mg).
The topiramate dose of 300 mg was maintained between weeks
8 and 12. A similar dose-escalating scheme was employed in the

multi-site topiramate study (Johnson et al., 2007). These proof-of-
concept trials established the overall topiramate treatment effect at
improving drinking outcomes. However, the topiramate effect at
different dose levels remains to be established so that we can iden-
tify the best dose that has the satisfactory efficacy while minimizing
the rate of adverse events.

A possible solution to this problem lies in the use of an adaptive
design made up of two parts. The goal of the first part would be to
determine the most promising dose of topiramate and to optimize
the number of patients treated at that dose level while including
enough patients at neighboring doses to examine accurately the
relationship. In other words, we want to locate the dose that pro-
vides the best chance for success from among a set of doses. In the
second part of the design, the optimal dose found in the first stage
would be compared with a placebo arm in a randomized study
to establish the statistical significance of the treatment. This stage
is imperative because it guards against the unlikely situation in
which the optimal dose, although more efficacious than any other
dose, is not more successful than placebo.

The motivation behind adaptive designs is to make use of the
statistical advantages of a sequential design in combination with
the ethical considerations of treating as many patients as possible
at a dose believed to be the best, given prior knowledge, and accu-
mulated data. For traditional dose-finding designs in cancer,aimed
at controlling adverse events, the optimal dose is defined in corre-
spondence to a tolerable level of toxicity, i.e., maximum tolerated
dose (MTD). For designs whose aim is to identify the most suc-
cessful dose (MSD), the optimal dose is the one that maximizes the
overall success rate, considering both treatment benefit (efficacy)
and failure. Here, failure would be defined as either unacceptable
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toxicity or dropout as a result of not being able to tolerate the treat-
ment or the absence of sufficient benefit. To address the questions
raised above, we can make use of the dose-finding methodology
that has been used successfully in the cancer and HIV settings
over the last 30 years. One such method is the continual reassess-
ment method (CRM; O’Quigley et al., 1990), which makes use
of working statistical models that have some optimal operating
characteristics.

However, the implementation of adaptive designs is often chal-
lenging and is generally not readily available to practitioners.
Consequently, these designs are not commonly applied in alco-
hol dependence trials. In this article, we will give a review of
such methods and illustrate how we can apply them in the alco-
hol treatment field. The paper is organized as follows. In “Recent
developments in dose-finding”, we give a basic introduction to
the dose-finding background, mostly the original CRM to locate
the MTD and MSD. In “Studies with topiramate”, we provide an
example of identifying the optimal dose from a range of doses in
an alcohol dependence trial. We conclude the paper with some
discussion on future work.

RECENT DEVELOPMENTS IN DOSE-FINDING
Typically in a dose-finding (Phase 1) trial, we desire to adminis-
ter as high a dose as possible without inducing too much toxicity.
Usually, an increase in dose coincides with the number of patients
who will experience a dose-limiting toxicity (DLT), which is typi-
cally defined by side effects that are sufficiently severe. However, an
increase in dose is also accompanied by an increase in the number
of patients who will benefit from the treatment. On the other hand,
an absence of toxicity will be accompanied by a lack of treatment
benefit. Consequently, the primary objective of a Phase 1 trial is
to identify a dose with an “acceptable” toxicity rate. Furthermore,
while the aim of the trial is to enhance the treatment of future
patients, the best possible treatment must be administered to the
patients enrolled in the study in order to adhere to certain ethical
considerations. The highest dose that can be administered with an
acceptable level of toxicity is the MTD.

Suppose there is a discrete set of k doses available, denoted
d1. . .dk, that are ordered in terms of their probabilities of DLT,
R(di), at each of the levels. That is, R(di) is less than R(dj) when-
ever i is less than j. In any study, the “target” dose has a probability
of DLT as close as possible to some“acceptable”toxicity rate, which
might typically take values 0.2, 0.25, or 0.33. A value of 0.2 means
that it is acceptable for 20% of patients to have DLT. Specifically,
the MTD is defined as the dose with DLT probability closest to
the target rate. Based on the accumulated data, the primary objec-
tive of the study is the identification of the MTD. Consequently,
estimation of the entire dose-toxicity curve is only of secondary
interest in that it may aid us in locating the MTD. The CRM, pro-
posed as a statistical design to meet the requirements of the type of
studies described above, was introduced by O’Quigley et al. (1990).
Information on DLT for each patient is recorded as a binary ran-
dom variable with 1 indicating DLT and 0 indicating no DLT.
The CRM begins by assuming a functional dose-toxicity curve
to model the DLT probabilities at each dose, which, for example,
could be the logistic curve or power model. This model must take
values between zero and one and be monotonically increasing with

dose. A comprehensive discussion of the wide variety of potential
working models can be found in Shen and O’Quigley (1996). Here,
we focus on the power model, which is simple and has shown itself
to work well in practice. Therefore, the true probability of seeing
a DLT at a given dose is αa

i . Here, each αi represents some initial
guess for the DLT probability at dose di, specified by the investi-
gator prior to the beginning of the trial. O’Quigley et al. (1990)
suggested that the αi be chosen to reflect prior assumptions about
the DLT probabilities associated with each dose. Lee and Cheung
(2009) provided a systematic approach to choosing these values.
It is not expected that the working model will represent the entire
dose-toxicity curve, but rather should be flexible enough to pro-
vide estimation of the dose-toxicity relationship at and around
the MTD. Cheung and Chappell (2002) described the sensitivity
of CRM’s operating characteristics to various choices of αi.

The method requires estimates of the probability of toxicity
at the available dose levels. Using the data accumulated for each
patient in the trial thus far, we can calculate the maximum likeli-
hood estimate (MLE) of a, which we denote â. Once â has been
found, we can obtain an estimate of the probability of toxicity at
each dose level by raising αi to the power â. On the basis of this
formula, we determine the dose given to the next entered patient
to be the dose with an estimated DLT probability closest to the
target toxicity rate. This process is performed after observing the
response of each entered patient so that dose recommended for
each patient is based on information about how well each previ-
ously entered patient tolerated the treatment. Therefore, the CRM
is a sequential design that updates the DLT probability estimates
and chooses the “best” treatment after each inclusion of a patient.
The MTD is the recommended dose after the inclusion of a prede-
termined sample size of patients, which, in a typical Phase 1 trial,
is around 25 patients.

ILLUSTRATION
We recall a brief example outlined in O’Quigley and Shen (1996).
The simulated example investigates the operating characteristics
of the CRM in a trial of 16 patients. The trial had six dose lev-
els with true toxicity probabilities 0.03, 0.22, 0.45, 0.60, 0.80, and
0.95. The target toxicity rate was 0.20, indicating that dose level 2 is
the correct MTD level with toxicity probability equal to 0.22. The
initial guesses of the toxicity probability estimates were α1= 0.04,
α2= 0.07, α3= 0.20, α4= 0.35, α5= 0.55, α6= 0.70. To be able to
maximize the likelihood and generate the MLE, we need to have
heterogeneity in patient observation in terms of toxicity. Thus, the
trial is not considered fully underway until we have observed at
least one DLT. O’Quigley and Shen (1996) advocated the use of
two-stage designs with an initial escalation scheme to achieve the
required heterogeneity in the responses. Some initial escalating
scheme is required, and, here, we base this on a simple algorithm
that includes patients in groups of three at a time. If all three
remain on treatment and there is no toxicity, then the dose level is
escalated. If a single subject experiences toxicity, then we remain
at the same dose level. If two or more toxicities are observed, then
the dose level is lowered. We continue in this way until the first
DLT is encountered. As soon as we have both a toxicity and a
non-toxicity, the first stage is closed; the second stage is subse-
quently opened, and we are in a position to fit the parameters of
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FIGURE 1 | Results from a simulated Phase I trial using the continual reassessment method.

the under-parameterized model using the data accumulated thus
far in the trial. Even though the first stage is closed, the response
information accrued by the initial scheme is retained and used in
the second stage.

For example, the first three patients were entered at dose level
1, and none of the three experienced a DLT. The trial was then
escalated to dose level 2, and none of the three patients entered
on level 2 experienced a DLT. Escalation then took place to dose
level 3, where a DLT was observed in two of the three patients.
Having achieved the required heterogeneity in the responses, the
MLE of a exists. Based on the data accumulated from the first nine
entered patients, the MLE is calculated to be â = 0.715. It follows,
from raising our αi values to this power, that we have estimated
toxicity probabilities R̂(d1) = 0.101, R̂(d2) = 0.149, R̂(d3) =

0.316, R̂(d4) = 0.472, R̂(d5) = 0.652, R̂(d6) = 0.775. The 10th
entered patient was then treated at dose level 2 because it had an
estimated toxicity probability of 0.149, which was closest to our
target rate of 20%. The 10th patient did not suffer a DLT, and the
updated MLE for a becomes â = 0.759. Dose level 2 remained the
level closest to the target level, and the 11th patient was entered
at this level. The same dose was recommended to the remaining
available patients so that the dose recommended as the MTD for
future use after the inclusion of 16 patients was level 2. Figure 1
presents a graphical illustration of this simulated trial.

LOCATING THE MOST SUCCESSFUL DOSE
The original CRM design focuses only on how to locate the
MTD. O’Quigley et al. (2001) proposed designs that simultane-
ously evaluate efficacy of treatment and toxicity in dose-finding
methodology for HIV studies. The clinical setting for HIV studies
allowed information on benefit to be available in a time frame simi-
lar to information on toxicity. Therefore, it was possible to evaluate
overall success, which is unlike dose-finding designs for cytotoxic
agents in cancer. In cancer studies, either we do not expect to
observe much response or, if obtained, it is not clear how to utilize
the information gathered on efficacy. Zohar and O’Quigley (2006)
outlined dose-finding designs that take into account both toxicity
and efficacy in the cancer setting.

MODELING OVERALL SUCCESS
In this setting, we are interested in describing both safety and effi-
cacy by two one-parameter power models (O’Quigley et al., 2001).
Safety is indicated by the presence or absence of DLT, and effi-
cacy by the presence or absence of response to the treatment. The
probability of DLT at a dose level is defined as the one-parameter
power model in the previous section. Similarly, the probability of
response given no toxicity at dose level di is given by βb

i . where βi

represents prior assumptions about the probabilities of response
given no DLT for each of the dose levels, and b is a parameter to
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be estimated. The probability of success is given by the probability
of response (efficacy) times the probability of no DLT (safety) at
each dose level. The goal of the study would be to identify the
dose level that maximizes the probability of success. This dose is
the MSD.

Overall, the choice of the αi and βi will not have a very strong
effect on operating characteristics. For large samples and under
very broad conditions, the choice will have no influence at all. For
finite, typically small, samples, often encountered in dose-finding
studies, there will be an impact. A reasonable choice is to divide
the interval (0,1) into equivalent segments. For instance, for four
dose levels, both the αi and the βi could be chosen to be 0.2, 0.4,
0.6, and 0.8. These values remain invariant to power transforma-
tions. For example, the operating characteristics for small samples
based on the above model are exactly identical to the square of
the model, i.e., taking αi and βi to be equal to 0.04, 0.16, 0.36, and
0.64. The next entered patient will be included at the dose level di

that maximizes the estimated probability of success.

DOSE ALLOCATION
As discussed above, a requirement to be able to estimate the para-
meters is that we have heterogeneity in patient observation in
terms of toxicity and response. Thus, the trial is not considered
fully underway until we have observed at least one toxicity and one
response. This can be done in two stages. As soon as we have both a
positive response and a dropout or toxicity, the first stage is closed;
the second stage is subsequently opened, and we are in a position to
fit the models using the data accumulated thus far in the trial. We
are able to reassess the working dose-toxicity and dose-response
relationships through the estimated parameters, and calculate the
probability of success for each dose level. The optimal dose for
the next patient will be identified as that with the best probability
of success. Repeating this procedure for all the remaining subjects
will yield the final optimal dose: the MSD.

STUDIES WITH TOPIRAMATE
In this section, we will take the topiramate trial as an exam-
ple to illustrate how CRM can be used to locate the MSD in
alcohol treatment trials. Although topiramate has been shown
to be effective at reducing drinking for alcoholics in two proof-
of-concept trials (Johnson et al., 2003, 2007), the optimal dose
has not be established. In the double-blind, randomized, placebo-
controlled, 14-week clinical trial (Johnson et al., 2007), six doses
were adopted in the dose-escalating scheme (in mg/day): 25, 50,
100, 150, 200, and 300. Suppose we wanted to choose the optimal
dose in consideration of both efficacy and safety among the six
doses.

The efficacy outcome of interest is the percentage of subjects
with no heavy drinking days (PSNHDDs), an efficacy endpoint
recommended by the Food and Drug Administration (Falk et al.,
2010). It is a dichotomous endpoint measuring the frequency of
heavy drinking days, whereby 0 heavy drinking days (e.g., during
the last month of follow-up) is considered a good outcome and
one or more heavy drinking days is considered risky drinking or
a poor outcome. We also are interested in the safety measure, i.e.,
the adverse events. Johnson et al. (2007) found that 34 of 183 who
received topiramate had adverse events. We expect that a higher

dosage of topiramate is associated with a higher rate of adverse
events. One of these levels will offer the greatest chance of overall
success, and our purpose is to identify this level. Initially, we will
treat the first cohort of patients at 25 mg/day. The dose will be
increased or decreased in accordance with observations on toler-
ance and efficacy. Once we are able to fit the stochastic models for
the rates as a function of dosage, we will use CRM-type designs to
concentrate treatment on the level corresponding to the optimal
level.

On the basis of our fitted model, which will enable us to provide
estimates of both the probabilities of success and those of fail-
ure (failure being unacceptable toxicity, dropout, or inadequate
efficacy), we will take the statistical product of the conditional
probability of success multiplied by one minus the probability
of treatment failure. These products will vary with dose, and the
one that provides the greatest value is the one that is estimated
to have the greatest probability of overall success. This level is
then designated the optimal one for topiramate. This optimal level
accounts for dropout, loss to follow-up, unacceptable toxicity, and
true efficacy.

If the optimal level is identified before all patients have been
included, then this first part of the study can be brought to an
early close and the second part of the study, involving comparison
with a placebo, can begin. In the second part, we could perform
a double-blind trial in which alcohol-dependent patients will be
randomized to either the optimal dose of topiramate found in the
first part or a placebo. Applying dose-finding designs in the con-
text of pharmacotherapy research in alcoholism could be crucial
to the success of a study since an incorrectly defined dose for the
second part could lead us to conclude that the treatment is ineffec-
tive, either because the treatment is not well tolerated or because
it fails to deliver enough of the drug to be effective.

CONCLUSION
Determining the optimal dose is of considerable clinical and sci-
entific impact because it will enhance the safety, tolerability, and
generalizability of its use. An important advantage of introducing
this new methodology into the pharmacotherapy field for alco-
holism is that it is more economical of time, resources, and human
subjects compared with the traditional method of testing multiple
fixed doses using a factorial design. Determining the optimal dose
of topiramate will have an important effect on the clinical care of
alcohol-dependent patients. It will widen considerably the pop-
ulation of those who can be provided with topiramate, enable
those on the medication to derive the maximum benefit with
a more tolerable adverse event profile, and improve medication
compliance.

For simplicity, we make the assumption that we are dealing
with a homogeneous group regarding the probability of both suc-
cess and treatment failure. However, realistically, it is likely that
there is some significant heterogeneity in the responses. The mod-
els described above have been extended to deal with heterogeneity,
and we will be keeping this in mind as the study progresses. If we
are able to identify significant sources of heterogeneity, it will be
possible, within the context of a single study, to obtain more than
a single successful dose, each one corresponding to a particular
prognostic group (O’Quigley and Paoletti, 2003). The cost of this
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is a higher sample size, typically a sample of around 20% more
than that encountered in the case of homogeneity.

Another question lies in clinical trials for a combination of
different medications. For example, in the Combined Pharma-
cotherapies and Behavioral Interventions for Alcohol Depen-
dence (COMBINE) study, a 2 (acamprosate/placebo)× 2 (naltrex-
one/placebo)× 2 [Cognitive Behavioral Intervention (CBI)/no
CBI] factorial design was used, and a ninth group received CBI
alone (Anton et al., 2006). In an ongoing trial, we are interested
in the combination of ondansetron and naltrexone. Each medica-
tion has three dose levels: zero, low, and high. So, altogether, we
have nine arms. Finding the best dose combination for these trials
entails a large sample size, which could be prohibitive in terms of
both time and money. Further, since there are two components,
the ordering of the combinations, in terms of probabilities of tox-
icity and/or dropout and the probability of seeing a successful
reduction in alcohol use, may not be fully known. For instance, it
is not possible, a priori, to determine the toxicity order between
the combination of low-dose ondansetron and high-dose naltrex-
one vs. that of high-dose ondansetron and low-dose naltrexone.
Consequently, standard adaptive dose-finding methods may fail
in this situation. To deal with this partial ordering, we could make
use of a CRM design for partial orders proposed by Wages et al.
(2011).

Another specific problem arising in the context of alcohol stud-
ies is that the recorded information can be subject to errors. We

will, however, pay particular attention to robustness. That is, we
want to know how changes in the recorded data influence the
recommendations that are based on models. There are two main
directions to this problem. The first is robustness of the choice
of working model. It is important to underline our purpose here,
which is not to see how well any given model identifies the true
MSD. This problem has been studied in several simulation stud-
ies. Even had we, by good fortune, selected exactly the model that
generates the observations, then, as a result of the inherent ran-
domness in the experiment, the observed toxicity rate could have
led us to recommend an incorrect level. What we wish to know is
whether a different choice of model would have led us to this same
recommendation, whether correct or not. It is thus important to
separate out the task of identifying the correct level from that of
verifying whether an identified level, under some model assump-
tion, would remain the same under a different model assumption.
Second, we need to deal with errors following model specifica-
tion. Since toxicities themselves can be recorded with errors, it
is important to investigate the influence of these errors on final
recommendations. Sensitivity analysis could be used to find out
how the recording error can impact the final decision of opti-
mal dose. More work is needed to tackle both robustness issues
simultaneously.
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