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There is emerging evidence that individuals have the capacity to learn to be resilient by
developing protective mechanisms that prevent them from the maladaptive effects of
stress that can contribute to addiction.The emerging field of the neuroscience of resilience
is beginning to uncover the circuits and molecules that protect against stress-related neu-
ropsychiatric diseases, such as addiction. Glucocorticoids (GCs) are important regulators
of basal and stress-related homeostasis in all higher organisms and influence a wide array
of genes in almost every organ and tissue. GCs, therefore, are ideally situated to either
promote or prevent adaptation to stress. In this review, we will focus on the role of GCs in
the hypothalamic-pituitary adrenocortical axis and extra-hypothalamic regions in regulating
basal and chronic stress responses. GCs interact with a large number of neurotransmitter
and neuropeptide systems that are associated with the development of addiction. Addition-
ally, the review will focus on the orexinergic and cholinergic pathways and highlight their
role in stress and addiction. GCs play a key role in promoting the development of resilience
or susceptibility and represent important pharmacotherapeutic targets that can reduce the
impact of a maladapted stress system for the treatment of stress-induced addiction.
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INTRODUCTION
Susceptibility to developing an addiction is governed by genetics
and modified by experience and the environment. Stress plays an
important role in increasing susceptibility to addiction. McEwen
eloquently wrote that, “human lifetime experiences have a pro-
found impact on the brain, both as a target of stress and allostatic
load/overload and as a determinant of physiological and behav-
ioral response to stressors” (1). The ability to cope with stress or
resilience (the capacity to bounce back following adversity) sig-
nificantly predicts whether a person will subsequently develop a
stress-related neuropsychiatric disease such as anxiety, depression,
and addiction [reviewed in (2)]. A large majority of popula-
tion have experienced a traumatic event during their lifetime.
However, only a small percentage will subsequently experience
chronic distress leading to post-traumatic stress disorder (PTSD)
or addiction to alcohol or other drugs (3). In most cases, however,
people have resilience and do not develop a disease or disor-
der following exposure to stressors. The emerging field of the
neuroscience of resilience is uncovering new circuits and mole-
cules that serve to protect against stress-related neuropsychiatric
diseases.

It has often been assumed that resilience is an innate or pas-
sive mechanism that cannot be changed. However, research in
animals and humans suggest that developing resilience may be
a learnt behavior (2). Individuals have the capacity to learn to
be resilient by developing mechanisms that protect from the
maladaptive effects of stress. Glucocorticoids (GCs), cortisol in
humans, or corticosterone in rodents are important regulators

of basal and stress-related homeostasis and have been shown to
modulate an array of genes in many organs and tissues (4–6).
Thus, GCs are ideally placed to regulate a multitude of signal-
ing pathways activated in response to stress and addiction. In this
review, we will focus on the role of GCs in the hypothalamic-
pituitary adrenocortical (HPA) axis in regulating basal and chronic
stress responses. In addition, we will focus on two systems, the
orexinergic and cholinergic systems and their roles in mediating
stress and addiction. We will further discuss the emerging interac-
tion between these systems with GCs and in regulation of stress.
Lastly, as GCs play a key role in promoting either resilience or
susceptibility to stress, we will examine the pharmacotherapeutic
opportunities that target GCs for the treatment of stress-induced
addiction.

THE ROLE OF THE HPA AXIS AND THE GLUCOCORTICOIDS IN
THE NEUROBIOLOGY OF RESILIENCE TO STRESS
The mechanisms that govern an organism’s ability to handle stress
has been well described in microorganisms that have specialized
hubs, called stressosomes, that govern responses to an array of
physical and environmental insults (7, 8). The stressosome is a
unique structure within the microorganism that precisely orches-
trates the molecular machinery that tunes the magnitude of the
response to a stressor. The stressosome ultimately ensures the sur-
vival of the cell in response to an extensive variety of chemical and
physical stressors (7, 8). The mammalian correlate of the “stresso-
some” is the HPA axis, as it provides a co-ordinated response to
acute stress (9). The fundamental components of the central HPA
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axis are well known and include the corticotropin-releasing hor-
mone (CRH)-secreting neurons of the paraventricular nucleus of
the hypothalamus (PVN) (10) that stimulate pituitary adrenocor-
ticotropic hormone (ACTH) and adrenal corticosterone (CORT)
secretion (11).

Glucocorticoids are steroid hormones that are secreted by
the adrenal glands and are important regulators of homeosta-
sis in basal and stressful conditions. GCs exert their influence
through two types of intracellular receptors the type I miner-
alocorticoid receptor and type II glucocorticoid receptor. Both
receptors are expressed throughout the body and exert system-
wide effects. In the brain, the high affinity type I mineralocorti-
coid receptor (also called aldosterone receptor in the kidneys), is
expressed predominantly in the hippocampal formation and mod-
erate expression is found in prefrontal cortex (PFC) and amygdala
(12–14). The low affinity type II GRs are expressed throughout
the brain with highest expression in the PVN and hippocampus
and because of its lower affinity to cortisol it plays a key role
in stress-related homeostasis when circulating levels of cortisol
are high (14–17). GRs and MRs receptors reside in the cyto-
plasm and mediate classical genomic actions of GCs by acting
as nuclear transcriptional activators and repressors (14, 18) and
membrane bound GRs mediate the rapid actions of GCs (19, 20).
GCs are thus ideally positioned to modulate responses to stress
and be activated in the brain during healthy conditions, follow-
ing acute stress and during adaptation of responses to chronic
stress (4, 5, 21).

Glucocorticoids provide inhibitory feedback responses over
fast (seconds to minutes) and longer (hours to days) timescales
(4, 18, 22–24). The rapid effects involve immediate reduction in
miniature EPSC frequency upon application of corticosterone or
dexamethasone (synthetic GC) in the PVN (25), and reduced
ACTH and corticosterone levels, an effect not observed when
membrane impermeable dexamethasone was used, indicating fast
feedback inhibition (26). Similar rapid effects of corticosterone
on mEPSC in the hippocampus have been observed (27, 28). Thus
both short time scale (perhaps non-genomic) and longer time
scale (genomic) actions of GC together mediate the inhibitory
feedback control. The molecular and neurobiological processes
that underpin passive and active resilience are being investigated
and candidates are regulators of the HPA axis, molecules involved
in the architecture of the synapse and signaling molecules asso-
ciated with neural plasticity [reviewed by (2)]. GCs represent the
end product of the HPA axis and influence many functions of the
central nervous system, such as arousal, cognition, mood, sleep,
metabolism, and cardiovascular tone, immune, and inflammatory
reaction (Figure 1).

Repeated traumatic events induce long-lasting behavioral
changes that affect cognitive, emotional, and social behaviors that
ultimately provide an organism protection or survival. The abil-
ity to handle stress may depend on an individual’s HPA axis
responsiveness that may in turn predict the likelihood of develop-
ing neuropsychiatric disorders such as addiction. However, under
chronic stress this feedback becomes dysregulated leading to the
variety of maladaptive syndromes, such as anxiety and various
forms of depressive disorders (1, 5, 29–33) and addiction, includ-
ing alcohol dependence (34). It has been shown that dysregulation

FIGURE 1 | Schematic representation of the interaction between
glucocorticoids, orexins, and the cholinergic system in regulating
stress responses. Stress activates the release of glucocorticoids from the
adrenal gland, which then feedback into the brain and target both the HPA
axis and extra-hypothalamic sites like the hippocampus and the amygdala.
Orexins also activate the HPA axis and lead to the production of
glucocorticoids and stimulate the release of CRF from the PVN of the
hypothalamus and the central amygdala. The third player are the nicotinic
receptors (nAChRs) which indirectly regulate ACTH release by acting on the
PVN.

of the HPA axis by chronic and uncontrollable stress leads to
abnormal GC secretion (35, 36). GRs mediate adaptation to stress
and regulate termination of the stress response through negative
feedback at the level of the HPA axis (30–32). GCs can dynamically
regulate tissue sensitivity in a stochastic manner (5) and con-
trol the response to chronic stress. GCs regulate tissue and organ
sensitivity by modulating GRs signaling, ligand availability, recep-
tor isoform expression, intracellular circulation, and promoter
association (30–32).

GLUCOCORTICOID RECEPTORS IN MALADAPTIVE STRESS
RESPONSES: THE ROLE OF CHANGES IN PLASTICITY IN THE
AMYGDALA
The amygdala is a key brain region that is involved in process-
ing stress, fear, and pavlovian conditioning, and is a site where
neuroendocrine signals stimulated by fear and stress interact. It
has been proposed that the balance between hippocampal and
amygdalar learning is important for determining behavioral stress
coping choices. Chronic restraint stress increases dendritic growth
and spine density in the basolateral amygdala (BLA) and is in
contrast to its role in the hippocampus. The changes in the hip-
pocampus return to baseline during recovery, whereas those in the
amygdala are long lasting (37). Neurotrophic factors like BDNF
mediate the stress-induced alternations in these brains regions. A
recent study demonstrated that increased levels of BDNF are found
in response to chronic stress in the BLA, whereas decreased levels
were observed in the hippocampus (38). Animals which escape
from aggressive interactions seem to have a more robust BDNF
expression profile in the hippocampus and less in the amygdala,
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while the opposite behavior (of stay and face the opponent) have
the opposite effect (39). Thus stress activates neurotrophic fac-
tors in different brain regions and is thought to be mediated by
the GR system. Mice with a targeted genetic deletion of the GR,
specifically in the central nucleus of the amygdala (CeA) but not
in the forebrain have decreased conditioned fear responses (40).
In contrast, targeted forebrain disruption of GRs, excluding the
CeA, did not. It is known that the GRs in BLA are involved in
consolidation of emotionally arousing and stressful experiences in
rodents and humans by interacting with noradrenaline. Human
studies have demonstrated that interactions between noradren-
ergic activity and glucocorticoid stress hormones can bring out
disruptions in the neural basis of goal-directed action to habitual
stimulus-response learning (41). Recently, it was shown that fol-
lowing acute stress, LTP induction is facilitated in the BLA by both
β-adrenergic and GRs activation (42). Taken together, there are
circuit specific changes underlying learning during stressful con-
ditions, animals that are susceptible to stress have greater increases
in synaptic activity in fear-related circuits such as the amygdala
compared to animals that are resilient to stress.

GLUCOCORTICOIDS DRIVE CHANGES IN PLASTICITY IN THE
HIPPOCAMPUS AND CORTICAL REGIONS IN RESPONSE TO
STRESS
Glucocorticoid receptors in the hippocampus control homeostasis
during healthy conditions and then play a role in driving changes
in plasticity in response to stressful conditions (43, 44). Early life
experiences that ultimately control an individual’s HPA respon-
sivity to stressful stimuli are modulated by GR gene expression in
the hippocampus and frontal cortex (45). Hippocampal GRs play
a role in the formation of long-term inhibitory avoidance memory
in rats by inducing the CaMKIIα-BDNF-CREB-dependent neural
plasticity pathways (46). In a separate study, chronic exposure
to corticosterone resulted in impaired ability to learn response
outcomes (47). Memory consolidation is thought to be medi-
ated by the GR, while appraisal and responses to novel informa-
tion is processed by the MR. Human and rodent studies suggest
that under stressful conditions there is a switch from cognitive
memory mediated by the hippocampus to habit memory medi-
ated by the caudate nucleus (48, 49). In fact, mice deficient in
MR receptors have impaired spatial memory, however they were
rescued from further deterioration by stimulus-response mem-
ory following stress (50). Similarly, following an acute stressor,
GRs are activated and induce synaptic plasticity in the PFC by
increasing trafficking and function of NMDARs and AMPARs
(51). Furthermore, when the MR was overexpressed in the fore-
brain of mice using a CAMkIIa promoter driven expression of
HA-tagged human MR cDNA, the mice showed improved spatial
memory, reduced anxiety without alteration in baseline HPA stress
responses (52). There is mounting evidence that GCs participate
in the formation of memories in specific circuits that govern stress
responses and consequently responses to substances of abuse and
alcohol.

GLUCOCORTICOIDS IN THE DEVELOPMENT OF ADDICTION
Chronic exposure to stress leads to alterations in the homeostatic
functioning of GCs (29). Furthermore, there is significant dysreg-
ulation of the HPA axis following alcohol dependence. It has been

shown that acute voluntary ethanol self-administration increases
corticosterone levels, in contrast, long-term ethanol exposure in
rodents results in a blunted response suggesting the alcohol depen-
dence leads to dysregulation of the HPA axis (53). Transient
overexpression of GR in young animals is both necessary and suf-
ficient for bringing about profound changes in the transcriptome
in specific brain regions leading to a lifelong increase in vulnera-
bility to anxiety and drugs of abuse (54). The modified transcripts
have been implicated in GR and axonal guidance signaling in den-
tate gyrus and dopamine receptor signaling in nucleus accumbens
(NAc) (54). Furthermore, in some individuals, following exposure
to stress and psychological trauma, GCs can promote escalated
drug-taking behaviors and induce a compromised HPA axis. GCs
can cross-sensitize with stimulant drug effects on dopamine trans-
mission within the mesolimbic dopamine reward/reinforcement
circuitry (55) and increase susceptibility to developing addictive
behaviors (56–58) by increasing the synaptic strength of dopamin-
ergic synapses (59). Importantly, the dopamine responses in the
NAc core, but not the shell, have been shown to respond to fluc-
tuating levels of GCs (60). Deficiencies in the GR gene in mice
specifically in dopaminergic neurons expressing dopamine D1
receptors that receive dopaminergic input had decreased cocaine
self-administration and dopamine cell firing (61). Acute exposure
or binge-like ethanol exposure alter GC levels and promote PFC
GC-regulated gene expression (62) and neurodegeneration that
is dependent on type II GRs (63). GCs induce ethanol associ-
ated plasticity of glutamatergic synapses that have been proposed
to underlie the development of ethanol dependence, reviewed
in (64).

It has been shown that there is a correlation between acute
alcohol withdrawal and downregulation of GR mRNA in the PFC,
NAc, and bed nucleus of the stria terminalis (BNST), while pro-
tracted alcohol abstinence correlated with upregulated GR mRNA
in the NAc core, ventral BNST, and CeA (65, 66), reviewed in
(67). The transition from initial voluntary drug use to subse-
quent compulsive drug use has been proposed to reflect a switch
from goal-directed to habitual control of action behavior (68).
The investigators propose that acute stressors reinstate habitual
responding to drug-related cues and repeated stress may promote
the transition from voluntary to compulsory drug use. GCs are ide-
ally positioned to regulate a diverse array of systems that modulate
the development of addiction. In the following sections, we review
the interplay between GCs and the orexinergic and cholinergic
systems.

THE OREXINERGIC SYSTEM
The most studied biological functions of orexins/hypocretins are
in the central control of feeding, sleep, energy homeostasis, and
reward-seeking. Orexin-A and orexin-B (also called hypocretin-1
and -2) interact with two orexin/hypocretin receptor subtypes,
the Orexin1 Receptor (OX1R) and Orexin2 Receptor (OX2R)
which bind to either or both orexin-A and orexin-B (69, 70).
Initial discoveries on the role of orexins came about with iden-
tification of deficiencies in the genes either encoding orexin or
the OX2R receptor resulting in canine narcolepsy, implicating
the role of ORX/Hcrt system in the regulation of sleep and
wakefulness (71, 72). Orexin-A and orexin-B have been shown
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to increase food intake that is blocked by selective antagonists
(73, 74). In addition, orexinergic fibers innervate various brain
regions involved in energy homeostasis, such as the ventrome-
dial hypothalamic nucleus, the arcuate nucleus, and the PVN
of the hypothalamus (75). Orexins regulate autonomic func-
tions, such as regulation of blood pressure and heart rate (76).
Thus these neuropeptides are in a unique position to respond to
stress.

ROLE OF OREXINS IN STRESS AND ACTIVATION OF THE HPA
AXIS
Arousal is an important element of the stress response and the
orexin system is a key component of the response to stress. Pro-
jections from perifornical nucleus and the dorsomedial nucleus
of the hypothalamus are also implicated in addictive behaviors,
however their role in arousal and concomitant stress has been the
main focus (77). Orexins modulate the HPA axis in response to
different stressful stimuli. Prepro-orexin mRNA expression was
increased in the lateral hypothalamus (LH) in young rats follow-
ing immobilization stress and in adult rats following cold stress
(78). OX-A activates the HPA axis inducing secretion of ACTH
and corticosterone (79). OX-A, but not OX-B, increases gluco-
corticoid secretion from rat and human adrenal cortices by direct
stimulation of adrenocortical cells via OX1R coupled to the adeny-
late cyclase-dependent cascade (79) (Figure 1). Intracerebroven-
tricular (I.C.V) administration of OX-A enhanced ACTH and
corticosterone release (80–82). It has been proposed that orexin
neurons play an integrative role that links autonomic responses to
arousal and/or vigilance during the fight-or-flight response (83)
(Figure 2).

ROLE OF OREXINS IN ADDICTION
Along with the many functions performed by orexins, the most
intriguing is their role in the reward system. Orexin contain-
ing neurons project from the LH to the ventral tegmental area
(VTA) and NAc, the brain regions that comprise the mesolimbic
“reward pathway” (84–86). OXRs have recently been implicated
in the motivational drive for addictive substances such as mor-
phine, cocaine (87–91), and alcohol (92–97). The OX1R plays
a specific role in ethanol self-administration, cue, and stress-
induced relapse, reviewed in (98) with a more limited role for
OX2R being shown (99). The orexin system has also been impli-
cated in relapse to drug use. The OX1R plays a role in foot-shock
stress-induced reinstatement of cocaine (100, 101) and cue and
yohimbine induced reinstatement of ethanol-seeking (94, 96, 102).

The central amygdaloid projections regulate the HPA axis and
innervate orexin containing neurons in the lateral hypothalamus.
The extended amygdala which includes the CeA, BNST, and the
NAc are critical brain areas that process emotional behaviors such
as anxiety, fear, stress, and drug addiction. In particular, the CeA
and BNST have been shown to play an important role in anxiety-
related behaviors and voluntary ethanol consumption (103). The
extended amygdala, including the CeA, has been shown to play a
critical role in the reinstatement behavior to drugs of abuse. Inac-
tivation of the CeA, but not the BLA, prevents foot-shock-induced
reinstatement of cocaine-seeking (104). Dense orexinergic inner-
vation is also observed in all these brain regions (76, 105, 106).
These brain regions also express stress peptides such as corti-
cotrophin releasing factor (CRF) and anti-stress peptides such as
neuropeptide Y (NPY). Both these neuropeptides have opposing
actions in the CeA and regulate ethanol consumption. OX-A

FIGURE 2 | Glucocorticoid, orexinergic, and cholinergic activation of the
brain regions involved in stress and drug addiction. Glucocorticoid
receptors in the hippocampus and amygdala mediate the effects of stress
and consolidation of fearful memories. GCs also modulate alcohol
withdrawal in the prefrontal cortex (PFC), nucleus accumbens (NAc), and
bed nucleus of the stria terminalis (BNST). Glucocorticoids (GCs) in the
hippocampus also negatively regulate the hypothalamus thereby providing a
central feedback mechanism. Orexins produced in the hypothalamus

activate reward pathways such as the ventral tegmental area (VTA) and the
NAc and brain regions involved in stress, fear, and anxiety such as the
amygdala and BNST and regulate cardiovascular tone through the locus
coeruleus (LC). Both GCs and orexins play similar roles in brain regions
implicated in stress and reward. Glucocorticoids have been shown to
directly inhibit nicotinic receptor (nAChR) activity in the hippocampus that
exert an inhibitory effect on the HPA axis. The nAChRs seem to differentially
orchestrate responses to stress.
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infusions into the BNST produce anxiety like responses as mea-
sured by social interaction test and elevated plus maze test and
the effect is mediated by NMDA receptors (107). A recent study
also demonstrated that yohimbine activates orexinergic responses,
but not adrenergic receptor activity, and depressed excitatory neu-
rotransmission in the BNST that contributed to reinstatement of
extinguished cocaine CPP (108). Thus the orexinergic system is
involved in mediating stress-induced drug-seeking behavior as
it recruits multiple brain regions involved in processing stressful
stimuli and addictive behaviors. It is essential to understand the
contribution of orexins in the overlap between stress and reward
systems. Identifying circuits that mediate stress-induced relapse to
drug abuse will be necessary in order to develop targeted phar-
macotherapeutic approaches for stress-induced drug relapse. The
dual orexin receptor antagonist, suvorexant (109) has successfully
completed phase III clinical trials in treating primary insomnia
and is currently under FDA review. If approved, this will be the
first FDA orexin antagonist available for treating sleep-disorders
and has the potential to be repurposed for its efficacy in treating
stress and addictive disorders.

INTERACTIONS BETWEEN THE CHOLINERGIC SYSTEM AND
HPA AXIS
Allostasis, a process by which homeostasis is regained after stress,
occurs by the interaction between the PFC, amygdala, and the hip-
pocampus via the HPA axis (110–113). In this process a number
of neurotransmitters and neuromodulators such as acetylcholine,
glutamate, and GABA, have been shown to be differentially mod-
ulated. Here, we review the involvement of the components
of the cholinergic pathway in reacting to, sustaining, and even
exacerbating stress.

Components of the cholinergic pathway are – the ligand, acetyl-
choline (ACh); the enzyme responsible for the breakdown of
acetylcholine, acetylcholinesterase (AChE); the enzyme involved
in synthesizing ACh, choline acetyltransferase (ChAT); and, the
acetylcholine receptors, nicotinic acetylcholine receptor (nAChR),
and muscarinic acetylcholine receptor (mAChR). We are focus-
ing specifically on the nicotinic receptor – nAChR – in relation
to the cholinergic response to stress. By focusing on the nAChR-
cholinergic pathway, it is not our purpose to suggest that nAChR is
the only or a more important player mediating responses to stress.
Rather, it is intended that this review highlights the interactions
of the glucocorticoid pathway (mediated via the HPA) and the
nAChR-cholinergic pathway in relation to stress.

It is well known that the nAChRs are involved in learning and
memory (114, 115). Additionally, the negative effects of chronic
stress on memory are also well established (116, 117). Indeed,
as early as 1968, the hippocampus was recognized as a target
structure for stress hormones (118) with observations that acetyl-
choline release into the hippocampus (119, 120) increased under
various stress models (121). Transgenic mouse knock-out mod-
els have shown the importance of the α4 (122), β3 (123), and
β4 (124) nAChR subunits in mediating the anxiogenic effects
of stress. Furthermore, the α5 and β4 knock-out mice are less
sensitive to nicotine (125, 126), a potent anxiolytic agent (127–
129) at lower doses (130). Indeed, the α7 and α4β2 nAChRs,
which are the primary targets of nicotine, have been shown

to provide a nicotine-mediated neuroprotective effect in stress-
induced impairment of hippocampus-dependent memory (131).
The hippocampus has been shown to exert an inhibitory effect on
the HPA axis (132–136), thus lowering stress. Taken together, the
nAChR seem to differentially orchestrate responses to stress via its
various subunits.

Activation of the stress response is due to the cascading efflux
of CRH, ACTH, and cortisol. Nicotine, a potent ligand at nAChRs,
in relatively high doses (2.5–5.0 µg/kg) has been shown to pro-
duce a dose-dependent increase in ACTH (137), and its antago-
nist, mecamylamine, has been shown to block nicotine-stimulated
ACTH release (137, 138). In the brain, the region responsible for
the CRH-mediated ACTH release is the parvocellular region of
the PVN (pcPVN) of the hypothalamus (139, 140). It has, how-
ever, been shown that nicotine mediates ACTH release indirectly,
via the nicotinic receptors on the nucleus tractus solitarius (NTS)
(141, 142). The NTS subsequently mediates action potentials via
various afferents to the pcPVN (143, 144). The nAChR in the
NTS are found pre-synaptically on glutamatergic projections to
the pcPVN (145, 146). Further, the nAChR subunits implicated
in the nicotine-mediated effects of ACTH in this pathway are
the β4-containing nAChRs (most likely α3β4

∗) but not the α4β2

as determined by measurements of mEPSCs in the presence of
DHβE, a potent α4β2 inhibitor or cytisine, a potent β4

∗-nAChR
agonist (146). Therefore, while the α4β2 and α7 nAChR subunits
modulate nicotine-mediated roles elsewhere (131), in the NTS it
is a different subtype (146), pointing yet again to a nAChR-based
differential modulation to stress (Figure 1).

GLUCOCORTICOID INTERACTIONS WITH THE CHOLINERGIC
SYSTEM
Glucocorticoids have been shown to directly inhibit nAChR activ-
ity (147–149). This is supported by the fact that stress causes a
down regulation of the nAChR in the rat cerebral cortex and mid-
brain (150). Additionally, steroid antagonists have been shown
to upregulate nAChR expression (151). That GCs can directly
affect nAChR activity via receptor binding or alteration of expres-
sion levels can be explained by the presence of glucocorticoid
response elements (GRE) on genes transcribing the α7 subunit of
the nAChR – CHRNA7 (152). Indeed, GREs have also been identi-
fied on genes for ChAT (153) and AChE (154), components of the
cholinergic pathway. Further research is required to study the pre-
cise effects of these GREs in this pathway along with investigating
if these GRE are also present on other nAChR genes.

Other components of the cholinergic pathway too have been
shown to be affected by stress. AChE, responsible for the timely
degradation of ACh, has been shown to be regulated via alter-
native splicing thus modifying neurotransmission (155). Indeed,
miRNA post-transcriptional modification of AChE from its usual
AChE-S to the read-through form AChE-R alters cholinergic trans-
mission (156). Additionally, post-transcriptional modulation of
AChE, again via miRNA, causes hippocampal-related cognitive
defects (157). As stated earlier, AChE expression is controlled at
the genomic level via the GRE (154) as is ChAT (153). Also, ChAT
protein levels were shown to decrease due to chronic stress (158).
At the epigenetic level, there is stress-induced epigenetic tran-
scriptional memory of AChE via HDAC4 (159). Interestingly, in
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this study a GRE was also identified on HDAC4 (159), suggest-
ing a direct epigenetic effect of stress on AChE. All these results
point to a multi-faceted mechanism whereby the stress-induced
cholinergic response is regulated without the over-articulation
of its response that would undoubtedly lead to various stress-
related neuropathologies such as PTSD (160, 161), alcohol addic-
tion (162, 163), and addiction to other substances of abuse
(164, 165).

In summary, the involvement of the different subtypes of the
nAChR in different regions of the brain along with modulation
of the cholinergic pathway at various stages such as transcrip-
tional, post-transcriptional, and epigenetic modifications, point
to a finely modulated system both temporally and spatially that
is attuned to respond to the various stressors that we are faced
with in our daily lives. Lastly, while this review has focused
on the nAChR and the cholinergic pathway, the involvement
of the muscarinic receptor and a myriad other neural circuits
cannot be understated. Indeed the ultimate goal of this field
of research is to understand sufficiently the intricate interplay
between the various pathways and neural circuits that ultimately
will enable the alleviation of stress-induced morbidity via devel-
opment of more effective pharmacotherapeutic strategies against
stress.

PHARMACOTHERAPEUTIC STRATEGIES
Ample evidence exists to demonstrate that type II GRs are impor-
tant therapeutic targets for the treatment of disorders that result
from maladaptive stress responses. Mifepristone, also known as
RU486, is a derivative of the 19-norprogestin norethindrone and
potently competes with type II GRs and progesterone receptors
(PRs). Mifepristone has been shown to reduce reinstatement of
ethanol-seeking and escalated drinking in two different animal
models (66, 166). Furthermore, mifepristone has been shown to
be effective at reducing the self-administration of amphetamine

(167), cocaine (168, 169), morphine (170), and ethanol (57, 66,
162, 166, 171–175). A recent study also demonstrates the effective-
ness of mifepristone in reducing withdrawal symptoms of alcohol
(176). The anti-glucocorticoid activity of mifepristone has made it
a potential treatment for Cushing’s syndrome (177) and neurolog-
ical and psychological disorders (178–183). Mifepristone offers a
promising way to temporarily reset the stress response system that
has become maladapted following chronic and long-term alcohol
consumption.

CONCLUSION
Learning to cope with life and/or stress or learning to be sus-
ceptible to stress involves dynamic regulation of plasticity in
brain circuits that govern stress response pathways. As the brain
can be remodeled by experience and neural circuits are adapt-
able and dynamically regulated, this suggests it is possible to
change the brain or learn how to cope with stress and over-
come addiction and learn to become more resilient. The mole-
cular pathways and circuits that govern resilience are gradually
being uncovered and this will provide opportunities for iden-
tifying novel strategies that overcome the impact of addiction
on the brain combined with possible novel pharmacotherapeu-
tic strategies that target pro-resilience pathways. In this review,
we focused on the role of glucocorticoid hormones, as they have
the capacity to provide system-wide feedback during acute and
chronic stress and provide a way forward to interrogate and reset
brain networks. Understanding the molecular mechanisms that
govern mechanisms that the brain utilizes to protect from the
deleterious effects of stress will provide exciting new avenues in
neuroscience.
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