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Early life adversity can have a significant long-term impact with implications for the emer-
gence of psychopathology. Disruption to mother-infant interactions is a form of early life
adversity that may, in particular, have profound programing effects on the developing brain.
However, despite converging evidence from human and animal studies, the precise mech-
anistic pathways underlying adversity-associated neurobehavioral changes have yet to be
elucidated. One approach to the study of mechanism is exploration of epigenetic changes
associated with early life experience. In the current study, we examined the effects of post-
natal maternal separation (MS) in mice and assessed the behavioral, brain gene expression,
and epigenetic effects of this manipulation in offspring. Importantly, we included two differ-
ent mouse strains (C57BL/6J and Balb/cJ) and both male and female offspring to determine
strain- and/or sex-associated differential response to MS. We found both strain-specific
and sex-dependent effects of MS in early adolescent offspring on measures of open-field
exploration, sucrose preference, and social behavior. Analyses of cortical and hippocampal
mRNA levels of the glucocorticoid receptor (Nr3c1) and brain-derived neurotrophic factor
(Bdnf ) genes revealed decreased hippocampal Bdnf expression in maternally separated
C57BL/6J females and increased cortical Bdnf expression in maternally separated male
and female Balb/cJ offspring. Analyses of Nr3c1and Bdnf (IV and IX) CpG methylation indi-
cated increased hippocampal Nr3c1 methylation in maternally separated C57BL/6J males
and increased hippocampal Bdnf IX methylation in male and female maternally separated
Balb/c mice. Overall, though effect sizes were modest, these findings suggest a complex
interaction between early life adversity, genetic background, and sex in the determination
of neurobehavioral and epigenetic outcomes that may account for differential vulnerability
to later-life disorder.

Keywords: maternal separation, postnatal, brain, epigenetic, mice, strain differences, sex-dependent

INTRODUCTION
The experience of adversity in the early stages of development
can have a profound impact on psychological and physical health.
In humans, this phenomenon is illustrated in studies of prena-
tal exposure to stress and nutritional deprivation (1–4) as well as
studies of postnatal neglect and abuse (5–7). Maternal exposure
to famine during pregnancy has been found to predict increased
risk of schizophrenia and antisocial personality disorder (8, 9)
and a history of childhood neglect is associated with an increased
risk of depressive disorders, drug abuse, and suicidality (6, 10).
Importantly, these adverse experiences may not be deterministic
in predicting later-life disorder, but instead generate a vulnerabil-
ity to later-life stress or trauma. This model of disease etiology is
perhaps best illustrated in the pathophysiology of post-traumatic
stress disorder (PTSD). Risk of PTSD is significantly higher in indi-
viduals who have experienced early life stress (e.g., physical/sexual
abuse, neglect) (11, 12) and individuals who experience early life
stress are more likely to be exposed to trauma in later-life (13,
14). However, it is notable that only a relatively small percentage
of individuals that experience early life trauma (approximately
25%) develop PTSD (15). Thus, understanding the factors that

promote both risk and resilience to the effects of early life adversity
is essential to further exploration of psychiatric dysfunction.

Though epidemiological and clinical studies have been infor-
mative regarding the consequences of exposure to prenatal and
postnatal adversity, studies of the underlying biological mecha-
nisms of these exposures have relied primarily on animal models.
In primates and rodents, prolonged separations between mother
and offspring have been used to model elements of childhood
neglect/maltreatment and have provided experimental evidence
for the emergence of neurobiological and behavioral abnormal-
ities associated with this form of adversity (6). These studies
have identified many changes, including altered hypothalamic-
pituitary-adrenal (HPA) function (16, 17) and neuronal plasticity
(18, 19), that are shaped by postnatal maternal separation (MS).
More recently, epigenetic changes have been identified which may
underlie these enduring physiological and neurobiological effects
(20, 21). Epigenetic modifications, such as DNA methylation and
post-translational histone modification, have been the increas-
ing focus of efforts to determine the molecular pathways through
which adversity becomes biologically embedded within the brain
and other tissues (22). In humans, the experience of severe social
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deprivation (i.e., institutionalization from birth) or childhood
abuse has been associated with altered DNA methylation profiles
(23, 24). Psychiatric dysfunction is likewise linked to epigenetic
variation in target genes and brain regions that have previously
been implicated in the pathophysiology of these disorders (25–27).
However, when considering the link between adversity, neurobio-
logical dysfunction, and disorder, these human studies are limited
by reliance on peripheral tissues (such as blood lymphocytes) or
on post-mortem brain tissue, which may not necessarily map onto
etiologically relevant epigenetic variation in the developing brain.
Thus, animal models will continue to be critical methodological
approaches in furthering our understanding of environmentally
induced molecular and neurobiological change.

In the current study, our aim was to both determine the
behavioral, brain gene expression, and DNA methylation changes
induced by postnatal MS in mice and to determine whether these
effects varied dependent on offspring strain and sex. There are a
wide range of mouse strains/genotypes available for experimen-
tal laboratory studies and the “strain differences” in behavior of
these mice have been well documented (28–32). Moreover, there
is increasing evidence for the differential response of different
strains of mice to environmental variation (33, 34). This differen-
tial responsiveness to environmentally induced behavioral change
may also manifest in differential neurobiological and epigenetic
change (35–38). Here we determined the effect of postnatal MS
on C57BL/6J (B6) and Balb/cJ (Balb/c) mice – two strains with
highly divergent behavioral phenotypes, particularly on measures
of social/maternal, anxiety-like, and depressive-like behaviors (31,
35, 39, 40). In addition, within both strains, we determined the
impact of MS on both male and female offspring. Sex-dependent
effects of adversity have been shown in studies of prenatal stress
(41, 42), in utero toxin exposure (43, 44), and postnatal mal-
treatment/neglect (45) and there is a significant sex-bias in the
prevalence of most forms of psychopathology (46). Thus, it is
of critical importance to understand the interaction between sex
and exposure to adversity at a neurobiological and molecular level
of analysis to determine the pathways through which these sex-
dependent effects emerge. Moreover, there is increasing evidence
that sex differences in themselves are associated with epigenetic
variation – likely due to both genetic and hormonal differences
between males and females (47, 48). Mother-infant interactions
during postnatal development may likewise induce sex differences
and have sex-dependent effects (49). Our experimental approach,

through incorporation of both sex and strain was hypothesized
to identify key variables that contribute to risk or resilience to
adversity-induced effects.

RESULTS
Study design is presented in Figure 1. The MS protocol (see
Materials and Methods), involving prolonged, daily separation
between dams and litters from postnatal days (PND) 1–14, was
implemented in B6 and Balb/c mice and compared to a control
rearing condition (standard laboratory rearing with no separa-
tion). From PND35 to PND 40, offspring were assessed on the
following behavioral measures: open-field, sucrose preference, and
social interaction. Following behavioral testing, in a subset of off-
spring, brains were dissected (prefrontal cortex and hippocampus)
for analyses of gene expression and DNA methylation of the gluco-
corticoid receptor (Nr3c1) and brain-derived neurotrophic factor
(Bdnf) genes. These gene targets were chosen as they have been
previously demonstrated: (1) to be epigenetically regulated by
DNA methylation (50, 51), (2) to exhibit plasticity in expression
in response to a broad range of environmental exposures (23, 50,
52–54), and (3) to be within mechanistic pathways involved in
HPA responsivity and neuroplasticity that have been implicated in
the pathological psychiatric outcomes linked to the experience of
adversity (55, 56).

MATERNAL SEPARATION EFFECTS ON OPEN-FIELD ACTIVITY AND
EXPLORATION
The open-field test is a standard measure of response to a novel
environment (57). Activity (total distance traveled within the field)
and exploration (movement within the anxiogenic inner area of
the field) in rodents have been shown to differentiate individ-
uals based on the experience of early life adversity (58, 59). In
B6 mice, we found a rearing condition by sex interaction [F(1,
36)= 4.64, p < 0.05] on total distance traveled during testing,
such that MS-reared males exhibited increased activity levels com-
pared to control-reared males, with no rearing effect in B6 females
(Figure 2A). In contrast, MS had no effect on activity levels in
Balb/c mice (Figure 2B). Latency to enter the inner/anxiogenic
area of the open-field was not found to be altered by rearing condi-
tion in B6 mice (Figure 2C). In Balb/c mice, we found a significant
sex-specific rearing condition effect on this measure, with MS-
reared females exhibiting shorter latencies to enter the inner area
compared to control-reared females [χ2(1, 19)= 8.13, p < 0.01;
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FIGURE 1 | Summary of experimental design.
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Figure 2D]. Time spent in the inner area of the open-field, a typ-
ical measure of anxiety-like behavior (57), was not found to be
altered by rearing condition in B6 or Balb/c mice (Figures 2E,F).

MATERNAL SEPARATION EFFECTS ON SUCROSE PREFERENCE
Preference for sucrose vs. water is used as a measure of reward sen-
sitivity or hedonic motivation and in animal models of depression,
a reduction in preference for sucrose is typically observed (60–
62). Consistent with previous reports (63), we found Balb/c mice
to have overall reduced sucrose preference compared to B6 mice.
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FIGURE 2 | Open-field behavioral effects of MS-rearing in B6 and
Balb/c mice. Open-field activity (total distance traveled) was (A) increased
in MS-reared B6 males (p < 0.05) with (B) no effects in Balb/c mice.
Latency to enter the inner area of the open-field was (C) not altered by MS
in B6 mice and (D) was decreased in MS-reared Balb/c females (p < 0.01).
No effects of MS were observed on time spent in the inner area of the
open-field in (E) B6 or (F) Balb/c mice. *p < 0.05, **p < 0.01 (control vs. MS
comparisons).

All mice exhibited a higher than 50% average sucrose consump-
tion (range 53–95%), indicating that the sucrose solution used was
sufficiently rewarding and that no aversion to the sucrose solution
was observed. We classified mice as having a preference for sucrose
if they consumed more than 75% sucrose (as a percentage of total
consumption) across the 3-day testing period. This definition of
“preference” is consistent with previous studies of motivation in
which the preferred stimulus must be favored 25% more than
the comparison stimulus (64). Within B6 mice, both males and
females that had experienced MS displayed reduced sucrose prefer-
ence [males: χ2(1, 18)= 2.38, p < 0.05; females: χ2(1, 19)= 2.22,
p < 0.05; Table 1]. Interestingly, within Balb/c mice, we observed
sexual dimorphism in sucrose preference in control animals (males
consumed more sucrose than females) that was reversed by MS;
MS-reared males exhibited reduced sucrose preference whereas
MS-reared females exhibited elevated sucrose preference [males:
χ2(1, 19)= 2.45, p < 0.05; females: χ2(1, 19)= 2.78, p < 0.05;
Table 1].

MATERNAL SEPARATION EFFECTS ON SOCIAL APPROACH AND
AGGRESSION
Deficits in social behavior are a core feature in many forms of
psychopathology (65) and impaired social interactions have been
observed following exposure to reduced mother-infant interac-
tions (66). Latency to sniff and aggressive behavior during dyadic
social encounters with a novel stimulus mouse (129Sv strain) were
assessed in control-reared vs. MS-reared mice. In B6 mice, we
found a sex-specific rearing condition effect on latency to sniff
the stimulus mouse, with shorter latencies observed amongst MS-
reared B6 males [χ2(1, 16)= 7.61, p < 0.05] and no effect of
rearing condition in B6 females (Figure 3A). No rearing con-
dition effects were observed in Balb/c mice (Figure 3B). Across
strains, aggressive behavior was only observed in males. Likeli-
hood of displaying aggressive behavior was significantly increased
in MS-reared Balb/c males (control: 66.7% vs. MS: 90%, p < 0.05)
while this effect was not observed in B6 males (control: 30.5% vs.
MS: 42.9%).

EFFECT OF MATERNAL SEPARATION ON CORTICAL AND HIPPOCAMPAL
GENE EXPRESSION
Within the prefrontal cortex and hippocampus, we analyzed rela-
tive mRNA levels of Nr3c1 and Bdnf. In B6 mice, MS was generally
associated with a decrease in Nr3c1 and Bdnf, though this effect was
only statistically significant for Bdnf mRNA levels within the hip-
pocampus (Table 2). Here we found a significant rearing condition

Table 1 | Percentage of mice exhibiting sucrose preference.

Control % MS %

B6 Male 63 43*

Female 56 28*

Balb/c Male 50 20*

Female 30 60*

Statistically significant MS-induced effects are indicated in bold font; *p < 0.05

control vs. MS.

www.frontiersin.org August 2013 | Volume 4 | Article 78 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Molecular_Psychiatry/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Kundakovic et al. Strain-dependent effects of adversity

A          B

la
te

n
c
y
 t
o
 s

n
if
f 
s
ti
m

u
lu

s
 (

s
)

*

0

10

20

30

40

50

male female

control

MS

0

10

20

30

40

50

male female

control

MS

la
te

n
c
y
 t
o
 s

n
if
f 
s
ti
m

u
lu

s
 (

s
)

c/blaB6B

FIGURE 3 | Effects of MS-rearing on social behavior. Latency to sniff a
novel mouse during dyadic social interactions was (A) decreased in
MS-reared B6 males (p < 0.01) with no effect observed on this measure in
(B) Balb/c mice. *p < 0.05 (control vs. MS comparisons).

by sex interaction [F(1, 23)= 3.90, p < 0.05], where B6 females
that experienced MS had decreased Bdnf mRNA, with no rearing
effect in males. In Balb/c mice, we found increased Bdnf mRNA
in the prefrontal cortex of MS mice [both sexes; F(1, 23)= 8.05,
p < 0.01; Table 2]. No other gene expression changes were noted
in this mouse strain.

DNA METHYLATION CHANGES ASSOCIATED WITH MATERNAL
SEPARATION
We analyzed DNA methylation across 8 CpG sites within the Nr3c1
promoter region (see Figure 4A), which is highly homologous to
the rat exon 17 GR promoter (50); this region also contains the
binding site for the transcription factor NGFI-A (CpGs 7 and 8;
Figure 4A). Analyses were conducted on average levels of DNA
methylation across the 8 CpG sites to reduce multiple testing. In
B6 mice,we found a significant rearing condition by sex interaction
[F(1, 23)= 3.85, p < 0.05; Figure 5A], with elevated hippocampal
CpG methylation in MS-reared males and no rearing effects in
females. No rearing effects on GR methylation were detected in
Balb/c mice (Figure 5B) or in the prefrontal cortex of B6 mice
(Figure 5A). Within both strains, we found differences in CpG
methylation associated with sex, such that in the prefrontal cor-
tex there were elevated levels of methylation in females compared
to males [B6: F(1, 23)= 6.90, p < 0.05; Balb/c: F(1, 23)= 5.08,
p < 0.05]. Within the hippocampus, the converse was evident in
Balb/c mice, with males having elevated DNA methylation levels
compared to females [F(1, 23)= 14.74, p < 0.01; Figure 5].

We examined DNA methylation status of two regions of the
Bdnf gene known to be epigenetically regulated: promoter region
IV (51, 69) and promoter region IX (70) (see Figure 4B). Within
the Bdnf IV promoter region, we analyzed DNA methylation across
four CpG sites, including the CpG that lies within the binding
site of the transcription factor CREB (CpG 1; Figure 4B). As
with Nr3c1, analyses were conducted on average levels of DNA
methylation across Bdnf CpG sites to reduce multiple testing. We
found no rearing effects on DNA methylation (Figures 5C,D).
Within the Bdnf IX promoter region (see Figure 4B), we analyzed
DNA methylation across 5 CpGs. We found a rearing condition

effect in the hippocampus of Balb/c mice, with increased DNA
methylation associated with MS (both sexes) [F(1, 23)= 4.82,
p < 0.05; Figure 5F]. No other rearing effects were determined
(Figures 5E,F). Within promoter IX of the Bdnf gene, B6 males
were found to have elevated hippocampal DNA methylation
compared to females [F(1, 23)= 51.43, p < 0.001].

DISCUSSION
Our findings support the hypothesis that MS induces changes in
behavior, brain gene expression, and DNA methylation in inbred
mice. These findings also provide evidence for strain differences
in response to MS and the interaction between sex and rearing
experience in the prediction of these outcome measures. It does
not appear to be the case that there is an overall “differential
susceptibility” amongst B6 vs. Balb/c mice in their responsive-
ness to MS as there is evidence for MS-induced effects in both
strains. However, strain responsiveness to MS does vary between
measures, resulting in rearing effects in B6 mice on measures
of open-field activity, sucrose preference, latency to approach a
novel social stimulus, hippocampal Bdnf mRNA levels, and hip-
pocampal Nr3c1 DNA methylation. In contrast, rearing effects in
Balb/c mice were observed on latency to enter the inner area of
the open-field, sucrose preference, aggressive behavior toward a
novel stimulus mouse, Bdnf mRNA levels in the prefrontal cor-
tex, and DNA methylation of the Bdnf IX promoter region in
the hippocampus. Even within the one measure that is altered
in both mouse strains as a function of rearing environment –
sucrose preference – the within-strain effect is different, with B6
males and females both exhibiting reduced sucrose preference and
an interaction between sex and rearing condition in Balb/c mice
(males showing decreased and females showing increased prefer-
ence). Overall, these findings suggest that adversity experienced
during postnatal development can manifest in divergent effects
dependent on broad genetic characteristics, such as strain, and
dependent on the sex of the individual experiencing the adversity;
findings which point toward a very complex interplay between
these individual- and group-level characteristics, the environment,
and risk phenotypes.

EPIGENETIC EFFECTS OF ADVERSE ENVIRONMENTS
Though investigation of the effects of MS on behavioral and neu-
robiological outcomes is well established within the literature (16,
17), the incorporation of epigenetic analyses within these experi-
mental designs is a relatively recent approach. In mice, MS-rearing
has been previously demonstrated to induce hypomethylation
of the vasopressin gene (Avp) within the hypothalamus leading
to increased HPA reactivity amongst MS-reared offspring (20).
Exposure to a single 24-h MS at PND9 has been associated with
increased Avp DNA methylation in B6 mice and increased Nr3c1
DNA methylation in DBA/2J mice (38). Similar to our findings,
this study highlights the divergent epigenetic effects of MS in
different mouse strains. Increased DNA methylation within the
Mecp2 (methyl CpG binding protein 2) and cannabinoid receptor-
1 genes and decreased DNA methylation within the corticotropin
releasing factor receptor 2 (Crfr2) gene has also been observed in
the cortex of MS-reared B6 mice (21). Interestingly, these epige-
netic changes were also observed in the sperm of MS-reared males
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Table 2 | Relative mRNA levels of Nr3c1 and Bdnf in the prefrontal cortex (PFC) and hippocampus (HIPP).

Nr3c1 Bdnf

Control MS Control MS

B6 PFC Male 1.01±0.06 0.84±0.05 1.05±0.12 1.00±0.21

Female 1.02±0.11 0.98±0.09 1.10±0.12 0.86±0.11

HIPP Male 1.02±0.10 0.93±0.06 1.04±0.11 1.06±0.13

Female 0.96±0.09 0.83±0.09 1.03±0.04 0.66±0.07*

Balb/c PFC Male 1.01±0.07 0.92±0.08 1.04±0.12 1.29±0.10**

Female 1.01±0.07 1.05±0.10 0.96±0.09 1.30±0.08**

HIPP Male 1.02±0.08 1.03±0.05 1.04±0.10 1.32±0.05

Female 1.01±0.10 0.83±0.06 1.00±0.09 1.00±0.14

Statistically significant MS-induced effects are indicated in bold font; *p < 0.05, **p < 0.01 (control vs. MS comparisons).

GCTCTGGCGGCAGACCCACG1GGGCG2GGCTCCCG3AGCG4GTTCCAAGCCG5CG6GAGCTG

GGCG7GGGGCG8GGAAGGAGCCAGGGAGAAGAGAAACTAAAGAAAC

A Mouse GR gene (Nr3c1)

B

5’ UTR Nr3c1 region sequenced in CpG methyla!on assay

Bdnf IV promoter region sequenced in CpG methyla!on assay

AGCAGAGGAGGTATCATATGACAGCTCACG1TCAAGGCAGCG2TGGAGCCCTCTCG3TGGACTC

CCACCCACTTTCCCATTCACCG4

Bdnf IX promoter region sequenced in CpG methyla!on assay

CCTGTGTGGCCTTTTGGTTCCTTATCCG1CAAAACATGGTGGTCTACATCG2CCTCTAGGAGGA

AAAGGCCCCTCCCAGCATTCCG3ACCG4ACCG5CTGTTTTATCATACTGCTCCTGCTCAGACTG

CTT

2 3 4 5 6 7 8 91

Mouse Bdnf gene

I II III IV V VI VII VIII IXIXa

FIGURE 4 | Schematic of Nr3c1 and Bdnf genes. Exons are depicted
as gray boxes and the introns as lines. Numbers of Nr3c1 exons (A) are
indicated in Arabic numerals while numbers of Bdnf exons (B) are
indicated in Roman numerals to conform to standard nomenclature.
The arrows show the approximate location of the examined sites within

those genes. The sequences under each scheme show the exact CpG
sites that were analyzed in 5′UTR region of Nr3c1 (A) and in Bdnf
promoter regions IV and IX (B) using bisulfite-pyrosequencing method
[the schemes of Nr3c1 and Bdnf genes were adapted from (67) and
(68) respectively].

and may account for the transmission of behavioral and epige-
netic effects of MS-rearing across generations (21, 71). Beyond
DNA methylation, there is also evidence for post-translational
modification to histones associated with MS-rearing and phar-
macological inhibition of histone deacetylases prior to MS can
prevent the emergence of MS-associated risk phenotypes (72–74).

Comparison of B6 and Balb/c mice on MS-induced histone
changes suggests that altered cortical histone deacetylase mRNA
(increased in juveniles and decreased in adults) is associated with
MS-rearing in Balb/c but not B6 mice and that these enzymatic
changes are associated with age-dependent differences in histone
(H4) acetylation (73). This study suggests a biphasic epigenetic
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FIGURE 5 | Average percent DNA methylation of the Nr3c1 and Bdnf
promoter regions in the cortex (PFC) and hippocampus (HIPP). (A)
Increased Nr3c1 DNA methylation was observed in the HIPP of MS-reared B6
males and (B) no MS-rearing effects on DNA methylation of this gene in
Balb/c mice. In the PFC, sex differences (indicated by a gray bar) were present
in both B6 and Balb/c mice (elevated Nr3c1 DNA methylation in females
compared to males). In the hippocampus, Balb/c females had reduced Nr3c1

DNA methylation compared to males. Bdnf IV promoter DNA methylation
was not altered by MS-rearing in (C) B6 or (D) Balb/c mice. MS-rearing had (E)
no effect on Bdnf IX promoter DNA methylation in B6 mice but (F) increased
DNA methylation of this region in the HIPP of Balb/c mice. In B6 mice,
females had reduced Bdnf IX promoter DNA methylation in the hippocampus
compared to males (indicated by gray bars). *p < 0.05, **p < 0.01,
***p < 0.001 (control vs. MS comparisons or male vs. female comparisons).

response to adversity that may have consequences for the devel-
opmental timing of phenotypic (physiological, neurobiological,
behavioral) outcomes associated with MS.

The epigenetic effects of MS contribute to a growing literature
on the adverse effects of a broad range of early life experiences.
In rodents, prenatal stress (42), nutrient deprivation (75, 76),
variation in maternal care (50, 77), postnatal abuse (52), and post-
weaning social environments (78) have been observed to induce
epigenetic effects (DNA methylation and/or histone modifica-
tions). The Nr3c1 and Bdnf genes examined in the current study
appear to be highly plastic in expression and epigenetic regulation
in response to these experiences (50,52). These gene targets are also
linked to the neurobiological pathways which may underlie risk of

psychopathology. Glucocorticoid receptors within the hippocam-
pus serve a critical negative-feedback role within the HPA axis
such that elevated levels of these receptors are associated with an
increased capacity to down-regulate the stress response and return
to baseline glucocorticoid levels (55). Adverse early life experiences
are typically associated with decreased Nr3c1 expression levels and
increased DNA methylation of the promoter region of this gene
(23, 50). Though we did not find significant reductions in hip-
pocampal Nr3c1 expression, DNA methylation within the Nr3c1
promoter was increased in MS-reared B6 males. Bdnf confers neu-
ronal plasticity and has been demonstrated to alter mood and
cognition (56, 79). Adverse early life experiences, such as abuse,
have been demonstrated to decrease Bdnf expression and increase
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Bdnf DNA methylation (52). Our data are consistent with this
previous research, though it is notable that we observed decreased
Bdnf expression in hippocampal tissue of B6 MS-reared females
whereas increased Bdnf DNA methylation was only observed in
MS-reared Balb/c mice. Intriguingly, we found increased Bdnf
expression in the prefrontal cortex of MS-reared Balb/c mice that
was not associated with changes in DNA methylation of the exam-
ined CpG sites. The lack of correspondence between expression
and DNA methylation highlights the complex regulatory networks
that may be recruited by MS-rearing and may vary over time. For
instance, although DNA methylation changes have the potential to
induce long-lasting changes in gene expression (50), it is possible
that compensatory mechanisms may override the effect of DNA
methylation on gene regulation. In addition, the behavioral test-
ing of these individuals, which may alter gene expression and DNA
methylation independent of rearing condition, may have limited
our ability to provide a clear correlation between MS-induced
DNA methylation and gene expression. However, it is important
to acknowledge that DNA methylation is only one of many epi-
genetic mechanisms that can regulate gene expression and so it
may be the case that variation in DNA methylation is not causally
related to the gene expression changes we observed in the current
study.

It is also worth noting the limitations of our gene expres-
sion/epigenetic analyses. First, we examined only total Bdnf mRNA
levels and it is possible that changes in specific (particularly low-
abundance) Bdnf transcripts were not detected due to a dilution
effect. In addition, we examined only DNA methylation of the CpG
sites in the Bdnf promoter regions IV and IX, previously shown to
be epigenetically regulated (51, 69, 70). Thus, it is possible that MS
could have induced epigenetic changes in Bdnf promoter regions
not examined in this study. There is increasing evidence for epige-
netic variation at CpG shores rather than promoter CpG islands
(80) and so loci outside of the regions analyzed might be more rele-
vant to MS-induced effects. Finally, the DNA methylation changes
we observed were modest and it is difficult to evaluate the biologi-
cal relevance of changes of this magnitude derived from the current
methodological approaches used for in vivo analyses. It seems
likely that MS-induced epigenetic effects are specific to a sub-
population of cells within the brain regions examined and thus
are diluted through the inclusion of multiple neuronal and glial
cells. Therefore, future studies of MS-induced epigenetic changes
would benefit from cell-type specific analyses that may facilitate
our efforts to detect epigenetic and gene expression changes that
are induced by early life adversity and contribute to behavioral
abnormalities occurring later in life.

The rapid development of methodologies for assessing epige-
netic variation has also provided opportunities to determine the
translational relevance of research on adversity-induced changes
in DNA methylation. In post-mortem brain tissue, increased hip-
pocampal DNA methylation of the Nr3c1 promoter and decreased
Nr3c1 expression is observed in individuals with a history of
childhood abuse (23). Similar adversity-associated increases in
Nr3c1 promoter methylation have been documented in humans in
non-neuronal tissues such as fetal cord blood (81, 82), blood lym-
phocytes (83), and buccal cells (84). Genome-wide DNA methy-
lation analyses of blood lymphocytes suggest that global DNA

hypermethylation may result from childhood social/maternal
deprivation (being reared in an institution vs. reared by biolog-
ical parents) (24). The question raised by these intriguing findings
is the relevance of peripheral epigenetic markers for predicting
epigenetic variation in the brain – particularly in light of the
goal to further our understanding of the neurobiological pathways
through which adversity leads to psychopathology. We have pre-
viously found limited concordance between peripheral and brain
tissues in DNA methylation levels of the Nr3c1 gene promoter
(67). Within the current study, though peripheral tissues were not
assessed, it is clear that MS has a unique epigenetic impact in
different brain regions (i.e., Nr3c1 and Bdnf MS-associated DNA
methylation changes observed in the hippocampus and not the
prefrontal cortex). Thus, even within the brain, epigenetic respon-
siveness may not be consistent across genes. This observation
does not invalidate approaches using peripheral tissue to predict
neuronal changes but does suggest that the complexity of tissue-
specific molecular responses and the mechanisms through which
both peripheral and brain tissues would be affected by adverse
environmental experiences need to be carefully considered.

SEX-SPECIFIC OUTCOMES ASSOCIATED WITH ADVERSITY
Sex differences in response to early life experiences are a relatively
consistent finding within the literature. In humans, childhood
maltreatment may increase rates of depression and drug use in
females, with more limited effects in males (85). On neuroen-
docrine measures, sex is a significant modulator of the relation-
ship between childhood adversity and HPA activity (86). This
sex-specificity is also observed following prenatal adversity. Expo-
sure to in utero stress/nutrient deficiency during pregnancy may
increase the risk of schizophrenia in males but not females (87)
and maternal bereavement stress during pregnancy has been found
to increase the risk of attention deficit disorder in males (88).
However, these effects may be due in part to the sex-bias in
these disorders induced by hormonal and genetic differences (with
males having higher rates than females) (89). Animal studies like-
wise suggest the sex-specificity of early life adversity (42) and in
the current study, sex by rearing condition interactions are the
norm rather than the exception. Similar to the effect of strain, our
findings support the hypothesis that both males and females are
sensitive to the effects of MS, but that the effects of MS manifest
in different ways dependent on sex. We have found that B6 males,
but not B6 females, exhibit hyperactivity in response to MS. Simi-
larly, Balb/C males are more vulnerable to MS-induced anhedonia
than Balb/C females. In addition, we have recently shown that the
differential response of males and females to early life toxicologi-
cal exposures can be observed at the level of gene expression and
DNA methylation in the brain corresponding to changes in social
and anxiety-like behavior (44). Sex-specific epigenetic effects are
an emerging theme in the study of early life adversity and may
account for the sex-bias in adversity-associated behavioral and
neurobiological dysfunction. Interestingly, in the current study
we observed sex-specific gene expression and epigenetic variation
in B6 mice, whereas in Balb/c mice, male and female effects of
MS-rearing are similar. Consistent with previous reports (54), we
also find sex differences in DNA methylation regardless of rearing
condition. These findings add another layer of complexity, which
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includes differential genetic background, to the investigation of
sex-specific responsiveness to adversity.

CAN ADVERSITY LEAD TO IMPROVED OUTCOMES?
Though the experience of disruption to the in utero environment
or childhood maltreatment is linked to psychiatric dysfunction
(7, 8), it is clear that there is a significant degree of resilience
to early life adversity (15, 90). Within the current study, the
effects of MS-rearing are relatively modest suggesting that, sim-
ilar to human populations, many individuals are resilient to MS.
However, in addition to these indices of resilience, we find that
MS-reared Balb/c females will more rapidly enter the anxio-
genic center area of the open-field and have increased sucrose
preference. These behavioral phenotypes would suggest reduced
anxiety- and depressive-like phenotypes as a function of early
life adversity. In light of these perplexing findings, one hypoth-
esis is that adversity can lead to improved outcomes dependent
on sex and genetic background. Several lines of evidence may be
relevant to evaluating the plausibility of this hypothesis. In pri-
mates, early, intermittent periods of MS have been documented to
reduce indices of anxiety-like behavior and enhance HPA negative-
feedback, suggesting a protective effect of early life adversity
(91–93). There is also evidence for enhancements in function-
ing following exposure to adverse experiences, if the adversity is
constant across developmental periods. Though maternal depres-
sion during pregnancy can predict impairments in functioning,
there is enhanced motor and neuronal development in infants
that experienced maternal depression during both in utero and
postnatal periods (compared to infants who were only exposed
to maternal depression at one developmental timepoint) (94).
Previous studies of Balb/c mice have shown that the in utero
environment of this mouse strain can exert significant program-
ing effects, leading to increased anxiety-like behavior (95). It
may be the case that MS during postnatal development in this
strain generates a better environmental “match” to the prenatal
environment, allowing the neuroendocrine adaptations of off-
spring to enhance functioning. Though these are hypotheses that
have yet to be tested, the phenomenon of improved function-
ing following adversity in a subset of individuals should not be
dismissed.

INTER-INDIVIDUAL VARIABILITY IN THE EFFECTS OF MATERNAL
SEPARATION
The relatively modest effects of MS-rearing that we observe in the
current study and the inconsistent effects of MS observed in previ-
ous studies (17) requires careful examination of the MS paradigm
and the hypothesized pathways through which this form of adver-
sity alters offspring development. Prolonged separations between
mothers and offspring are thought to model childhood neglect
and the stress of this manipulation has been found to reduce
mother-infant interactions during the post-reunion period (96).
However, these group-level effects may not be observed in all lit-
ters and certainly there are individual differences in the frequency
of mother-infant interactions under standard rearing conditions
that have significant programing effects on brain and behavior
(97, 98). These individual differences in maternal behavior likely
contribute to the variability in response to adversity. The use of

MS combined with maternal stress during the separation period
is one approach intended to create a more consistent reduction
in maternal behavior in MS litters and this methodology has pre-
viously been found to reduce mother-infant interactions in mice
(21). However, this approach does not account for the variability
in maternal care in control litters and does make the interpretation
of the role of MS vs. maternal care on outcome measures prob-
lematic. This will be an important issue to address in subsequent
studies using the current MS protocol.

A second issue to consider within the MS paradigm is how
the individual responsiveness to adversity may be used to better
understand the molecular and neurobiological basis of risk and
resilience. In the current study, we examined gene expression and
DNA methylation in a random subset of individuals. However,
perhaps a more powerful strategy for assessing the link between
adversity, neurobiological changes, and risk phenotypes would be
to stratify the sample with comparisons between those individuals
that manifest risk phenotypes (increased anxiety- and depressive-
like behavior) and those individuals that are resilient. Within the
context of studies aimed at understanding the etiological path-
ways leading to psychopathology, this approach, combined with
a more detailed assessment of the characteristics of the postnatal
environment, may provide a more informative experimental par-
adigm that can advance our understanding of the biological basis
of adversity-induced dysfunction.

FUTURE DIRECTIONS
The strain and sex-dependent effects of MS that we identified
in the current study highlight the complexity of the effects of
early life adversity. Though strain and sex differences in neuro-
biology and behavior are well documented, the molecular basis
of the differential response to environmental exposures has yet
to be elucidated. Epigenetic analyses within future studies of these
effects may advance our understanding of this differential response
and should be combined with experimental designs where impor-
tant modulating variables, such as prenatal and postnatal maternal
effects, are assessed. Within-individuals, the differential epigenetic
response of different tissues (brain and peripheral) over multi-
ple timepoints may provide important insights into the pathways
leading to risk phenotypes and contribute to translational studies
of the impact of early life adversity.

MATERIALS AND METHODS
ANIMALS
C57BL/6J (B6) and Balb/cJ (Balb/c) mice (Jackson Laborato-
ries) were used in these studies. Adult males (n= 10) and
females (n= 20) of each strain were housed two per cage in
10.5′′× 19′′× 6′′ cages and habituated to the animal facility in
the Department of Psychology at Columbia University for 2 weeks
prior to mating. At mating, two females were housed with one male
for 10 days. This mating protocol generated n= 13 B6 and n= 14
Balb/c litters. At birth (PND0), all pups were counted and weighed.
Animals were maintained at a constant temperature and humidity
with a 12L:12D light schedule (lights off 10:00 a.m.) and ad libi-
tum access to chow and water. All procedures were performed in
accordance with guidelines of the NIH regarding the Guide for
the Care and Use of Laboratory Animals and with the approval
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of the Institutional Animal Care and Use Committee (IACUC) at
Columbia University.

POSTNATAL MATERNAL SEPARATION
Starting on PND1, litters were exposed to daily MS or standard
laboratory rearing conditions (see Figure 1). The protocol, pre-
viously used in (21), involved 2 h of daily separation of pups and
dam from PND1 to PND14 combined with maternal exposure to
unpredictable stress during the period of separation. At the start
of the separation period, dams were removed from the home-cage
and placed in a clean cage with ad libitum access to chow and water.
Pups were also removed from the home-cage and placed together
in a clean cage. At a randomly selected time within the 2-h sep-
aration, dams were exposed to 20 min of restraint stress or 2 min
of forced swim. During restraint, females were removed from the
temporary housing cage and placed in a conical tube that restricted
all vertical and horizontal movement. During forced swim, mice
were placed in a 2 l glass beaker containing 1 l of water (20°C).
After the 2-min period, mice were patted dry with a towel and
returned to the temporary housing cage.

REPRODUCTIVE OUTCOMES
The breeding protocol used in the current study resulted in a 65
and 70% rate of successful births in Balb/c and B6 mice, respec-
tively. Average litter weights at PND0 and PND6, litter size at
PN6, litter mortality rates during the first postnatal week, litter
sex ratio, and average weaning weights of male and female off-
spring are provided in Table 3. No significant rearing condition
effects were observed except on the measure of male pup weaning
weights, which were decreased in MS-reared Balb/c males com-
pared to control-reared Balb/c males [t (1, 12)= 3.03, p < 0.05].
Litters containing fewer than two pups at the time of weaning
(PND28) were excluded, resulting in n= 6 litters per strain for
the control rearing condition and n= 8 B6 and n= 7 Balb/c lit-
ters for the MS-rearing condition. For behavioral measures, one to
two pups per sex per litter were tested (B6 : control male, n= 10;
control female, n= 9; MS male, n= 7; MS female, n= 11; Balb/c :
n= 10/sex/rearing condition). For these analyses, litter was used
as a covariate. For gene expression and DNA methylation analyses,
only one pup (per sex) was used per litter with a sample size of
n= 6 pups per sex per rearing condition.

Behavioral assessment
At PND28, all offspring were weaned and commenced behavioral
testing at PND35 (see Figure 1). All offspring underwent testing in

the open-field apparatus (PND35), assessed for sucrose preference
(PND36–39), and then observed during a dyadic social encounter
with a stimulus mouse in the open-field apparatus (PND40).
Testing during juvenile/adolescent development was conducted
to determine the emergence of behavioral risk phenotypes at this
early period, prior to the onset of full sexual maturity, and cre-
ate further parallels with studies in humans that have observed
childhood and adolescent behavioral problems that are predicted
by adversity and predictors of later-life risk of psychopathology
(99–101). However, it should be noted these behavioral tests have
been validated in adult rather than juvenile/adolescent mice.

OPEN-FIELD TESTING
The open-field apparatus used was a 24′′× 24′′× 16′′ black plas-
tic box. On the day of testing, the mouse was placed directly into
one corner of the open-field. After a 10-min session, the mouse
was returned to its home-cage. All testing was conducted under
red lighting conditions and tests were video recorded. Behaviors
scored using Ethovision (Noldus) included: (1) distance traveled,
(2) latency to enter the center area, and (3) center area exploration
(time spent in the inner 12′′× 12′′ area).

SUCROSE PREFERENCE
Immediately following open-field testing, mice were singly housed
and placed in a cage with two water bottles (both containing
water). The following day, on PND36, both bottles were removed.
One bottle was filled with water, weighed, and placed in the cage.
The second bottle was filled with a 1% sucrose solution, weighed,
and placed in the cage. Each day, bottles were weighed to deter-
mine consumption levels (three consecutive days). The position
of the sucrose vs. water bottle was alternated each day to avoid
place preference. Sucrose preference was defined as having average
sucrose consumption levels (averaged across the 3-day period) of
75% or higher. Percentage consumption levels were defined as total
sucrose consumed divided by the total volume of liquid consumed
(water+ sucrose). Sucrose preference was stable over consecutive
days in both control and MS mice suggesting that initial reactivity
to single housing (conducted on the day prior to sucrose prefer-
ence testing) did not contribute to the rearing condition effects
observed.

SOCIAL BEHAVIOR
At PND40, a subject mouse was placed in the open-field appara-
tus with a same-sex stimulus mouse (129Sv) for 30 min. Sessions
were video recorded. Latency to sniff/approach the stimulus and

Table 3 | Reproductive outcomes (mean±SEM) in control and MS litters.

Av. birth

weight

PN6 litter

size

PN6 pup

av. weight

Litter sex

ratio (m/f)

% Pup

mortality1

Av. weaning

weight (m)

Av. weaning

weight (f)

B6 Control 1.27±0.03 6.00±0.82 3.04±0.40 1.11±0.70 13.65±4.67 15.85±1.08 13.47±0.27

MS 1.32±0.05 5.14±0.83 3.61±0.25 0.90±0.86 22.02±8.94 15.55±0.61 17.85±4.38

Balb/c Control 1.36±0.06 6.00±0.63 3.55±0.50 1.22±0.65 13.16±6.41 15.40±0.44 14.20±0.92

MS 1.41±0.04 5.75±0.65 3.68±0.30 1.01±0.89 5.90±3.87 13.36±0.50* 13.16±0.50

Statistically significant MS-induced effects are indicated in bold font; *p < 0.05 control vs. MS; 1mortality occurring between PN0 and PN6 (no mortality was observed

after this period).
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occurrence of aggressive behaviors (tail rattling, chasing, biting)
were coded.

NUCLEIC ACID ISOLATION
Following assessment of social behavior at PND40, mice were sac-
rificed by rapid decapitation and brains extracted and stored at
−80°C. Whole hippocampus and cortical tissue containing the
prefrontal cortex were dissected from partially thawed tissue and
Allprep DNA/RNA mini kit (Qiagen) was used for simultaneous
extraction of total RNA and genomic DNA.

QUANTITATIVE REAL-TIME PCR
Gene expression was assessed using reverse transcription (The
SuperScript® III First-Strand Synthesis System, Invitrogen) fol-
lowed by quantitative real-time PCR with a 7500 real-time PCR
system (Applied Biosystems). Using specific primer sets (see
Table 4), mRNA levels of the glucocorticoid receptor (Nr3c1) and
brain-derived neurotrophic factor (Bdnf) were determined. Rela-
tive mRNA expression was calculated using the standard ∆∆CT
method (102) with male control samples as a reference sample
and cyclophilin A (CypA) and beta-actin (Actb) as endogenous
reference genes.

BISULFITE-PYROSEQUENCING
DNA methylation at specific CpG sites in the Nr3c1 and Bdnf
genes was analyzed using bisulfite-pyrosequencing method. Bisul-
fite conversion of DNA samples (500 ng) was carried out using
EpiTect Bisulfite Kit (Qiagen). Biotinylated PCR products were
obtained using PyroMark PCR kit (Qiagen) and PCR primers
specific for Nr3c1 and Bdnf gene regions (see Figure 4). Pyrose-
quencing was performed on a PyroMark Q24 Pyrosequencer
using specific pyrosequencing primers (see Table 5). Average DNA
methylation levels of CpG sites were quantified using PyroMark
Q24 2.0.4. Software (Qiagen).

STATISTICAL ANALYSES
Consistent with previous studies examining strain differences
in behavior, in our preliminary analyses we found significant
effects of strain in all behavioral tests conducted, with B6
mice exhibiting increased time spent in the center area of the
open-field (p < 0.001), longer latencies to enter the inner area
(p < 0.001), increased average sucrose consumption (p < 0.05),
and a decreased likelihood of engaging in aggressive behavior
(p < 0.05) compared to Balb/c mice. Thus, for analyses of rearing
condition effects, we analyzed each strain separately. Open-field
data (time spent in the center area, total activity) were analyzed
using 2-way ANOVA, with sex and rearing condition as indepen-
dent variables and litter as a covariate. Latency data (time to enter
the center area, social approach) were analyzed with Kaplan–Meier

Table 4 | Primers for gene expression analyses.

Gene

name

Forward primer Reverse primer

Nr3c1 AACTGGAATAGGTGCCAAGG GAGGAGAACTCACATCTGGT

Bdnf CATAAGGACGCGGACTTGTACA AGACATGTTTGCGGCATCCA

CypA GAGCTGTTTGCAGACAAAGTTC CCCTGGCACATGAATCCTGG

Actb TATTGGCAACGAGCGGTTCC TGGCATAGAGGTCTTTACGG

ATGTC

Table 5 | PCR and pyrosequencing primers used for DNA methylation

analysis.

MOUSE GR GENE (Nr3c1) – chr18:39,649,906-39,650,025*

PCR primer – forward GGTTTTGTAGGTTGGTTGTTATTT

PCR primer – reverse –

Biotinylated

/5Biosg/TCTCTTCTCCCTAACTCCTT

Pyrosequencing primer GGGTTTTGGAGGTAGATTTA

MOUSE BDNF PROMOTER IV (Bdnf IV ) – SITES IV1-IV4 –

chr2:109,532,399-109,532,715*
PCR primer – forward TAGGATTGGAAGTGAAAATATTTATAAAGT

PCR primer – reverse –

Biotinylated

/5Biosg/CCTTCAACCAAAAACTCCATTTAATCT

Pyrosequencing primer AGAGGAGGTATTATATGATAG

MOUSE BDNF PROMOTER IX (Bdnf IX ) – SITES IX5-IX1 –

chr2:109,562,918-109,563,064*
PCR primer – forward GGTGTTTGGTGTTTTAAGTAGTT

PCR primer – reverse –

Biotinylated

/5Biosg/ACAAATCCTATATAACCTTTTAATTCC

Pyrosequencing primer TGAGTAGGAGTAGTATGATAA

*Genomic coordinates are based on the UCSC Genome Browser Mouse July

2007 (NCBI37/mm9) Assembly.

survival analysis. For sucrose consumption data, a χ2 test was con-
ducted to determine group differences in likelihood of exhibiting
sucrose preference (>75% sucrose consumption). Similarly, a χ2

test was conducted to determine group differences in likelihood
of engaging in aggressive behavior (males only). For gene expres-
sion and DNA methylation analyses, we found significant strain
by brain interactions and analyzed data from each strain and brain
region using separate 2-way ANOVAs with sex and rearing con-
dition as independent variables. For DNA methylation analyses,
average CpG methylation levels across the multiple CpG sites
assessed was used in the ANOVA.
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