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Abnormalities in EEG gamma band oscillations (GBO, 30–80 Hz) serve as a prominent bio-
marker of schizophrenia (Sz), associated with positive, negative, and cognitive symptoms.
Chronic, subanesthetic administration of antagonists of N -methyl-D-aspartate receptors
(NMDAR), such as ketamine, elicits behavioral effects, and alterations in cortical interneu-
rons similar to those observed in Sz. However, the chronic effects of ketamine on neocorti-
cal GBO are unknown.Thus, here we examine the effects of chronic (five daily i.p. injections)
application of ketamine (5 and 30 mg/kg) and the more specific NMDAR antagonist, MK-
801 (0.02, 0.5, and 2 mg/kg), on neocortical GBO ex vivo. Oscillations were generated
by focal application of the glutamate receptor agonist, kainate (KA), in coronal brain slices
containing the prelimbic cortex.This region constitutes the rodent analog of the human dor-
solateral prefrontal cortex, a brain region strongly implicated in Sz-pathophysiology. Here
we report the novel finding that chronic ketamine elicits a reduction in the peak oscilla-
tory frequency of KA-elicited oscillations (from 47 to 40 Hz at 30 mg/kg). Moreover, the
power of GBO in the 40–50 Hz band was reduced. These findings are reminiscent of both
the reduced resonance frequency and power of cortical oscillations observed in Sz clinical
studies. Surprisingly, MK-801 had no significant effect, suggesting care is needed when
equating Sz-like behavioral effects elicited by different NMDAR antagonists to alterations in
GBO activity. We conclude that chronic ketamine in the mouse mimics GBO abnormalities
observed in Sz patients. Use of this ex vivo slice model may be useful in testing therapeutic
compounds which rescue these GBO abnormalities.

Keywords: gamma oscillations, NMDA receptors, ketamine, schizophrenia, prefrontal cortex

INTRODUCTION
Mounting evidence suggests that the symptoms of neuropsychi-
atric disorders, such as schizophrenia (Sz), arise from a failure
of the brain to properly integrate activity across local and dis-
tributed neuronal circuitry (1–3). Neuronal oscillations represent
an essential mechanism responsible for such neural integration,
providing temporal coordination of neuronal activity (4). In Sz
patients, numerous clinical studies have observed abnormalities
in oscillatory processes (5), particularly those in the gamma fre-
quency band (gamma band oscillations, GBO; 30–80 Hz). GBO
activity has been suggested to be critical for a number of sensory
and cognitive tasks (6). As such, impaired GBO, particularly in
prefrontal cortical regions, likely underlie positive, negative, and
cognitive symptoms in Sz (3, 7).

Over the last few decades, administration of psychotomimetic
agents, such as the N -methyl-d-aspartate receptor (NMDAR)
antagonist, ketamine, have provided the most reliable and widely
used means to mimic Sz-like symptoms, and currently represents
the “gold-standard” for modeling this disorder in both humans,
and animals (8–10). Recent in vivo rodent studies have shown that
acute systemic administration of NMDAR antagonists leads to a
significant potentiation of spontaneous GBO activity in frontal
cortex (11–13). Such findings have been largely confirmed ex vivo
by our lab and others (14, 15). However, chronic application of

NMDAR antagonists arguably represents a more useful means to
model Sz, since chronic administration causes structural alter-
ations in neocortical circuitry similar to those observed in Sz
patients (16, 17). However, to what extent chronic administra-
tion of ketamine and other NMDA receptor antagonists mimic
Sz-like GBO abnormalities is not well understood. Thus, here we
explore the effect of systemic, chronic administration of ketamine
and the more specific NMDAR antagonist, MK-801 on GBO. In
order to focus on changes occurring specifically in the neocortical
circuitry, experiments were performed ex vivo, in slices contain-
ing the mouse prelimbic cortex (PrL), the rodent analog of the
human dorsolateral prefrontal cortex (18), a region heavily impli-
cated in many of the cognitive impairments associated with Sz (19,
20). GBO were elicited in submerged neocortical slices using our
established method (15) utilizing brief, focal application of the
glutamate receptor agonist kainate (KA).

MATERIALS AND METHODS
ANIMALS
Adult (>P91) heterozygous GAD67-GFP “knock-in” mice (Swiss
Webster background), which express GFP under control of the
promoter for GAD67 (21) of either sex were utilized for this work.
As determined previously in McNally et al. (15), there are no signif-
icant sex-dependent differences in KA-elicited GBO in these mice.
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While we did not take specific advantage of the GFP labeling in the
GAD67-GFP line in this study, our previous work examining the
effects of acute NMDAR antagonist treatment on GBO activity was
performed using this mouse line. Thus, we utilized the same line
for the chronic studies reported here, allowing us to more accu-
rately compare our present findings to those reported earlier. Mice
were housed at the VA Boston Healthcare System, Brockton cam-
pus under constant temperature (23°C) and a 12 h:12 h light–dark
cycle with food and water available ad libitum. All experiments
were carried out in accordance with the American Association for
Accreditation of Laboratory Animal Care’s policy on care and use
of laboratory animals and were approved by the local Institutional
Animal Care and Use Committee.

Chronic drug administration was conducted similar to the
manner described in Behrens et al. (22). Mice were given daily
i.p. injections of either ketamine-HCl (5 or 30 mg/kg), MK-801
(0.02, 0.5 or 2 mg/kg), or an equivalent volume of saline (<0.5 mL)
for 5 days. The efficacy of these dosages for producing altered
interneuronal parvalbumin and/or GAD67 expression reminis-
cent of that seen in postmortem Sz brains was determined in
previous studies (16, 23–25). Mice injected with NMDAR antag-
onists exhibited increased locomotion for 1–2 h following treat-
ment, as would be expected given the previous behavioral liter-
ature using these agents (8). However, this behavioral response
was not characterized in detail. Twenty-four hours following the
final drug/saline injection, animals were sacrificed and utilized
as described below. Injectable Ketamine-HCl was obtained from
Bioniche Pharma (Galway, Ireland), and MK-801 from Ascent
Scientific (Bristol, UK).

SLICE PREPARATION
Coronal slices containing the PrL were prepared as previously
described in McNally et al. (15). Briefly, mice were deeply anes-
thetized using isoflurane, then quickly decapitated. The brain
was removed and placed into ice cold modified artificial cere-
brospinal fluid (ACSF) containing: (in millimoles) 252 Sucrose,
1.8 KCl, 1.2 KH2PO4, 2 MgSO4, 25.6 NaHCO3, and 10 glu-
cose saturated with 95% O2/5% CO2. 450 µm slices were cut
between +2.96 and +1.54 mm with respect to bregma [accord-
ing to the Franklin/Paxinos atlas (26)] using a Vibratome 3000
(Vibratome, Bannockburn, IL, USA). Slices were then transferred
into a prechamber (BSC-PC; Warner Instruments) containing
ACSF: (in millimoles) 124 NaCl, 1.8 KCl, 1.2 KH2PO4, 2 CaCl2,
1.3 MgSO4, 25.6 NaHCO3, and 10 glucose, continuously bub-
bled with 95% O2/5% CO2 (pH 7.4). Slices were allowed to
recover for at least 1 h before use. For recording, slices were trans-
ferred to a submersion-style recording chamber (RC27L; Warner
Instruments) and constantly perfused (5 mL/min) with warm
ACSF (30°C).

ELICITATION OF GBO IN VITRO
As described in McNally et al. (15), extracellular field potential
activity was recorded using glass micropipettes (2–5 MΩ) filled
with ACSF and positioned ∼50 µm deep in the PrL (Layer II/III).
Oscillatory activity was elicited by a brief (80 ms @ 30 psi) focal
application of KA (1 mM) onto the PrL slice in close apposition
to the location of the field potential electrode using a picospritzer

(General Valve Corp.). Field potentials elicited by KA application
were amplified using the 100× gain DC-coupled current-clamp
mode of a Multiclamp700B amplifier (Axon Instruments). Signals
were digitized at 10 kHz using a Digidata 1322A 16-bit data acqui-
sition system (Axon Instruments), then filtered between 1 kHz and
0.1 Hz using pClamp 9.2 (Axon Instruments) and stored on a PC
hard drive.

ANALYSIS OF KA-ELICITED OSCILLATIONS
Kainate-elicited oscillations were characterized using both time-
frequency, and power spectral density (PSD) analysis. Grand
average time-frequency plots (Figure 1) were generated in Igor
Pro (Wavemetrics), by performing short-time Fourier transform
analysis (1 Hz resolution) on individual LFP records of elicited
oscillatory activity. Time-frequency data was then averaged across
all animals in each treatment group. For data presented in
Figures 2 and 3, PSD profiles were generated by Fourier trans-
form analysis of field potential recordings using both Clampfit
(axon) and Igor Pro. PSD were calculated from a 30 s epoch
of the field potential trace starting 2.5 s following application
of KA, following dissipation of the mechanically evoked tran-
sient. KA-elicited oscillations were generated three consecutive
times at 5 min intervals. Only slices yielding consistent PSD pro-
files across all trials (<10% difference in peak power, frequency)
were used for analysis. To analyze the time course of oscilla-
tory activity, the 30 s epoch of KA-elicited activity was broken
up into six 5 s epochs; PSD profiles (1.2 Hz resolution) for each
epoch were generated, and then averaged across the three tri-
als to provide the average PSD over each epoch for each slice.
Recordings were performed on one to three slices from each exper-
imental animal. For each animal, PSD data from individual slices
were averaged to give the average PSD profile for each animal.
These values were then used for comparison between treatment
groups.

Three measures from each PSD segment were used to charac-
terize the oscillations: peak power, peak frequency, and total GBO
power. Peak power was defined as the highest amplitude in the
averaged PSD (>10 Hz, bins of 1.2 Hz). The frequency at which
the peak power was observed was defined as the peak frequency.
Total GBO power was determined by integration of averaged
PSD between 40 and 50 Hz, which represents roughly the average
peak frequency of the oscillatory response observed under control
(no drug treatment) conditions ±5 Hz. This narrow frequency
band was chosen to reduce variability of the PSD measures, when
compared between groups of animals, i.e., drug treated vs. saline
controls [note: this band is narrower than that used in our previ-
ous study (15) where we performed a within-animal (within-slice)
comparison of the effects of NMDAR antagonists].

STATISTICAL ANALYSIS
Overall analysis of chronic drug effects were initially tested using
repeated measures ANOVA. Further analyses of the results were
performed using Student’s t -test for statistical comparison of indi-
vidual epochs of oscillatory response. All statistical analysis was
performed using SPSS 10 (SPSS Inc.). Differences were consid-
ered to be significant at p < 0.05. Averaged values reported in this
manuscript are expressed as mean± SEM.
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FIGURE 1 | Grand average of kainate (KA) elicited oscillatory
response in prelimbic cortex (PrL) slices prepared from mice
receiving chronic administration of NMDAR antagonists.
Time-frequency spectrograms show the average KA-elicited oscillatory
response from acute PrL slices obtained from mice receiving chronic
injections of saline (control), ketamine (5 and 30 mg/kg), or MK-801
(0.02 and 2 mg/kg). Note: the mechanical transient associated with KA
application appears as a thick red line due to oversaturation. Compared
to saline treated controls, the elicited response in slices from mice
chronically treated with 30 mg/kg ketamine shows a reduction in the

peak frequency (see Figure 2) and in the power in the (40–50 Hz) band,
which is almost absent in slices from drug treated mice 5–10 s following
KA application. 5 mg/kg ketamine treatment also appears to show a
slight decrease in the higher-frequency elicited response, while the
response at lower frequency bands appears elevated (not significant).
MK-801 treated mice show a trend toward reduced power but no
change in peak frequency (see Figure 2 and text). Insets provide
representative examples of GBO signal traces recorded from acute
slices from mice in each treatment group (scale bar for insets:
x =200 ms, y =50 µV).

RESULTS
CHRONIC KETAMINE DECREASES THE PEAK FREQUENCY OF PrL GBO
To evaluate the effects of chronic ketamine on KA-induced oscilla-
tions, adult mice were given five daily, i.p. injections of ketamine,
a treatment paradigm similar to that previously observed to elicit
Sz-like alteration in neural circuitry (16, 23). Twenty-four hours
after the final injection, KA-induced oscillations in layer II/III were
characterized from PrL slices collected from either drug treated
(n= 9) or control animals which received saline injections (n= 7).
Visual inspection of a grand average of KA-elicited oscillations
recorded from animals receiving chronic ketamine (30 mg/kg)
injections revealed a clear reduction in the KA-elicited oscillatory
response when compared to saline treated controls (Figure 1).

This data was initially analyzed using the method employed in
our earlier acute NMDAR antagonist study (15), which exam-
ined the first 5 s of oscillatory activity immediately following

the decay of the DC transient caused by KA application (2.5–
7.5 s following KA application). This analysis revealed a signifi-
cant (t 13= 3.74, p < 0.01) decrease in the peak frequency (saline:
47.4± 1.2 Hz; ketamine: 40.4± 1.3 Hz) of elicited oscillations in
slices from chronic ketamine treated mice (Table 1: epoch 1). Both
the peak power and total GBO power within the first 5 s also tended
to decrease, but these effects were not statistically significant
(t 13= 1.24, p= 0.24 and t 13= 1.18, p= 0.26 respectively).

Visual inspection of the grand averages suggested that oscilla-
tory activity elicited in 30 mg/kg chronic ketamine treated slices
decayed faster than in saline treated animals. Thus, to determine
if chronic ketamine treatment impaired the ability of the PrL slice
to maintain the KA-elicited GBO, we additionally analyzed the
first 30 s of elicited oscillatory activity subdivided into 5 s epochs
(Figure 2; Table 1). Using this analytical method, a repeated
measures ANOVA observed a significant reduction in both the
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McNally et al. Chronic ketamine affects gamma oscillations

FIGURE 2 | Chronic ketamine treatment leads to decreases in the
power and peak frequency of KA-elicited PrL oscillations. Graphs show
the effects of chronic ketamine given at daily doses of 5 mg/kg (blue) or
30 mg/kg (red) on (A) total GBO power (40–50 Hz), (B) peak power, and
(C) peak frequency across 30 s of the elicited oscillatory response recorded
from acute PrL slices. Compared to saline treated controls (black), mice
receiving 30 mg/kg ketamine showed a significant decrease in both total
GBO power (between 5 and 20 s; seeTable 1) and the peak frequency of
elicited activity. No change was observed in peak power. At 5 mg/kg, chronic
ketamine had no significant effect on total GBO power or peak power.
While a decrease in peak frequency was still apparent at this concentration,
this effect was only significant in the 20–25 and 25–30 s epochs.

peak frequency of elicited oscillations (F 1,13= 52.77; p < 0.01),
and total GBO power (F 1,13= 9.99; p < 0.01), across the full 30 s
of KA-elicited activity. No effect was observed on peak power
(F 1,13= 0.46; p= 0.51). Further statistical analysis, comparing
each epoch individually, showed that the significant decrease in
peak frequency observed above was maintained throughout all
periods of analyzed activity. While total GBO power was reduced
in chronic ketamine treated animals throughout the entire 30 s of
analyzed activity, this reduction was only statistically significant in
the second (5–10 s; t 13= 3.09, p < 0.01), third (10–15 s; t 13= 2.18,

FIGURE 3 | Chronic MK-801 treatment does not significantly alter
KA-elicited PrL oscillations. Graphs show the effects of chronic MK-801
given at daily doses of 0.02 mg/kg (blue) or 2 mg/kg (red) on (A) total GBO
power (40–50 Hz), (B) peak power, and (C) peak frequency across 30 s of
the elicited oscillatory response recorded from acute PrL slices, compared
to saline treated controls (black). At both concentrations chronic MK-801
treatment resulted in no significant alteration of KA-elicited oscillatory
activity.

p < 0.05), and fourth (15–20 s; t 13= 2.30, p < 0.05) epochs. No
significant change in peak power was seen during these periods.

Chronic treatment with a lower concentration of ketamine
(5 mg/kg, n= 5), using the same dosing regimen described above
conversely appeared to lead to a mild potentiation of the power
of the KA-elicited oscillatory response (Figure 1). Nevertheless,
analysis of elicited oscillations from these mice revealed that the
significant decrease in peak frequency observed with 30 mg/kg
ketamine was also evident at this lower dose (repeated measure
ANOVA; F 1,9= 6.95; p < 0.05). This decrease was of a similar mag-
nitude as observed with the higher ketamine dose when compared
across all epochs of analyzed activity at 5 mg/kg, however, it was
only significant in epochs 5 and 6 (t 9= 2.28, p < 0.05; t 9= 2.34,
p < 0.05, respectively), and reached a trend level of significance
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in epochs 1, 2, 3, and 4 (t 9= 1.87, p= 0.10; t 9= 1.98, p= 0.08;
t 9= 1.70, p= 0.13; t 9= 1.75, p= 0.12, respectively). 5 mg/kg ket-
amine did not lead to a decrease in the GBO power of KA-
elicited oscillations (Figure 2). Similarly, no significant changes
were found in peak power, compared to saline controls across
the entire 30 s of elicited oscillations analyzed (repeated mea-
sures ANOVA). Comparison of individual epochs for total GBO
and peak power did reveal a significant increase in peak power
in the fourth epoch (15–20 s; t 9=−2.54; p < 0.05) and a trend
level increase in the third (10–15 s; t 9=−1.73; p= 0.12) and fifth
(20–25 s; t 9=−1.71; p= 0.12) epochs, however.

CHRONIC MK-801 REVEALED NO STATISTICALLY SIGNIFICANT EFFECT
ON PrL GBO
While ketamine is commonly used recreationally and clinically to
elicit Sz-like effects, several other drugs which inhibit NMDAR
activity have also been used to elicit Sz-like behavioral effects in
animals (8, 9). Thus, we also examined the effect of MK-801, a non-
competitive NMDAR antagonist which is more selective than keta-
mine, since ketamine has effects on a number of other neurotrans-
mitter receptors (15,27,28). Previous studies have shown that daily
injections of 0.02 mg/kg MK-801, were sufficient to induce Sz-like
alterations in neural circuitry, and behavioral effects (24). Thus,
we gave mice five daily, i.p. injections of MK-801 (0.02 mg/kg)
or saline, as above. Twenty-four hours after the final injection,
KA-induced oscillations were characterized from PrL slices from
both drug treated (n= 7) and saline control (n= 7) animals. As
shown in Figure 1, the grand average of KA-elicited oscillations
recorded in slices from MK-801 mice also suggested an overall
reduction in elicited oscillatory response. Despite this, repeated
measure ANOVA analysis of the elicited activity revealed no sig-
nificant effect on total GBO power (F 1,11= 3.83; p= 0.08), peak
frequency (F 1,11= 1.66; p= 0.22), or peak power (F 1,11= 0.97;
p= 0.35). Comparing across individual epochs (Table 1), while
the average GBO power was lower than that observed in saline
controls (Figure 3A), these decreases reached only a trend level of
significance in epochs 3,4,5,and 6 (t 11= 1.70,p= 0.12; t 11= 1.61,
p= 0.14; t 11= 1.79, p= 0.10; t 11= 1.63, p= 0.13, respectively).
Additionally, no significant (p > 0.05) effect was observed on peak
power, or peak frequency across the entire range of analyzed
KA-elicited activity (Figures 3B,C).

To ensure that the observed lack of effect was not caused
by the dose of MK-801 being too low, the above experiments
were repeated using first 0.5 mg/kg (n= 4; data not shown) and
then 2 mg/kg (n= 3; Figure 3). As above, neither higher dose
of MK-801 had a significant effect on total GBO power, peak
power, or peak oscillatory frequency with either repeated measure
ANOVA, or individual epoch analysis. Additionally, increasing the
length of chronic drug treatment from 5 to 14 days of daily i.p.
injections of 2 mg/kg MK-801 (n= 4) had no effect on in vitro PrL
oscillatory activity compared to saline controls (data not shown).

DISCUSSION
The results reported in this study represent the first investigation
of the effects of chronic (5 days) application of NMDAR antago-
nists, ketamine, and MK-801, on gamma band oscillations (GBO)
in the adult mouse neocortex, ex vivo. There were three main
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findings: (1) Administration of chronic subanesthetic ketamine at
30 and 5 mg/kg reduced the peak frequency of the elicited oscil-
lations; (2) Chronic ketamine at 30 mg/kg also reduced the power
of cortical GBO within the 40–50 Hz band; (3) Somewhat surpris-
ingly, the effect of ketamine was not mimicked by a more selective
NMDAR antagonist, MK-801. In the following sections we discuss
these three findings in more detail.

CHRONIC KETAMINE REDUCED THE PEAK OSCILLATORY FREQUENCY
OF GBO
Several studies have suggested that the neocortical circuitry has
an intrinsic resonance frequency (29, 30). Interestingly, each cor-
tical area appears to have its own dominant frequency with frontal
cortices showing a resonance frequency in the beta/gamma bands
(30). Although most studies of GBO in Sz focus on changes in the
power of oscillations, there is some evidence that Sz is also asso-
ciated with a change (decrease) in the peak resonance frequency
of cortical circuits. Several studies have reported a reduced 40 Hz
response to auditory steady-state stimulation and a trend toward
an increased response at 20 Hz (31, 32). Similarly, visual Gestalt
stimuli elicit a lower frequency GBO response in schizophren-
ics than in healthy individuals (33). More recently, Tononi and
colleagues used transcranial magnetic stimulation to probe the
natural oscillatory frequency of cortical circuits in Sz (34). Inter-
estingly, Sz subjects showed a significant slowing in the peak fre-
quency of cortical oscillations, with the maximal decrease (10 Hz)
occurring in the prefrontal cortex. Furthermore, the prefrontal
natural frequency of individuals with Sz was slower than in any of
the healthy control subjects and was correlated with both positive
and negative symptoms.

While our previous findings with acute ketamine (15) are not
directly comparable to our current chronic findings, due to the
different routes of ketamine administration (bath application vs.
systemic), it is striking that a similar decrease in the peak oscillatory
frequency of KA-elicited oscillations was observed in both exper-
iments. Thus, acute or chronic ketamine application reduced the
natural resonance frequency of prefrontal cortical circuits, similar
to findings in Sz patients (34). This downward shift in the oscil-
latory frequency would impair the ability of the circuit to receive
and process input in the normal GBO range, as it could no longer
reliably follow neuronal input at such high frequencies. This would
result in reduced/inappropriate synchronization of neural activity,
which would likely contribute to both the psychosis and impaired
cognition observed in clinical studies, as well as Sz-like behaviors
in animal studies.

CHRONIC KETAMINE REDUCED THE POWER OF NEOCORTICAL GBO
Many studies of GBO in Sz patients have shown reductions in the
power of evoked GBO in a variety of sensory or cognitive para-
digms (35, 36). Our results here in the mouse prefrontal cortex
and those of Ferrarelli et al. (34), in Sz patients suggest that one
reason for such decreased GBO power may be a reduction in the
peak resonance frequency of cortical circuitry. Another reason may
be increased spontaneous, background broadband power due to
increased excitability of principal neurons, as observed in genetic
models with reduced NMDAR expression in parvalbumin-positive
interneurons [see Ref. (37–39)]. In our study, with 30 mg/kg

chronic ketamine we did not observe a broadband increase in
power, but rather a decrease in a narrow 40–50 Hz band around
the peak resonance frequency, presumably due to the reduction
in this peak frequency (see above). Similarly, in vivo, in adult
animals, chronic ketamine reduced GBO activity in the hippocam-
pus (13). In our study, with the lower dose of 5 mg/kg, the data
plotted in Figures 1 and 2 appeared to show increased power com-
pared to saline controls, particularly notable in the 15–20 s epoch.
Despite this, statistical analysis (repeated measures ANOVA) indi-
cated that overall this effect was not significant. Thus, we do
not believe there is any physiological relevance to the elevated
peak power measures observed with 5 mg/kg ketamine treatment.
Together, these results with 30 and 5 mg/kg ketamine suggest that
a higher dose is necessary to observe Sz-like reductions in GBO
power.

CHRONIC MK-801 APPLICATION HAD NO STATISTICALLY SIGNIFICANT
EFFECT ON PrL GBO
Surprisingly, we found that chronic treatment with MK-801, a
more specific NMDAR antagonist, did not reproduce the Sz-like
impairment in elicited PrL GBO caused by chronic ketamine.
Increasing the concentration of MK-801 or the duration of appli-
cation did not change the response. Disparity in the efficacy
of different NMDAR antagonists in mimicking Sz-like effects
have also been observed in other studies. For instance, a recent
study compared the behavioral effects of chronic PCP, a simi-
larly promiscuous pharmacological agent to ketamine, and MK-
801 in rodents (40). This study found that MK-801 treatment
did not replicate the full spectrum of behavioral impairments
induced by PCP. What accounts for these differences between
Ketamine/PCP and MK-801? One possibility is that chronic sup-
pression of NMDAR function by itself may not be enough to elicit
the behavioral/electrophysiological effect. Ketamine, in particular,
has actions on several other neurotransmitter receptors such as D2

receptors, 5-HT2 receptors, and GABAA receptors (15, 27, 28, 41).
Another possibility is that differences in the pharmacokinetics of
these drugs affect the results. Thus, differences in the peak con-
centration, tissue penetration, and duration of action may affect
the resultant changes in neocortical circuitry. While the precise
mechanism has yet to be defined, our results, and those of oth-
ers, suggest that chronic ketamine better models Sz-like changes
in cortical function than chronic MK-801.

CONCLUSION
Here we show, ex vivo, that chronic ketamine at 30 mg/kg results in
Sz-like impairment of both the frequency and power of KA-elicited
GBO in the PrL. This combined reduction in power and frequency
is reminiscent of earlier clinical findings associated with cognitive
deficits in Sz patients (31, 33–35). Our observation of these find-
ings in an acute slice preparation provide strong evidence that the
chronic ketamine mediated effects are mediated by local circuit
alterations in the PrL. While important in establishing the locus
of changes in oscillatory activity, one important limitation when
comparing our ex vivo approach with clinical studies is that our
slice preparation lacks input from other brain regions important
in generating GBO activity in vivo. Thus, future studies testing the
effect of chronic ketamine in vivo, utilizing transcranial magnetic
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stimulation, or other means, to generate GBO will be important
for corroborating our results.

Acutely, NMDAR blockade leads to increased excitability of
pyramidal neurons (42), altering the balance of excitation and
inhibition in the cortical circuitry. Thus, we speculate that in our
system chronic ketamine treatment leads to changes in the corti-
cal circuitry in the PrL resulting over time in circuit dysfunction,
perhaps through excitotoxicity (43) and/or upregulation of oxida-
tive pathways (25). While we did not directly examine the cel-
lular mechanisms behind this effect in this study, computational
modeling suggests that either reductions in the number of PV
interneurons or a reduction in GAD67 could account for our
findings of reduced GBO power and peak frequency (44, 45).

Our findings support the idea that deficits in executive function
observed with chronic administration of ketamine in humans and
animals (8, 9, 46–48) are due to an impaired ability of neocor-
tical circuitry to generate and/or maintain the proper frequency
oscillations and synchronicity necessary to bind together relevant
information.
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