frontiers in
PSYCHIATRY

ORIGINAL RESEARCH ARTICLE
published: 27 September 2013
doi: 10.3389/fpsyt.2013.00118

Epigenetic biomarkers as predictors and correlates of
symptom improvement following psychotherapy in
combat veterans with PTSD

Rachel Yehuda'?**, Nikolaos P Daskalakis'?**, Frank Desarnaud'?, louri Makotkine'?, Amy L. Lehrner'?,
Erin Koch?, Janine D. Flory 2, Joseph D. Buxbaum?®*®, Michael J. Meaney®%’ and Linda M. Bierer'?

" Traumatic Stress Studies Division, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
2 Mental Health Care Center, PTSD Clinical Research Program and Laboratory of Clinical Neuroendocrinology and Neurochemistry, James J. Peters Veterans Affairs

Medical Center, Bronx, NY, USA

3 Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA

4 Laboratory of Molecular Neuropsychiatry, Department of Psychiatry, Ilcahn School of Medicine at Mount Sinai, New York, NY, USA
5 Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA

¢ Neuroscience Division, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada

7 The Agency for Science, Technology and Research, Singapore Institute for Clinical Sciences, Singapore

Edited by:
David M. Diamond, University of
South Florida, USA

Reviewed by:

Klaus Peter Lesch,
Universitatsklinikum Wiirzburg,
Germany

Tania L. Roth, University of Delaware,

USA

*Correspondence:

Rachel Yehuda, Traumatic Stress
Studies Division, Department of
Psychiatry, Ilcahn School of Medicine
at Mount Sinai, James J. Peters
Veterans Affairs Medical Center, 526
OOMH PTSD 116/A, 130 West
Kingsbridge Road, Bronx, NY 10468,
USA

e-mail: rachel.yehuda@va.gov

INTRODUCTION

Epigenetic alterations offer promise as diagnostic or prognostic markers, but it is not
known whether these measures associate with, or predict, clinical state. These ques-
tions were addressed in a pilot study with combat veterans with PTSD to determine
whether cytosine methylation in promoter regions of the glucocorticoid related NR3C7and
FKBP51 genes would predict or associate with treatment outcome. Veterans with PTSD
received prolonged exposure (PE) psychotherapy, yielding responders (n=8), defined by
no longer meeting diagnostic criteria for PTSD, and non-responders (n=38). Blood sam-
ples were obtained at pre-treatment, after 12 weeks of psychotherapy (post-treatment),
and after a 3-month follow-up. Methylation was examined in DNA extracted from lym-
phocytes. Measures reflecting glucocorticoid receptor (GR) activity were also obtained
(i.e., plasma and 24 h-urinary cortisol, plasma ACTH, lymphocyte lysozyme |Cgg.pex, and
plasma neuropeptide-Y). Methylation of the GR gene (NR3C1) exon 1F promoter assessed
at pre-treatment predicted treatment outcome, but was not significantly altered in respon-
ders or non-responders at post-treatment or follow-up. In contrast, methylation of the
FKBP5 gene (FKBP51) exon 1 promoter region did not predict treatment response, but
decreased in association with recovery. In a subset, a corresponding group difference in
FKBP5 gene expression was observed, with responders showing higher gene expression
at post-treatment than non-responders. Endocrine markers were also associated with the
epigenetic markers. These preliminary observations require replication and validation. How-
ever, the results support research indicating that some glucocorticoid related genes are
subject to environmental regulation throughout life. Moreover, psychotherapy constitutes
a form of “environmental regulation” that may alter epigenetic state. Finally, the results
further suggest that different genes may be associated with prognosis and symptom state,
respectively.

Keywords: PTSD, veterans, epigenetics, methylation, promoter, glucocorticoid receptor, FK506 binding protein 5,
psychotherapy

behavioral responses to stress (5, 6). Maternal care regulates the

Cytosine methylation of glucocorticoid related genes represents
an epigenetic modification thought to underlie the developmental
programing of hypothalamic-pituitary-adrenal (HPA) axis func-
tion (1). Plasticity of the epigenome appears to constitute a mol-
ecular mechanism whereby genetic predispositions may be influ-
enced by environmental exposures resulting in sustained alter-
ations in gene expression and protein synthesis (2—4). Epigenetic
modifications of a glucocorticoid receptor (GR) gene promoter
were first described in the rat as a mechanism by which varia-
tions in parent — offspring interactions influence HPA-axis and

methylation state of the GR exon 1; promoter in hippocampus,
which in turn, regulates GR expression, the capacity for glucocor-
ticoid negative feedback, and HPA-axis responses to stress (5, 7).
Subsequent studies in humans showed that childhood adversity
associates with higher methylation of the GR exon 1F promoter
(the human ortholog of the rat exon 17 promoter sequence) lower
hippocampal GR expression and increased HPA-axis responses to
stress (8, 9).

Recent studies reveal additional mechanisms for the influence
of childhood adversity on GR signaling and HPA-axis function.
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FK506 binding protein 5 (FKBP5) regulates intracellular GR sig-
naling by decreasing ligand binding and restricting GR translo-
cation to the nucleus (10, 11). GR activation induces FKBP51
(the FKBP5 gene) transcription, thus establishing an intracellular
feedback loop that moderates GR sensitivity (12). FKBP5 genetic
variants in interaction with childhood adversity predict the risk for
affective disorders, including major depression, suicide attempts,
and PTSD (13-16). Moreover, the methylation state of selected
CpGs across the FKBP51 gene is determined by an interaction
between sequence-polymorphism and childhood adversity, and
modulates sensitivity of FKBP5 to GR regulation (17). Various
aspects of the GR (NR3C1) and FKBP5 genes, including genotype
and gene expression, have been implicated in PTSD (12, 13, 15, 18—
27). Low FKBP5 gene expression in PTSD has been associated with
low plasma cortisol and PTSD severity (21, 24). Taken together,
these findings suggest that childhood adversity influences the epi-
genetic state and transcriptional activity of genes that regulate
HPA-axis responses to stress.

Importantly, stress reactivity predicts the risk for multiple affec-
tive disorders, as well as PTSD (28). Early adverse experiences are
risk factors for PTSD following adult trauma exposures (29-31);
thus the associated epigenetic states may represent a molecular
mechanism responsible for altering subsequent responses to envi-
ronmental adversity (4, 32). Neuroendocrine studies reveal that
the development of PTSD following trauma exposure is asso-
ciated with pre-traumatic biological markers that reflect prior
sensitization to stress (33). Relatively stable changes in methy-
lation potentially explain the chronicity and tenacity of symptoms
observed in PTSD. In PTSD there is neither a complete restora-
tion of baseline hormone levels following trauma, nor do persons
with this condition feel that they have returned to a pre-trauma
psychological state. PTSD is a condition that has been associ-
ated with low glucocorticoid levels, enhanced GR sensitivity, and
insufficient glucocorticoid signaling (34-37). Epigenetic signals
associated with childhood adversity offer a potential explanation
both for why stress responses do not abate once an immediate
threat is no longer present, as in the case of PTSD, and for the fact
that some persons are at greater risk than others for the develop-
ment of PTSD (32, 38). In fact, many of the alterations noted in
PTSD have been demonstrated in association with early adversity
regardless of the subsequent development of PTSD in adults (9,17,
39, 40). On the other hand, persons who develop PTSD can also
recover from this condition either spontaneously or in response to
treatment (41). Moreover, an emerging trajectory in PTSD is one in
which there are fluctuating symptoms, which maybe mediated by
external post-traumatic environmental circumstances. This raises
the possibility that some epigenetic changes, originally induced
by the environment, change over time in response to subsequent
challenges.

The goal of the current study was to examine methylation of
the GR and FKBP5 genes — and associated downstream neuroen-
docrine measures, cortisol, and NPY, before and after prolonged
exposure (PE) psychotherapy in veterans with PTSD. The exon
1F promoter was selected as the most biologically relevant GR
promoter region for methylation analysis because this region
corresponds to exon 17 of the rat GR gene, shown to be differ-
entially methylated in the rat hippocampus based on variations in

maternal care (5), and in human peripheral blood and hippocam-
pal post-mortem tissue in association with child abuse (9, 39, 40).
We hypothesized that higher GR exon 1F promoter methylation
would predict treatment response and “normalization” of PTSD
related biology at post-treatment time-points but would not itself
change appreciably over time. We also examined the FKBP5 exon 1
promoter methylation and, based on previously observed changes
in FKBP5 gene expression in association with PTSD symptom
severity (24), we hypothesized that FKBP5 promoter methylation
would change in responders, in association with glucocorticoid
related measures.

The examination of biological measures in association with
PTSD symptom change following an efficacious psychotherapy
trial was designed to yield a sample with a variable degree of
symptom improvement, with some showing large decreases in
symptom severity, and others, minimal or moderate change. An
additional advantage of this approach is the ability to modify
symptoms without introducing exogenous medications that might
have direct effects on the biological measures of interest. The par-
ticipants for this study were drawn from a larger pool of combat
veterans that were examined as part of an effort to identify neu-
roendocrine markers (e.g., cortisol, NPY) that would distinguish
diagnostic, state related, and recovery markers in combat veter-
ans randomized to PE or a minimal attention (MA) condition.
To accomplish the larger objective, combat veterans were assessed
for blood and urinary biomarkers prior to, and after completing,
12 weeks of treatment — either PE or MA — and after a 3-month
naturalistic follow-up (for those who received PE). The direct
manipulation of target symptoms with psychotherapy within a
relatively short period of time (weeks to months) permits iden-
tification of biomarkers associated with relatively rapid symptom
change and treatment-associated recovery. Assessment prior to
and following psychotherapy allows differentiation of prognostic
indicators from state markers of symptom change. Markers that
do not change as symptoms improve may be prognostic indicators
or reflect measures associated with risk for PTSD. Previous results
from a preliminary study of combat veterans demonstrated that
GR responsiveness predicted treatment outcome (42). Because it
was of interest to draw specific conclusions about symptom change
in association with a structured psychotherapy, in this report we
only include participants in the active arm (i.e., who received and
completed PE) who completed the pre-treatment, post-treatment,
and follow-up assessments.

MATERIALS AND METHODS

PARTICIPANTS

This report represents a subsample (n=16) of a larger study of
113 combat veterans who enrolled in a clinical trial comparing the
effects of PE to a MA condition, conducted at the James ]. Peters
Bronx VA Medical Center (JJP BVAMC). Results of the subset
of completers will be reported elsewhere. The current subsample
comprised 14 men and 2 women who completed PE treatment.
Nine were Vietnam veterans, and seven had recently returned
from active duty in Iraq or Afghanistan. The decision to study
PE completers in this subset was based on two considerations.
First, following MA, the participants were allowed to begin active
psychotherapy. For this reason, the initial study did not have a
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follow-up evaluation for those receiving MA. Second, by compar-
ing participants who received the same intervention, biological
correlates of symptom severity are not confounded with effects of
treatment type.

As the molecular measures reported here were not part of
the original protocol, selection of this subgroup was based on
(1) having agreed to the future use of their biological sam-
ples; (2) having completed all three evaluations (pre-treatment,
post-treatment, and follow-up); (3) having participated in the
PE condition; and (4) having sufficient remaining sample for
the analysis of promoter methylation of GR and FKBP5 genes
after other study measures had been obtained. Participants in
this subsample were not appreciably different from those who
completed PE in the parent study with respect to pre-treatment
demographic or clinical variables, or post-treatment measures. All
procedures were approved by the IRB at the JJP BVAMC, all par-
ticipants signed written, informed consent prior to initiation of
study procedures.

Inclusion/exclusion criteria

Following a comprehensive medical (including lab testing) and
psychological evaluation, participants were excluded if they did
not experience a Criterion A traumatic event during military ser-
vice or meet DSM-IV criteria for current PTSD with a duration
of at least 6 months. Additional exclusion criteria included hav-
ing significant illness that would interfere with interpretation
of biological data, such as insulin-dependent diabetes, seizure
disorder, or any disease requiring ongoing treatment with sys-
temic steroids; regular use of benzodiazepines or oral steroids;
a BMI >40; smoking more than two packs per day; meet-
ing criteria for substance abuse or dependence within the last
6 months; a lifetime history of schizophrenia, schizoaffective dis-
order, bipolar disorder, obsessive compulsive disorder, or being
in any acute clinical state that necessitated prompt initiation
of pharmacotherapy or other treatment, including assessed sui-
cide risk. Veterans receiving psychotropic medications for PTSD
were eligible to participate if they had maintained a stabi-
lized therapeutic dose for a minimum of 2months prior to
randomization.

PROCEDURE

A comprehensive psychological evaluation was performed by a
clinical psychologist at the three study time-points (pre- and
post-treatment, follow-up). Several structured diagnostic instru-
ments were used including the Structured Clinical Interview for
DSM-1V (SCID) (43), and the Clinician Administered PTSD Scale
(CAPS) (44). The CAPS additionally provided a continuous mea-
sure of symptom severity of PTSD. The PTSD Symptom Scale —
Self-Report Version (PSS-SR) was used as a self-report of PTSD
symptoms (45). Two self-report measures were administered to
assess childhood trauma and life events. The Childhood Trauma
Questionnaire (CTQ) was used to assess early trauma (46), and
the Deployment Risk and Resiliency Inventory (DRRI) to access
military and civilian life events pre- and post-deployment (47).
For all subjects, an independent evaluator (i.e., not the individ-
ual who provided treatment) assessed clinical outcome following
treatment.

Biological measures

The primary molecular measures included GR- and FKBP5-
promoter methylation. These were obtained in parallel with the
psychological assessments. We also examined FKBP5 gene expres-
sion in subjects for whom there was sufficient sample. A battery
of HPA-axis markers was examined as part of the parent study to
assess basal cortisol levels and GR responsiveness. Reported here
are the biological measures that should be functionally related to
the molecular measures and/or may vary in response to symptom
change. These include basal plasma cortisol, 24 h-urinary corti-
sol levels, plasma ACTH, and cortisol responses to a low dose
(0.50 mg) dexamethasone suppression test (DST), glucocorticoid
sensitivity as assessed by the lymphocyte lysozyme ICs_pgx, and
plasma NPY.

Sample processing and hormone determination

Blood samples pre- and post-dexamethasone were collected as
previously described (48). Plasma was extracted from EDTA con-
taining tubes, aliquoted, and frozen at —80°C until subsequent
hormonal analysis. Urine samples were collected over a 24-h
period as previously described (49). Cortisol (plasma and urinary),
dexamethasone, and NPY were determined by radioimmunoassay
as previously described (48, 50). Plasma ACTH was determined
using an enzyme-linked immunosorbent assay (ELISA; ALPCO
Diagnostics, Salem, NH, USA). The intra- and inter-assay coeffi-
cients of variation were 4.7 and 7.1% for ACTH, 2.3 and 6.1% for
cortisol, 8.0 and 9.0% for dexamethasone, and 3.5 and 11.6% for
NPY, respectively.

Peripheral blood mononuclear cells isolation

Peripheral blood mononuclear cells (PBMCs) were purified from
basal EDTA pretreated blood by Ficoll-Paque (Amersham, UK)
using Accuspin tubes (Sigma-Aldrich, Saint Louis, MO, USA).
After two washes in Hanks’ Balanced Salt Solution (Life Tech-
nologies, Grand Island, NY, USA), PBMCs were counted with a
hemocytometer. Some cell pellets were immediately used for deter-
mination of lysozyme ICs.pgx as previously described (51). Some
cell pellets were quickly frozen, stored at —80°C, and later used for
DNA extraction (see below) and a portion of cell pellets was dis-
solved in TRIzol Reagent (Invitrogen, CA, USA) by adding 1 ml of
the reagent per 1 x 107 cells, quickly frozen, stored at —80°C, and
later used for RNA extraction (see below).

DNA cytosine methylation sodium bisulfite mapping

Genomic DNA was extracted from frozen PBMC pellets fol-
lowing the Flexigene DNA kit protocol (Qiagen, Valencia, CA,
USA). Methylation mapping of the human GR exon 1F pro-
moter (Figure 1A) was performed following Dr. Meaney’s lab-
oratory recommendations and as previously described for human
hippocampus (9). The methylation mapping method for the
human FKBP5 proximal promoter located upstream of exon 1
(Figure 1B) was developed in Dr. Yehuda’s laboratory. Sodium
bisulfite treatment was carried out according to the EpiTect
Bisulfite kit protocol (Qiagen, Valencia, CA, USA). In each
sodium bisulfite conversion reaction, 0.8 ug of genomic DNA
was used. In the same experiment, 0.8 ug of Universal Methy-
lated Standard (Zymo Research, Irvine, CA, USA) was treated
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-3467 GGCGTGTCAGGCCGCCCGGCCCCGAGCGCGGCCGAGACGCTGCGGCACCGTT
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-3415 TCCGTGCAACCCCGTAGCCCCTTTCGAAGTGACACACTTCACGCAACTCGGCCC
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-3361 GGCGGCGGCGGCGCGGGCCACTCACGCAGCTCAGCCGCGGGAGGCGCCCCG
27 28 29 30 31 32
-3310 GCTCTTGTGGCCCGCCCGCTGTCACCCGCAGGGGCACTGGCGGCGCTTGCCGC
33 34 35 36 37
-3257 CAAGGGGCAGAGCGAGCTCCCGAGTGGGTCTGGAGCCGCGGAGCTGGGCGG
38 39
-3206 GGGCGGGAAGGAGGTAGCGAGAAAAGAAACTGGAGAAACTCGGTGGCCCTC
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FIGURE 1 | Schematic representation of human NR3C1 and FKBP51
exon 1 promoter regions analyzed by DNA cytosine methylation
bisulfite mapping. In both panels the solid black line boxes with a
number represent the different exons and the 53 orientation goes from
left to right. (A) The NR3CT gene 5’ region is composed of multiple first
exons and the translation start site is located within exon 2. The

B FKBP51
5 3
- gl 5
+1 (transcription start)
1 2

CATCCCTTCTCTATGGCCCCCACAAAGGGCAAGGGCCAGACACGTGGGCTGGCG
TGGGGAGGTGGAGGAGCAAATGATGGGGGCGGGGCCTCATTTGCATGGACGGC
GCGCGGCCACCAATCCGGACAGGCGGATCGACAGCCCGCGCGCCTTTTGGGGGC
GGACTGACAGCCCCGGGGCCCTATGGAAGGCGGGTCCTGCGGCCGGCTGGGGC
-53 GGGACGGCGCCGGGCGCTGCCCCGGGGATTCGGGCCGGCTCGCGGGCGCTGCC

33 34 35 36 37
+1  AGTCTCGGGCGGCGGTGTCCGGCGCGCGGGCGGCCTGCTGGGCGGGCTGAAGG

3 4 5

9 10 111213 14

16 17 18 19

24 25 26 27 28 29

numbering of exon 1F promoter is based on the translational start site
(+1). The CpG sites that have been analyzed by bisulfite sequencing are in
red and numbered. (B) The FKBP51 gene proximal promoter region is
numbered based on the transcriptional start site (+1) of exon 1. The CpG
sites that have been analyzed by bisulfite sequencing are in red and
numbered.

with sodium bisulfite to check completion of the sodium bisul-
fite reaction. The genomic region of the human GR exon
IF promoter was subjected to PCR amplification using the
following primer sequences: 5-GTG GTG GGGGAT TTG-3

(forward); 5'-ACCTAATCTCTCTAAAAC-3" (reverse) following
previously published procedures (9). The thermocycler proto-
col involved an initial denaturation (5min, 95°C), 35 cycles
of denaturation (1 min, 95°C), annealing (2min 30s, 55°C),
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and extension (1 min, 72°C), and then a final extension (5 min,
72°C) with subsequent cooling at 4°C. The resulting PCR
product was subjected to another round of PCR, using the fol-
lowing nested primers: 5'-TTTTTGAAGTTTTTTTAGAGGG-3'
(forward); 5-AATTTCTCCAATTTCTTTTCTC-3' (reverse). The
thermocycler protocol was the same as the initial PCR proce-
dure except that the extension step was prolonged to 10 min.
The genomic region of the human FKBP5 exon 1 promoter
was subjected to PCR amplification using the following primer
sequences: 5'-GGTAGGTTTTGTGGATAGATAGGA-3' (forward);
5'-ACTCCGCTAACCCTTCAAC-3' (reverse). The thermocycler
protocol involved an initial denaturation (4 min, 95°C), 35 cycles
of denaturation (30s, 95°C), annealing (30s, 45°C), and exten-
sion (1 min, 72°C), and then a final extension (10 min, 72°C)
with subsequent cooling at 4°C. The resulting PCR product
was subjected to another round of PCR, using the follow-
ing nested primers: 5-AGGGGGTGTTAGTTTTTATTATTTTTT-
3’ (forward); 5'-ACTCCGCTAACCCTTCAAC-3’ (reverse). The
thermocycler protocol was the same as the initial PCR procedure.
The resulting PCR products were analyzed on a 2% agarose gel
and then purified using QIAquick PCR purification kit (Qiagen,
Valencia, CA, USA). The PCR products were subcloned using a
PCR product cloning kit (Qiagen) and individual plasmid con-
taining the ligated promoter regions were extracted and sequenced
(Genewiz, Inc., South Plainfield, NJ, USA). The sequences for 20
individual clones were aligned and analyzed in the DNA Align-
ment software program BioEdit (Ibis Biosciences, Carlsbad, CA,
USA). The DNA samples were analyzed in batches of 20-30 sam-
ples. Variability in the DNA bisulfite treatment did not exceed 2%
between the batches.

Gene expression

RNA, from Trizol-dissolved PBMCs, was extracted using com-
mercially available kits (RNeasy Mini Kit and RNeasy MinElute
Cleanup Kit, Qiagen). Extracted RNA was evaluated for its quality
using NanoDrop 2000 Spectrophotometer (Thermo Scientific).
RNA was aliquoted and stored at —80°C until use.

For GR exon 1F expression, cDNA synthesis was completed
using Maxima reverse transcriptase (Thermoscientific) and GR
target oligo (CAG GGG TGC AGA GTT CGA TG) since GR
expression levels are very low in blood cells. Quantitative real-
time PCR was performed with a LightCycler 480 (Roche Applied
Science). NR3CI exon 1F primers (forward primer 5'-AAG AAA
CTG GAG AAA CTC GGT GGC-3/, reverse primer 5'-TGA GGG
TGA AGA CGC AGA AAC CTT-3') and RT? PCR primer sets
for two endogenous reference genes (f2 microglobulin, Catalog
no. PPH01094E; SABiosciences and glyceraldehyde-3-phosphate
dehydrogenase, Cat#PPH14985F, Sabioscience) were used. Only
one cDNA was amplified in each PCR (monoplex).

For FKBP5 expression, cDNA was synthesized by reverse tran-
scription reaction using High capacity cDNA Archive Kit (Applied
Biosystems). Real-time PCR was performed using an ABI Step One
Plus Real-Time PCR Instrument (Applied Biosystems) and Taq-
Man probes (Applied Biosystems). The primers used to target exon
junctions 7-8 and 8-9 of the FKBP51 gene, and four endogenous
reference genes, have been previously described (21). Only one
c¢DNA was amplified in each PCR (monoplex).

The reactions were run in triplicate for each sample and were
quantitated by selecting the amplification cycle when the PCR
product of interest was first detected (threshold cycle, Ct). To
account for the differences in the amounts of input material across
samples, the expression level of each transcript in each sample was
normalized to the geometric mean of the expression levels of the
endogenous reference genes using the 2722¢t method.

STATISTICAL ANALYSIS
Responder status was defined by the presence or absence of PTSD
at post-treatment evaluation, as determined by an independent
psychologist using the CAPS for DSM-IV. For GR and FKBPS5,
number of methylated sites in the CpG region examined for each
subject was calculated by observing the percentage of methylated
clones at each site and then totaling the number of sites with per-
centages greater than zero. Because the number of individual sites
examined was 39 for GR and 38 for FKPB5, the potential range of
number of methylated sites for GR is 0-39, with an actual range of
1-16; the potential range for FKBP5 is 0—38, with an actual range
of 2-20. An alternative measure for promoter methylation was the
sum % methylation. For this measure, at each site of the promoter
region, the total number of methylated clones (out of 30) was con-
verted to a percentage. The percentages across all sites were then
added to create a total summed percentage of methylation.
Measures of central tendency and variability (mean and SE)
were calculated at baseline, treatment completion, and follow-
up for all continuous primary and secondary clinical outcome
measures and biological variables. Baseline comparisons of group
differences were conducted using independent samples ¢-tests
for continuous variables and chi-square analysis for categori-
cal variables. Correlation analyses were conducted to determine
appropriate covariates for repeated measures analysis. Repeated
measures ANOVAs and ANCOVAs were conducted using respon-
ders and non-responders to explore within and between group
changes on biological and psychological measures in order
to determine predictors and correlates of treatment outcome.
Additional bivariate correlations were used to measure associa-
tion of GR- and FKBP5-promoter methylation at pre-treatment
with clinical and other biological variables at post-treatment or
follow-up and of post-treatment variables with those at follow-
up. For the correlational analysis, the number of methylated
sites was selected as the most sensitive measure of methyla-
tion in this study. Statistical significance for all analyses was set
at p <0.05.

RESULTS

DEMOGRAPHIC, DESCRIPTIVE, AND CLINICAL MEASURES

Table 1 reports comparisons of the responder and non-responder
groups at baseline on a variety of demographic and descriptive
characteristics. There were significant group differences in age
indicating that responders tended to be younger, had PTSD for
a shorter duration, and had fewer total lifetime traumatic events,
than non-responders. A chi-square analysis of the number of vet-
erans in the two conflicts in relation to responder status did not
reach statistical significance in this small sample. Moreover, ini-
tial PTSD symptom severity was comparable for responders and
non-responders, as assessed by clinician or self-report (Table 2).
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Table 1| Baseline characteristics comparing responders to non-responders.

Responders

(n=8)
M (SD) or %

Non-responders

(n=8)
M (SD) or %

41.25 (17.82)

13.38 (2.20)

Single (375%)
Married or living with
partner (62.5%)

Age
Years of education
Marital status

Ethnicity Hispanic (37.56%)
Black (37.5%)
White (25%)

Conflict OEF/OIF (62.5%)

Vietnam (37.5%)

Stabilized on psychotropics Yes (62.5%)
Lifetime CAPS? total score 92.75 (12.70)
CTQP total 9.43 (3.72)
Time since first DRRIC trauma (years) 25.00 (17.85)
DRRI pre-deployment life events 4.50 (3.16)
DRRI post-deployment life events 5.13 (3.68)
DRRI total life events 9.63 (5.80)

57.88 (745) tio.4®=—2.435 p=0.037
15.50 (2.39) t(14y=—1.850 ns
Single (37.5%) x2 ) =1.000 ns
Married or living with
partner (62.5%)
Hispanic (50%) X2 =0.476 ns
Black (375%)
White (12.5%)
OEF/OIF (25%) X2 =2.286 ns
Vietnam (75%)
Yes (62.5%) x2) = 1.000 ns
105.25 (15.15) tia) =—1.789 ns
10.81 (4.02) tiay =—0.717 ns
45.00 (8.83) tho9=2.841 p=0.017
725 (3.15) T114)=7'|A742 ns
10.38 (2.56) ta) =—3.312 p=0.005
17.63 (3.16) tia) = —3.424 p=0.004

@Clinician Administered PTSD Scale;
bChildhood Trauma Questionnaire;
¢Deployment Risk and Resilience Inventory;
dunequal variance t-test.

Table 2 | Interview and self-report measures at before and after treatment and at 12-week follow-up in Responders (R) and Non-responders (NR).

Pre-treatment Post-treatment Follow-up p-Value
R NR R NR R NR Group Time G xT
Current PTSD severity? 75.00 (6.39) 81.75 (6.39) 26.50 (6.78) 70.50 (6.78) 30.00 (772) 61.75 (7.72) 0.004 0.000 0.003
Self-rated PTSD severity? 36.50 (2.39) 35.17 (2.76) 18.75 (3.98) 34.50 (4.60) 14.63 (3.15) 32.00 (3.63) 0.016 0.000 0.004

aClinician Administered PTSD Scale (CAPS);
bPTSD Symptom Scale-Self-Report (PSS-SR).

TREATMENT RESPONSE AND CLINICAL INDICATORS

Table 2 also describes changes in measures of PTSD. Consistent
with defining groups on the basis of their diagnostic status at
post-treatment, there were significant group X time interactions
for PTSD symptom severity.

METHYLATION OF A GR PROMOTER

Levels of methylation across the GR exon 1F promoter were
generally low, as expected of CpG sites lying within a CpG
island. Figure 2A demonstrates a significant group difference
in the number of CpG methylated sites across the GR exon
IF promoter between responders and non-responders at pre-
treatment (f14 = 2.43, p=0.029), with a greater average number
of methylated sites in responders (4.5 & 0.6) than non-responders
(2.5£0.6). A similar pre-treatment difference in GR exon 1F pro-
moter methylation was observed when the sum % methylation
measure (Figure 2B) was used (t14 =2.29, p = 0.045; responders
28.7 £ 5.9, non-responders: 13.8 £ 2.8).

In repeated measures analysis of number of methylated sites,
there was a main effect of group (Fj14=7.584, p=0.016)
across the three time-points, but no significant effect of time
(F2,28 =2.41, ns) or group X time interaction (F, 3 =0.171, ns).
The significant group effect reflects higher level of number of
methylated CpG sites in samples from responders compared
to non-responders. Similar effects at a trend level of signifi-
cance were observed when using the sum % methylation mea-
sure (group: Fy,14 = 3.627, p =0.078, trend; time: F; 53 = 2.22, ns,
group X time interaction: F; 73 = 0.401, ns).

Treatment response for individual subjects was predicted by
pre-treatment GR exon 1F promoter methylation. Pre-treatment
levels of GR exon 1F promoter methylation were significantly
correlated with both post-treatment PTSD symptom severity
(Figure 3A) and the change in symptom severity from pre- to
post-treatment (Figure 3B). Higher post-treatment GR exon 1F
promoter methylation also predicted lower self-reported (but not
clinician-rated) PTSD symptoms at follow-up (Figure 4).
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FIGURE 2 | GR- and FKBP5-promoter methylation at pre-treatment,
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(C,D) methylation shown by mean + SE of number of methylated sites
(A,C) or sum % methylation (B,D). Responders (n=8) to treatment are
represented by blue, open circles and non-responders (n=8) by red
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squares. For GR exon 1F promoter methylation, there is a significant group
difference at Pre-treatment, but no main effect of time and no group by
time interaction. FKBP5 promoter methylation shows a significant group
by time interaction, but no main effects of group or time. Statistical
significance was set at p < 0.05.
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FIGURE 3 | Relationship between GR exon 1F promoter
methylation at pre-treatment and PTSD symptom severity at
post-treatment. Correlations of pre-treatment GR exon 1F promoter
methylation (# of methylated sites) with post-treatment CAPS total
score (A) and change in CAPS total score from pre- to post-treatment
(B). Responders (n=8) to treatment are represented by blue, open
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circles and non-responders (n=28) by red squares. The higher number
of GR exon 1F promoter methylated sites at pre-treatment
corresponded to a lower CAPS total score at Post-treatment and a
greater reduction in symptoms from pre- to post-treatment. Correlation
coefficients are denoted in the different panels. Statistical significance
was set at p < 0.05.
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FIGURE 4 | Relationship between GR exon 1F promoter methylation at
post-treatment and self-reported PTSD symptom severity at follow-up.
Correlations of Post-treatment GR exon 1F promoter methylation (# of
methylated sites) with PSS-SR total score at follow-up. Responders (n=8)
to treatment are represented by blue, open circles and non-responders
(n=7) by red squares. The higher number of GR exon 1F promoter
methylated sites at post-treatment corresponded to a lower PSS-SR total
score at follow-up (r=—0.532, p=0.041). Statistical significance was set at
p <0.05.

Pre-treatment GR exon 1F promoter methylation addition-
ally predicted several post-treatment biological measures. Pre-
treatment GR exon 1F promoter methylation was positively
associated with post-treatment 24 h-urinary cortisol levels
(Figure 5A) and plasma NPY (Figure 5B). Although only at a
trend level of significance, pre-treatment GR exon 1F promoter
methylation was associated with follow-up glucocorticoid sensitiv-
ity as determined by the lymphocyte lysozyme test 3 months after
treatment ended (Figure 5C). Note that lower ICso.pgx indicates
greater glucocorticoid sensitivity. Importantly, there were no sig-
nificant correlations observed cross-sectionally between GR exon
1F promoter methylation and PTSD symptoms or other endocrine
measures in this sample.

METHYLATION OF THE FKBP5 PROMOTER

In contrast to the findings for the GR exon 1F promoter, FKBP5
promoter number of methylated sites showed variation in asso-
ciation with treatment outcome reflected in a significant group
by time interaction effect (F34 =4.576, p=0.021). Responders
showed a decrease, whereas non-responders showed an increase in
FKBP5 promoter methylation over this same period (Figure 2C).
This interaction effect was confirmed at a trend level of significance
using the sum % methylation measure (F2; =4.276, p=0.063,
trend; Figure 2D) and was likely due to decreased levels of FKBP5
promoter methylation among responders from post-treatment to
the follow-up time-point.

In contrast to GR exon 1F promoter methylation, for which
measures at pre-treatment predicted symptoms or biological mea-
sures at subsequent time-points, FKBP5 promoter methylation
tended to associate cross-sectionally with biological measures
at pre- and post-treatment time-points. For example, FKBP5

promoter methylation at pre-treatment was significantly corre-
lated with plasma cortisol levels (Figure 6A) such that higher
FKBP5 promoter methylation was correlated with lower corti-
sol levels at pre-treatment, a result compatible with our previous
findings of lower FKBP5 gene expression in PTSD (21). Following
treatment, FKBP5 promoter methylation was significantly neg-
atively correlated with pituitary response to dexamethasone as
measured by ACTH levels following the administration of low dose
dexamethasone (Figure 6B). A similar correlation was observed
at a trend level of significance with post-dexamethasone cortisol
(r=-0.509, n=15, p=0.053). Since lower ACTH or cortisol lev-
els following the low dose DST reflect a greater negative-feedback
inhibition of the HPA-axis, these findings suggest that greater GR
responsiveness associated with higher levels of FKBP5 promoter
methylation.

Levels of FKBP5 promoter methylation at follow-up were
also associated with measures of both endocrine function and
symptoms at post-treatment (Figure 7). Thus, FKBP5 pro-
moter methylation at follow-up was significantly correlated with
both plasma cortisol and 24 h-urinary cortisol at post-treatment
(Figures 7A,B, respectively), suggesting that FKBP5 promoter
methylation may be associated with changes in HPA-axis activ-
ity, in association with changes in symptom expression, rather
than reflecting upstream regulation of cortisol. The finding that
post-treatment PTSD severity was correlated with FKBP5 pro-
moter methylation at follow-up (Figure 7C) is consistent with
this idea.

EXPRESSION OF GR EXON 1F AND FKBP5

Because the assays for gene expression were not planned at the out-
set of this clinical trial, biological material was only available at the
follow-up time-point and not for all subjects. Treatment respon-
ders showed higher expression of the GR exon 1F and FKBP5 genes
compared with non-responders (for GR exon 1F: 1.0 £0.1 and
0.4 £ 0.1, respectively, for FKBP5 exon 8/9:3.1+ 1.4 and 1.2 £ 0.4,
respectively). This difference was significant only for GR exon 1F
(t4=2.29, p=0.019) in this small sample.

Plasma cortisol was positively correlated with FKBP5 gene
expression (for exon 7/8 transcript: r =0.654, n =10, p =0.040)
and negatively correlated with GR exon 1F expression (r = —0.853,
n==6, p=0.031) at follow-up. FKBP5 gene expression also neg-
atively correlated with the decline in cortisol in response to
dexamethasone (for the exon 7/8 transcript: r = —0.869, n= 10,
p=0.002).

Endocrine markers assessed at pre- and post-treatment cor-
related with FKBP5 gene expression at follow-up. For example,
ACTH levels following dexamethasone at pre-and post-treatment
predicted lower GR exon 1F, and higher FKBP5 gene expression at
the 7/8 transcript (at pre-treatment, r = —0.929, n =6, p =0.022
for GR exon 1F and r=0.712, n=9, p=10.031 for the FKBP5
exon 7/8 transcript; at post-treatment r = —0.616, n=6, ns for
GR exon 1F and r =0.768, n =10, p = 0.016 for the FKBP5 exon
8/9 transcript). This suggests that those showing relatively lower
pituitary GR responsiveness before and/or after treatment were
most likely to demonstrate a treatment (or symptom) induced
decrease in GR gene expression and/or increase in FKBP5 gene
expression, a likely consequence of demethylation of the FKBP5
promoter region described above.
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FIGURE 5 | Relationship between GR exon 1F promoter methylation at
pre-treatment and urinary cortisol, NPY, and IC50-DEX at
post-treatment or follow-up. Correlations of pre-treatment GR exon 1F
promoter methylation (# of methylated sites) with adjusted 24 h-urinary
cortisol (see below) at post-treatment (A), neuropeptide-Y (NPY) at
post-treatment (B), and ICsopex at follow-up (C). Responders (n=8) to
treatment are represented by blue, open circles and non-responders (n=8,
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Statistical significance was set at p < 0.05.
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FIGURE 6 | Cross-sectional relationship between FKBP5 promoter
methylation and HPA-axis endocrine markers. Correlations of
pre-treatment plasma cortisol with pre-treatment FKBP5 promoter
methylation (# of methylated sites) (A) and follow-up adjusted post low dose
dexamethasone suppression test (DST) plasma ACTH with follow-up FKBP5
promoter methylation (# of methylated sites) (B). Responders (n=7) to
treatment are represented by blue, open circles and non-responders (n=8)
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by red squares. Higher pre-treatment plasma cortisol and Follow-up post-DEX
adjusted ACTH associated with lower FKBP5 promoter methylation at
pre-treatment and Follow-up, respectively. Follow-up post-DST ACTH was
adjusted for dexamethasone levels and pre-DST ACTH levels using linear
regression and unstandardized residuals were added to the initial raw levels.
Correlation coefficients are denoted in the different panels. Statistical
significance was set at p <0.05.

METHYLATION AND TRAUMATIC LIFE EVENTS
There was a significant difference in total life events in responders
vs.non-responders (Table 1). GR exon 1F promoter methylation at
pre-treatment was significantly associated with time since the first
reported trauma, and at post-treatment with DRRI total life events
(Figures 8A,B, respectively). There was no relationship between
FKBP5 promoter methylation (at any time-point) with either the
total number of negative life events or time since initial trauma.
Interestingly, DRRI total life events predicted PTSD symptom
severity assessed by CAPS at post-treatment (r =0.690, n=16,

p=0.003). The three associations did not appreciably change
when controlling for participant age at the time of the GR exon 1F
promoter methylation assessment.

DISCUSSION

This is the first report in the literature to investigate cyto-
sine methylation changes in association with changes in psy-
chiatric symptoms and neuroendocrine measures in response
to psychotherapy. In this small sample of responders and non-
responders to PE psychotherapy, pre-treatment GR exon 1F
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FIGURE 7 | Relationship between HPA-axis endocrine markers and
PTSD severity at post-treatment and FKBP5 promoter methylation at
follow-up. Correlations of post-treatment plasma cortisol (A),
post-treatment 24-h urinary cortisol (B), and post-treatment CAPS total
score (C) with Follow-up FKBP5 promoter methylation (# of methylated
sites). Responders (n=7) to treatment are represented by blue, open
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circles and non-responders (n=8) by red squares. Both higher plasma
cortisol and higher 24 h-urinary cortisol associated with lower FKBP5
promoter methylation at follow-up. Higher post-treatment CAPS total
scores associated with more FKBP5 promoter methylation at follow-up.
Correlation coefficients are denoted in the different panels. Statistical
significance was set at p < 0.05.
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FIGURE 8 | Relationship between significant and potentially traumatic
events at pre-treatment and GR exon 1F promoter methylation.
Correlations of time since first trauma assessed on the Deployment Risk
and Resiliency Inventory (DRRI) with the with Pre-treatment GR exon 1F
promoter methylation (A) and number of life events as assessed on the
DRRI with GR exon 1F promoter methylation at post-treatment (B).

Post-tx GR-promoter mw
# Methylated Sites

r=-.595, p=.015
——

0 5

T T T T 1

T T
10 15

# DRRI Life Events
= Non-Responders

Responders (n=8) to treatment are represented by blue, open circles and
non-responders (n=8) by red squares. Longer time since first trauma and
greater number of traumatic life events both associated with lower GR exon
1F promoter methylation, at pre-treatment and post-treatment, respectively.
Correlation coefficients are denoted in the different panels. Statistical
significance was set at p < 0.05.

promoter methylation predicted treatment outcome, but was not
significantly altered in either group at post-treatment or follow-
up. In contrast, pre-treatment cytosine methylation of the FKBP5
promoter did not predict treatment response, but decreased in
association with recovery in veterans who no longer met diagnos-
tic criteria for PTSD after psychotherapy. These findings distin-
guish two seemingly stable epigenetic markers that may associate,
respectively, with prognosis (GR gene methylation) and symptom
severity (FKBP5 gene methylation).

The focus in this study on the GR gene was based on observa-
tions that implicate enhanced GR sensitivity in PTSD (36). The
focus on FKBP5, a co-chaperone of the GR cellular complex, is

based on studies showing that FKBP5 inhibits the nuclear translo-
cation of ligand-bound GR, thereby directly affecting functional
GR sensitivity (12). FKBP5 gene expression is up-regulated by glu-
cocorticoids through consensus glucocorticoid response elements
(GREs) and by glucocorticoid-induced demethylation of the gene
(12,17,52,53). The underlying epigenetic mechanisms involved in
the interaction of these two genes are not fully known, and remain
of great interest. The findings of this study demonstrate dis-
tinct correlates with respect to PTSD for these two glucocorticoid
related genes.

The lack of change over time in GR gene methylation is
consistent with the idea that imprinting by early environmental
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experiences may result in enduring epigenetic changes in expres-
sion of this gene (1, 54). In animals, changes in GR gene methyla-
tion related to variations in maternal care are enduring, predicting
GR responsiveness under a variety of experimental challenges
in adulthood (5, 7, 55). Similarly, child maltreatment associates
with hypermethylation of the GR exon 1F promoter in both
post-mortem hippocampus (9) and leukocytes and an attenuated
cortisol response to the Dex/CRH test in healthy adults (40). Our
findings are consistent with the idea that environmental influences
on the methylation of the GR exon 1F promoter are stable into
adulthood and associated with clinical outcomes. Thus, methyla-
tion of this GR promoter was relatively stable across a 6-month
period during which three independent measures were obtained
under circumstances of changing symptom severity. This con-
clusion is buttressed by the strong inverse correlation between
total number of negative life events as measured by the DRRI
and GR gene 1F promoter methylation, as well as by the negative
relationship between GR gene methylation and duration since ini-
tial trauma exposure. To our knowledge this finding is the first
systematic documentation in humans of the stability of an epi-
genetic mark associated with childhood experience. In contrast,
studies with rodents have been limited in most studies to a single
assessment, typically in selected brain regions.

Variations in maternal care regulate hippocampal GR promoter
methylation that, in turn, determines hippocampal GR expres-
sion, the efficiency of glucocorticoid negative-feedback regulation
of hypothalamic CRF expression, and the magnitude of HPA-axis
responses to stress (5, 56, 57). GR promoter methylation is thus an
upstream regulator of GR gene expression and HPA-axis respon-
sivity. In this study, GR promoter methylation at pre-treatment
predicted HPA-axis activity following psychotherapy, but was not
correlated with baseline cortisol measures at pre-treatment. Like-
wise in a recent cross-sectional study (40), GR promoter methyla-
tion in human lymphocytes did correlate with the cortisol response
to the DEX/CRH challenge in a sample of healthy adults, many
of whom had reported child abuse, but apparently not with basal
measures of cortisol. It is possible, that cross-sectional correlations
would have been observed herein following a corresponding level
of HPA-axis manipulation as implicated by the DEX/CRF chal-
lenge. Nonetheless, the associations between GR exon IF promoter
methylation and numerous functional glucocorticoid measures
further increase confidence in the validity of the former to inform
downstream processes related to functional neuroendocrine out-
comes, but these associations may not necessarily be present when
examined cross-sectionally.

Unlike GR promoter methylation, FKBP5 promoter methyla-
tion did not predict treatment response, but was correlated with
measures of cortisol and glucocorticoid sensitivity. These findings
are consistent with the role of FKBP5 as a moderator of intra-
cellular GR signaling. These results are also consistent with our
previous findings of an association between FKBP5 gene expres-
sion and plasma cortisol levels in WTC trauma survivors (21).
The FKBPS5 site in the current study differs from that examined
by Klengel et al. (17), which associates with childhood adversity.
This group examined regions (intronic regions and distal pro-
moter region) of the FKBP5 gene that contain GREs. Methylation
status in the intronic regions, especially of intron 7, mediated the

effects of early life adversity on adult stress sensitivity since an
association of child abuse with FKBP5 methylation at intron 7
has been reported, depending on FKBP5 genotype (17). Interest-
ingly, methylation at these respective intronic regions in the rat,
which also contain GREs, were decreased after a month of corti-
costerone administration resulting in an increase in FKBP5 gene
expression strengthening the link between glucocorticoid levels
and FKBP5 gene expression through epigenetic mechanisms that
can also operate later in life (52, 53). Our choice of examining
the proximal promoter region was prompted by the notion that
methylation of this region would influence FKBP5 gene expres-
sion. Consistent with the findings of Klengel et al. (17), we found
that increased levels of cortisol associated with decreased levels of
FKBP5 promoter methylation.

These findings permit a distinction between biological markers
associated with prognosis and treatment outcome. Thus, GR pro-
moter methylation at pre-treatment was associated with treatment
response, while dynamic variation in FKBP5 promoter methy-
lation associated with treatment outcome. A model for under-
standing the unique relationships observed in GR and FKBP5
methylation and their potential interactions in PTSD is pre-
sented in Figure 9. Early experience may influence both GR and
FKBP5 gene methylation. In PTSD, GR sensitivity is increased,
likely resulting from reduced GR promoter methylation, which
would ultimately result in lowered cortisol levels and, therefore,
low glucocorticoid signaling. The low cortisol levels would serve
to further decrease FKBP5 gene expression through an intracellu-
lar loop mediated by GREs in the FKBP5 gene. Decreased FKBP5
gene expression could serve to sustain an increased GR sensitiv-
ity. A decline in FKBP5 promoter methylation, such as occurred
in treatment responders, might allow for an increase in FKBP5
gene expression, which would, in turn, ultimately decrease GR
sensitivity. Thus, we found that treatment responders showed
decreased FKBP5 promoter methylation, suggestive of increased
FKBP5 gene expression, and measures of HPA-axis activity (i.e.,
plasma and urinary cortisol levels) reflecting decreased GR sensi-
tivity. Likewise, higher levels of GR promoter methylation, sugges-
tive of lower GR expression, were also associated with a positive
response to treatment. Our previous studies suggest that increased
GR sensitivity is a hallmark of PTSD (36). The mechanisms by
which such dynamic changes in GR sensitivity associate with
changes in PTSD symptoms remains to be fully elucidated; how-
ever the current findings suggest that the molecular mechanisms
that regulate glucocorticoid signaling associate with treatment
outcome.

In sum, this is the first demonstration of an epigenetic alter-
ation in association with treatment response. This study represents
an important initial step in establishing relevant molecular mark-
ers for PTSD therapies. In particular, the longitudinal approach
in which symptoms vary over time is essential to distinguish-
ing PTSD predictors from symptom correlates, and permits a
more rational evaluation of potential treatment targets. The pre-
liminary observations presented here require replication. Future
prospective studies could detect the level of functional significance
of small differences in methylation at baseline (as was the case
for the GR-1F promoter) or small changes in methylation after
an environmental challenge (as was noted for FKBP5 promoter
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FIGURE 9 | Mechanistic model of the relationships/interactions
between GR and FKBP5 methylation in PTSD. Early life experience may
impact both GR and FKBP5 gene methylation potentially in interaction with
genotype. GR responsiveness is increased in PTSD, likely resulting from
reduced GR methylation, with consequent increased GR expression,
ultimately resulting in lowered cortisol levels. Low cortisol levels would
serve to decrease FKBP5 gene expression through an intracellular loop
mediated by GREs in the FKBP5 gene. Later life experience =+ therapy, can
also impact methylation of both genes, but most likely in distinct manners.
A glucocorticoid-induced demethylation of FKBP5 will allow the

subsequent increase in FKBP5 mRNA and protein expression, which
would, in turn, ultimately decrease GR responsiveness, permitting the
normalization of cortisol and of glucocorticoid signaling. This would have a
beneficial effect on PTSD symptoms by impacting glucocorticoid
responsive DNA sites that reduce sympathetic arousal or stimulate
adaptation and recovery/resiliency (e.g., neuropeptide-Y). Green arrow
denotes a positive influence (increase, “+") and red arrow a negative
influence (decrease, “—"). Blue arrow depicts a relationship. GR:
glucocorticoid receptor encoded by the NR3C1 gene, FKBP5: FK506
binding protein 5 encoded by the FKBP51 gene.
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methylation). However, the results support recent research indi-
cating that some glucocorticoid related genes may be subject
to environmental regulation throughout life (58). Moreover, the
data suggest that psychotherapy resulting in substantial symp-
tom change constitutes a form of “environmental regulation” that
may alter epigenetic state. Finally, the results demonstrate that
different genes may be associated with prognosis and symptom
state, respectively.
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